Types of tests

Unit tests: test a single unit of your code in isolation
e Test as little code as possible at once
e Afailure in one unit shouldn't break the tests for another unit

e Useful to
o Pinpoint failures to a specific piece of code
o Check edge cases that may not yet be exercised by other units

Integration tests: test how multiple (or perhaps all!) units work together
e Test units as they'll be configured in the real world
e Abug in a single unit may cause many integration tests to fail

e Useful to
o Ensure the larger system works as expected

DISCUSSION QUESTION

Is a test that calls a single
function always a unit test?

Type your answer, but wait for our cue to send it.

Hpes-eHests The continuum of tests

Few real tests perfectly fit into one category:
e Units often depend on other units
e Your language or architecture can prevent isolated testing of such units
e Many unit tests, therefore, end up "seeing" other units indirectly

But your intent still matters:
e Unit and integration tests serve different purposes
e Don't let technical constraints blind you to that fact

e \Write both unit and integration tests, and keep them separate
o Your unit tests may end up testing multiple units, and that's okay
o Your integration tests might not cover certain units, and that's okay too

Which one should you choose?

Both.

Writing unit tests

What to test

e Your code
e Code you rely on that is not so well tested
e Code you really rely on

Unit testing maxims (not Max-isms)

e Test small units of code as directly as possible

e Avoid "round trips" through layers of software
o Dependency injection/mocking
o Function composition

e Avoid stateful computation
e |[t's not a test unless you watch it fail

e Eatfood. Not too much. Mostly plants.

Hands on with UTest: Seer PeopleSoft

// person-test.cpp
#include "person.h"
#include "utest.h"

UTEST(PersonTests, ConstructorSetsAge) {

Person p;
EXPECT_EQ(p.age(), ©0);

}

// test-main.cpp
#include "utest.h"

UTEST_MAIN();

Maxim: test small units of code

How would you test void setAgeAndHeight(int age, int height)?
Would it be easier if it were setAge and setHeight?

Why might a compound setter (or constructor) exist?

/

Tightly-coupled units

e Most software projects consist of multiple layers of code

o e.g. frontend, backend, database
o Each layer can be thought of as its own unit

e Units often directly call other units

e We say two such units are tightly-coupled

o You can't use the higher one without the lower one
o Abug in the lower one can cause the higher one to fail

DISCUSSION QUESTION

How would you Isolate a
unit that calls other units?

Type your answer, but wait for our cue to send it.

Strategies for isolating units

1. Getrid of layer dependencies

Call each layer in sequence, passing one's output as the next one's input
Prevents any layer from tightly coupling to another

Top layer that chains together other layers has no logic and so needs no unit tests
Very hard or impossible in many languages

o Easier in functional languages and ones with evented I/0O

2. Inject your dependencies
o Make each layer conform to an interface
o Pass instances of lower layers as parameters to higher ones
o When testing, can pass mocks instead
o Hard to do in non-object-oriented languages

o O O O

