
COR 5

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

You write tests for a project, but they
keep breaking because no one runs

them. How would you fix this?

Continuous integration

It's well and good to have tests, but how can you ensure that those tests actually
run? You could try your best to remember to run them after each change—or you
could deploy a continuous integration system to run them for you:

● Term originally coined to refer to a development process where changes get
added to the main branch soon after they're made.

● Has shifted over time to refer to automated tooling that ensures the main
branch stays correct (a.k.a. green) as this happens.

● CI systems automatically run builds and test suites for every commit (and
often every merge request, too!)

Popular CI tools

● Jenkins
● Travis CI
● GitHub Actions
● GitLab CI/CD
● CircleCI
● Buildkite
● SourceHut Builds

https://www.jenkins.io/
https://travis-ci.org/
https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://circleci.com/
https://buildkite.com/
https://builds.sr.ht/

GitHub Actions

● Free of charge and tightly integrated with GitHub
● Well-documented and relatively easy to get started with
● Not open source—can't use if your project isn't on GitHub

○ Although the act project is attempting a fully open reimplementation
● We used GitHub Actions to test your VCS Constructive and BLD Constructive

submissions.

https://docs.github.com/en/actions
https://github.com/nektos/act

Using GitHub Actions

Organized into workflows, each of
which consists of one or more
jobs, which are themselves made
up of steps.

A step can either run a shell
command directly or delegate to a
predefined action, which performs
a higher-level task all in one go
(like a function).

Configured using YAML files in
.github/workflows/.

name: Build and test

on:
 push:

branches: [main]
 pull_request:

branches: [main]

jobs:
 build:

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2

- name: Build
 run: make

- name: Run tests
 run: make test

demo time!

Continuous integration vs build systems

The defining feature of a CI system is to run tasks remotely when certain events
occur. This is outside the scope of most (but not all) build systems. However,
there's still more overlap than you might expect:

● CI systems generally have their own language to define tasks.
● This language often supports running arbitrary shell commands and setting up

dependencies between multiple tasks, much like a build system.
● Some build systems (like Bazel and Buck) can use remote servers to speed

up builds.

● Rule of thumb: make CI tasks a thin a wrapper around your build system

Security considerations for CI

● CI, especially for pull requests, runs untrusted code
● If the server running CI jobs doesn't clean up properly, jobs can mess with

future jobs
○ e.g. one job could add lines to .bashrc that get run whenever a shell starts for future jobs

● Even if it does, jobs still have the full privileges of the ruler environment
○ e.g. if you use the same environment to deploy releases as to test PRs, a malicious PR could

upload its own release with no vetting
● Lesson: limit access as much as possible when testing untrusted code
● GitHub Actions does this fairly well by default

○ Each job run in a totally clean environment (new container each time, perhaps?)
○ pull_request event is not allowed to push to the repo

Distributed CI

The CI systems we've talked about are all centralized, requiring servers to run
tasks and often tying you to a specific platform, like GitHub. But there are other
ways to run tests

● Option 1: automating local test running
○ Git supports hooks, which automatically run shell scripts on commits, pushes, etc.
○ Hook to automatically run tests on each contributor's machine whenever they commit
○ Not fool-proof: can't install hooks by default on a fresh clone for security reasons

● The Linux Kernel model
○ Linux has no single, "blessed" CI system.
○ Several systems run asynchronously, each owned and sponsored by a separate entity.
○ Each one pulls from Linux's mainline repository and reports failures to the mailing list.

Testing your CI

● Making sure your CI does what you want
○ yaml-commit-push-cry loop

● Getting notified when your CI breaks
○ Automatically filing tasks when CI goes red
○ But what about silent failures?

