
Types of tests

Unit tests: test a single unit of your code in isolation
● Test as little code as possible at once
● A failure in one unit shouldn't break the tests for another unit
● Useful to

○ Pinpoint failures to a specific piece of code
○ Check edge cases that may not yet be exercised by other units

Integration tests: test how multiple (or perhaps all!) units work together
● Test units as they'll be configured in the real world
● A bug in a single unit may cause many integration tests to fail
● Useful to

○ Ensure the larger system works as expected

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

Is a test that calls a single
function always a unit test?

Types of tests The continuum of tests

Few real tests perfectly fit into one category:
● Units often depend on other units
● Your language or architecture can prevent isolated testing of such units
● Many unit tests, therefore, end up "seeing" other units indirectly

But your intent still matters:
● Unit and integration tests serve different purposes
● Don't let technical constraints blind you to that fact
● Write both unit and integration tests, and keep them separate

○ Your unit tests may end up testing multiple units, and that's okay
○ Your integration tests might not cover certain units, and that's okay too

Which one should you choose?

Both.

Writing unit tests

What to test

● Your code
● Code you rely on that is not so well tested
● Code you really rely on

Unit testing maxims (not Max-isms)

● Test small units of code as directly as possible
● Avoid "round trips" through layers of software

○ Dependency injection/mocking
○ Function composition

● Avoid stateful computation
● It's not a test unless you watch it fail

● Eat food. Not too much. Mostly plants.

Hands on with UTest: Seer PeopleSoft

// person-test.cpp
#include "person.h"
#include "utest.h"

UTEST(PersonTests, ConstructorSetsAge) {
 Person p;
 EXPECT_EQ(p.age(), 0);
}

// test-main.cpp
#include "utest.h"

UTEST_MAIN();

Maxim: test small units of code

How would you test void setAgeAndHeight(int age, int height)?

Would it be easier if it were setAge and setHeight?

Why might a compound setter (or constructor) exist?

demo time!

Tightly-coupled units

● Most software projects consist of multiple layers of code
○ e.g. frontend, backend, database
○ Each layer can be thought of as its own unit

● Units often directly call other units
● We say two such units are tightly-coupled

○ You can't use the higher one without the lower one
○ A bug in the lower one can cause the higher one to fail

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

How would you isolate a
unit that calls other units?

Strategies for isolating units

1. Get rid of layer dependencies
○ Call each layer in sequence, passing one's output as the next one's input
○ Prevents any layer from tightly coupling to another
○ Top layer that chains together other layers has no logic and so needs no unit tests
○ Very hard or impossible in many languages
○ Easier in functional languages and ones with evented I/O

2. Inject your dependencies
○ Make each layer conform to an interface
○ Pass instances of lower layers as parameters to higher ones
○ When testing, can pass mocks instead
○ Hard to do in non-object-oriented languages

