COR 2

Let's talk about edge cases

Say you're writing a function Node* BST::delete(Node* root, int value)

e Find the node
e Does it exist?

e Yes
o No children
o Left child
o Right child

o Left & right children
e And what if the root changes?

Gotta make sure every case works.

Real world complexity management

You're writing more than BSTs most of the time.

e Add new feature to existing pile of code

e Deal with the disk, database, network, OS, third-party code, other services,
compilers, Unicode, timezones, ...

e Comply with internal policies

e Comply with local and foreign laws

DISCUSSION QUESTION

When in the past were you
overwhelmed by complexity?

Type your answer, but wait for our cue to send it.

Test suites: the good, the bad, and the ugly

What if | told you... you could codify your specification
by checking runtime behavior?

Write "tests" that exercise your code dynamically
Check them into your repository

Run them regularly

Tests indicate the presence of bugs, but not the
absence of them

Invariant of a green main branch

If tests pass on the main branch, the test suite has not surfaced any bugs. It's
important that the tests are not flaky.

If, after a change, the the tests no longer pass, it is likely that the change
introduced a bug (regression).

VovV-ovV-ovV-ov-ovV-v - X

Automating your tests

e Running tests is a pain
e People will avoid it or forget

e Have your code review tool automatically run tests
o Require them before landing/merging

e "Continuous Integration"—we'll come back to this

Land races

Land races

©
(&
@qg

BEESE

or

BEEE

Could be a new build failure
...0r new run-time bug

...or accidentally surface a
bug that already existed

...or nothing at all.

The real world, or, pebbles in a stream

Time passes

We live in a society

The world around you changes faster than you can possibly be aware
Make sure you test in a realistic environment

Test yourself before you wreck yourself

Anecdote: not being able to send email >500 miles

| cannot do this story justice. Just read it later.

https://web.mit.edu/jemorris/humor/500-miles

Anecdote: recompiling for different computers & FP

AV X, AVX-2, AVX-512 are all different vector extensions on Intel/ AMD
AV X vectorizes operations, so AVX vs non-AVX changes math ordering
Floating point math is not commutative, so errors accumulate

Probably won't notice this too much unless you do a lot of matrix math

slides JVM

https://www.nist.gov/system/files/documents/itl/ssd/is/NRE-2015-07-Nguyen_slides.pdf
https://www.ibm.com/support/pages/apar/IJ12156

Anecdote: Google CPU failure paper

Google has detected ephemeral computational error in CPUs that are hard to
detect and work around.

Law of large numbers at work.

paper

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s01-hochschild.pdf

Anecdote: FB hardware failure papers

1. Intermittent hardware (eg RAM) failures cause large-scale performance
degradation

2. CPUs have silent data corruption which means your results are just magically
wrong

paper 1 paper 2

https://research.fb.com/wp-content/uploads/2020/03/Optimizing-Interrupt-Handling-Performance-for-Memory-Failures-in-Large-Scale-Data-Centers.pdf
https://arxiv.org/pdf/2102.11245.pdf

COR 3

How to write useful tests

e Start with the spec
e \Write your tests to the spec

...wait, what is a spec?

DISCUSSION QUESTION

What is a specification”?

Type your answer, but wait for our cue to send it.

Specification redux

e Describe the software for a target audience, generally:

Purpose
Interfaces
Constraints
Assumptions
Dependencies
Requirements

e Can be formal (IEEE, IETF, W3C, ...) or informal (sketchy Google Doc your
coworker threw together while running late to a meeting) or entirely in your
head

o o0 O O O O

DISCUSSION QUESTION

Do code comments alone
count as a spec”?

Type your answer, but wait for our cue to send it.

Comments as a spec

e (Can they be turned into documentation (Doxygen, JavaDoc)?
e Do they explain the audience-facing behavior?
e Do they explain why a decision was made?

All this to say... it depends. Let's get back to tests.

A new function

bool isEven(int num);

DISCUSSION QUESTION

How would you test
isEven?

Type your answer, but wait for our cue to send it.

UTest nuts and bolts

TEST(MySoftwareModule, TestName) {
EXPECT_EQ(some_value, some_expected_value);

}

TEST(MySoftwareModule, SomeOtherTestName) {
EXPECT_NE(some_value, some_unexpected_value);

}

TEST(AnotherModule, LastTestName) {
EXPECT_STREQ(some_value, "hello");

}

o B W e W s W e Wy |

[

RUN
OK
RUN
OK
RUN
OK
PASSED

Running 3 test cases.
MySoftwareModule.TestName
MySoftwareModule.TestName (631ns)
MySoftwareModule.SomeOtherTestName
MySoftwareModule.SomeOtherTestName (631ns)
AnotherModule.LastTestName
AnotherModule.LastTestName (631ns)

3 test cases ran.

3 tests.

A new function: tests

bool isEven(int num); TEST(MySoftwareModule, IsEvenWithOddNumberReturnsFalse) {
EXPECT_EQ(isEven(7), false);

}

TEST(MySoftwareModule, IsEvenWithEvenNumberReturnsTrue) {
EXPECT_EQ(isEven(8), true);

}

A new function: inherently limited tests

bool isEven(int num) { TEST(MySoftwareModule, IsEvenWithOddNumberReturnsFalse) {
switch (num) { EXPECT_EQ(isEven(7), false);
case O: case 2: case 4: }
case 6: case 8:
return true; TEST(MySoftwareModule, IsEvenWithEvenNumberReturnsTrue) {
case 1: case 3: case 5: EXPECT_EQ(isEven(8), true);
case 7: case 9: }

return false;
// TODO: add the rest of
// the numbers
default:

return false;

A new function: Python edition

def is_even(num):
if num in (@, 2, 4, 6, 8): return True
if num in (1, 3, 5, 7, 9): return False
TODO: add the rest of the numbers
return False

What does it
mean that therq
are no types? =

A new function: Python edition

What happens if
the programmer
passes a string

in?

def is_even(num): O
if num in (O, 2, 4, 6, : ret&::>True

if num in (1, 3, 5, 7, 9): return False
TODO: add the rest of the numbers
return False

Testing approaches

Existing code

e Blackbox
e \Whitebox

o Coverage-based

New code

e Test-driven development

Blackbox testing

e Assume you know nothing about the function other than its interface
e Test visible surface of the function

Whitebox testing

e Open the box: what does the code look like?
e Test the tricky-looking bits inside

e Some people go for "coverage"
o Test suite exercises every line of a function

