
COR 6: Beyond testing

End-of-semester administrivia

● We updated the Grading section of the syllabus a few weeks ago with
concrete information on how your final letter grade will be determined. Please
review it if you're curious.

● If you have any concerns or disputes about your grades, the final day to tell
us will be three days after we release HW8 grades.

● Remember to fill out your course evaluations!
○ Due December 15th
○ 7 of you have responded… 11 to go!

https://bernsteinbear.com/isdt/#grading

This is the last lecture of COR!

We are planning to hold a lecture on Thursday, but it will be optional and will
cover a topic unrelated to the rest of the course. Some ideas we've had:

● Introduction to using Vim
● Deep dive of an open-source project that uses tools from all four modules
● Tips for ramping up on a big project quickly (places to start, code to read)
● Programming language implementation: interpreters/compilers/machine code
● Introduction to debugging practices & philosophies
● Introduction to performance and profiling

If any of these catch your eye, or if you have a different idea, see the next slide!

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

What do you want to learn
on Thursday?

Tests only make guarantees about certain exposed runtime behavior of programs.

Verification: ‘‘Are we building the product right?’’ Validation: ‘‘Are we building the
right product?’’

—Boehm

Limitations of tests

Coding practices

See: MISRA C, JPL C, ...

Code review

Other ways to check runtime behavior

● Dynamic invariant checks inside software (“asserts”)
○ Including compiler instrumented dynamic invariant checks (ASAN, UBSAN, ...)

● Emulation (Valgrind)
● Fuzzing/random testing

○ AFL/AFL++
● Logging
● Property-based testing

○ QuickCheck/LeanCheck (Haskell)
○ Hypothesis (Python)

● Bounded exhaustive testing
● Characterization tests

○ Good for images, large outputs, legacy codebases, etc
● User bug reports / changes in metrics

https://github.com/google/AFL
https://aflplus.plus/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/leancheck
https://hypothesis.readthedocs.io/en/latest/quickstart.html
https://users.ece.utexas.edu/~khurshid/papers/BET-issta04.pdf

asserts

#ifndef NDEBUG
#define assert(condition) if (!(condition)) abort()
#else
#define assert(_condition)
#endif

bool mod(int left, int right) {
 assert(left >= 0);
 assert(right > 0);
 return left % right;
}

ASAN/UBSAN

● ASAN: AddressSanitizer
● UBSAN: UndefinedBehaviorSanitizer
● And others, too

● Compiler is modified to run extra
code for every allocation, free, and
pointer dereference.

● Keeps track of which memory is
allocated.

● Accesses that touch unallocated
memory immediately abort the
program.

https://github.com/google/sanitizers

Valgrind

● Run code in a sandbox
● Run small snippets of code before and after memory read/write
● Mark which memory is allocated and which is freed
● Slower than ASAN but more precise

Fuzzing

● Generate random inputs to code to see what breaks
● Often reveals unsafe code because the input is completely outside the realm

of "normal"
● Some fuzzers, like AFL, instrument the code (like ASAN does) so they can

tell what code paths get run for a given input. Then they generate inputs to try
and exercise every code path.

● Don't be annoying and file fuzz reports to open source projects without
offering a fix.

https://github.com/google/AFL

Property-based testing (C++, Python, Haskell, ...)

#include <rapidcheck.h>
#include <vector>
#include <algorithm>

int main() {
 rc::check("double reversal yields the original value",
 [](const std::vector<int> &l0) {
 auto l1 = l0;
 std::reverse(begin(l1), end(l1));
 std::reverse(begin(l1), end(l1));
 RC_ASSERT(l0 == l1);
 });

 return 0;
} This slide deck is a good read

https://cdn2-ecros.pl/event/codedive/files/presentations/2016/Patryk_Malek_Property_based_testing_in_cpp.pdf

Characterization tests/approval tests

● "lock down" current behavior

Logging in production

● Don't log PII
● Log useful pieces of information

○ Error happened
○ …

● Beware of log spam!
○ Easy to log too much noise and hide the signal
○ One solution: runtime-togglable log messages (by subsystem, severity, etc)
○ Good: Linux kernel dynamic debug framework
○ Bad: Android logcat

Metrics and user bug reports

● Keep an eye on your core metrics
○ Including number of bugs reported

● When they dip unexpectedly (not just "nighttime"), something might have
happened

Ideas:

● Time spent in app
● Distribution of exit codes

What constitutes "behavior"?

● Function results in memory
○ Easy to test

● I/O actions (syscalls), including their order
○ Hard to test

● Performance
○ ???

The parable of the intern

● Team writes a specification for a sorting function
● Specification describes the domain (integers), that it is a stable sort, etc
● Lead engineer writes the most beautiful merge sort you have ever seen

○ Writes a bunch of tests too
● Code review looks good, so the code lands
● Intern discovers a weird bug and decides to just rewrite as an insertion sort

because it's simpler
● Mentor says "that's probably fine; we don't sort that many numbers anyway"

and accepts the diff
● All tests pass, so the code lands
● ????
● Benchmarks

Ways to check behavior statically

● Type systems
● Static analysis

○ Symbolic execution / taint/dataflow analysis
● Proofs (Coq, Isabelle, ...)
● Model checking (Alloy, TLA+, ...)

A new function: Python edition

def is_even(num):
 return num % 2 == 0

DISCUSS: What
does it mean
that there are no
types? 🤔

A new function: C edition

bool isEven(int num) {
 return num % 2 == 0;
}

More types

Result<FILE*, Error> openFile(const char* filename);

Option<int> List::find(T value);

● Stripe, Instagram, others are deciding that they cannot develop large
applications without a static type checker

Rust, OCaml, Haskell, Idris, Agda, and more

● Ownership
● Thread safety
● Dependent types
● ...

Static analysis

int average(vector<int> nums) {
 return sum(nums)/nums.size();
}

DISCUSS:
What's wrong
with this code?

Static analysis

int average(vector<int> nums) {
 size_t num_items = nums.size(); // num_items can be 0 here
 if (num_items == 0) {
 // num_items is definitely 0 here
 abort();
 // or do something else defined by your application
 }
 return sum(nums)/num_items; // now num_items can't be 0 :)
}

Proofs: what problems does Coq solve?

Model checking: what problems does TLA+ solve?

The future of proof engineering

https://twitter.com/TaliaRinger/status/1365433319572185092
https://twitter.com/TaliaRinger/status/1365433319572185092

https://twitter.com/TaliaRinger/status/1365433319572185092
https://twitter.com/TaliaRinger/status/1365433319572185092

Don't forget to submit your course eval!

