
COR 2

Let's talk about edge cases

Say you're writing a function Node* BST::delete(Node* root, int value)

● Find the node
● Does it exist?
● Yes

○ No children
○ Left child
○ Right child
○ Left & right children

● And what if the root changes?

Gotta make sure every case works.

Real world complexity management

You're writing more than BSTs most of the time.

● Add new feature to existing pile of code
● Deal with the disk, database, network, OS, third-party code, other services,

compilers, Unicode, timezones, ...
● Comply with internal policies
● Comply with local and foreign laws
● ...

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

When in the past were you
overwhelmed by complexity?

Test suites: the good, the bad, and the ugly

What if I told you... you could codify your specification
by checking runtime behavior?

● Write "tests" that exercise your code dynamically
● Check them into your repository
● Run them regularly
● Tests indicate the presence of bugs, but not the

absence of them

Invariant of a green main branch

If tests pass on the main branch, the test suite has not surfaced any bugs. It's
important that the tests are not flaky.

If, after a change, the the tests no longer pass, it is likely that the change
introduced a bug (regression).

✔ ⟶ ✔ ⟶ ✔ ⟶ ✔ ⟶ ✔ ⟶ ✔ ⟶ ✔ ⟶ ❌
Bug!

Automating your tests

● Running tests is a pain
● People will avoid it or forget
● Have your code review tool automatically run tests

○ Require them before landing/merging
● "Continuous Integration"—we'll come back to this

Land races

Land races

A B

D

C
✔ ✔

✔

✔

A B DC
✔ ✔ ✔ ❌

or

A B CD
✔ ✔ ✔ ❌

Could be a new build failure

...or new run-time bug

...or accidentally surface a
bug that already existed

...or nothing at all.

The real world, or, pebbles in a stream

● Time passes
● We live in a society
● The world around you changes faster than you can possibly be aware
● Make sure you test in a realistic environment
● Test yourself before you wreck yourself

Anecdote: not being able to send email >500 miles

I cannot do this story justice. Just read it later.

https://web.mit.edu/jemorris/humor/500-miles

Anecdote: recompiling for different computers & FP

● AVX, AVX-2, AVX-512 are all different vector extensions on Intel/AMD
● AVX vectorizes operations, so AVX vs non-AVX changes math ordering
● Floating point math is not commutative, so errors accumulate
● Probably won't notice this too much unless you do a lot of matrix math

slides JVM

https://www.nist.gov/system/files/documents/itl/ssd/is/NRE-2015-07-Nguyen_slides.pdf
https://www.ibm.com/support/pages/apar/IJ12156

Anecdote: Google CPU failure paper

Google has detected ephemeral computational error in CPUs that are hard to
detect and work around.

Law of large numbers at work.

paper

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf

1. Intermittent hardware (eg RAM) failures cause large-scale performance
degradation

2. CPUs have silent data corruption which means your results are just magically
wrong

paper 1 paper 2

Anecdote: FB hardware failure papers

https://research.fb.com/wp-content/uploads/2020/03/Optimizing-Interrupt-Handling-Performance-for-Memory-Failures-in-Large-Scale-Data-Centers.pdf
https://arxiv.org/pdf/2102.11245.pdf

COR 3

How to write useful tests

● Start with the spec
● Write your tests to the spec

...wait, what is a spec?

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

What is a specification?

Specification redux

● Describe the software for a target audience, generally:
○ Purpose
○ Interfaces
○ Constraints
○ Assumptions
○ Dependencies
○ Requirements

● Can be formal (IEEE, IETF, W3C, ...) or informal (sketchy Google Doc your
coworker threw together while running late to a meeting) or entirely in your
head

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

Do code comments alone
count as a spec?

Comments as a spec

● Can they be turned into documentation (Doxygen, JavaDoc)?
● Do they explain the audience-facing behavior?
● Do they explain why a decision was made?

All this to say... it depends. Let's get back to tests.

A new function

bool isEven(int num);

Type your answer, but wait for our cue to send it.

DISCUSSION QUESTION

How would you test
isEven?

UTest nuts and bolts

TEST(MySoftwareModule, TestName) {
 EXPECT_EQ(some_value, some_expected_value);
}

TEST(MySoftwareModule, SomeOtherTestName) {
 EXPECT_NE(some_value, some_unexpected_value);
}

TEST(AnotherModule, LastTestName) {
 EXPECT_STREQ(some_value, "hello");
}

[==========] Running 3 test cases.
[RUN] MySoftwareModule.TestName
[OK] MySoftwareModule.TestName (631ns)
[RUN] MySoftwareModule.SomeOtherTestName
[OK] MySoftwareModule.SomeOtherTestName (631ns)
[RUN] AnotherModule.LastTestName
[OK] AnotherModule.LastTestName (631ns)
[==========] 3 test cases ran.
[PASSED] 3 tests.

A new function: tests

bool isEven(int num); TEST(MySoftwareModule, IsEvenWithOddNumberReturnsFalse) {
 EXPECT_EQ(isEven(7), false);
}

TEST(MySoftwareModule, IsEvenWithEvenNumberReturnsTrue) {
 EXPECT_EQ(isEven(8), true);
}

A new function: inherently limited tests

bool isEven(int num) {
 switch (num) {
 case 0: case 2: case 4:
 case 6: case 8:
 return true;
 case 1: case 3: case 5:
 case 7: case 9:
 return false;

// TODO: add the rest of
 // the numbers

default:
 return false;
 }
}

TEST(MySoftwareModule, IsEvenWithOddNumberReturnsFalse) {
 EXPECT_EQ(isEven(7), false);
}

TEST(MySoftwareModule, IsEvenWithEvenNumberReturnsTrue) {
 EXPECT_EQ(isEven(8), true);
}

A new function: Python edition

def is_even(num):
 if num in (0, 2, 4, 6, 8): return True
 if num in (1, 3, 5, 7, 9): return False
 # TODO: add the rest of the numbers
 return False

What does it
mean that there
are no types? 🤔

A new function: Python edition

def is_even(num):
 if num in (0, 2, 4, 6, 8): return True
 if num in (1, 3, 5, 7, 9): return False
 # TODO: add the rest of the numbers
 return False

What happens if
the programmer
passes a string
in?

Testing approaches

Existing code

● Blackbox
● Whitebox

○ Coverage-based

New code

● Test-driven development

Blackbox testing

● Assume you know nothing about the function other than its interface
● Test visible surface of the function

Whitebox testing

● Open the box: what does the code look like?
● Test the tricky-looking bits inside
● Some people go for "coverage"

○ Test suite exercises every line of a function

