
The great wide world, part 1

Out-of-tree builds

As opposed to in-tree builds, which most Makefiles we've seen to far result in,
out-of-tree builds place all outputs in a separate directory (or directory tree) from
the source files.

Benefits:
● Can build multiple configurations at once from one copy of the source
● Easy to distinguish top-level inputs from outputs and intermediates
● .gitignore can be much smaller and less error-prone

Reproducible builds

Reproducible builds (a.k.a. hermetic builds) are achieved when a build process
guarantees identical output from identical source code, regardless of where or
when you run the build. Builds often implicitly depend on attributes like
● The specific installed versions of the compiler, linker, and other tools
● The time the build runs (often included in artifacts for debugging purposes)
● The implementation of system tools like the shell and POSIX utilities

All these, if not explicitly recorded, make the build hard to reproduce. Some build
systems make reproducible builds easier by eliminating implicit dependencies on
the system: those that can't be removed outright are at least made explicit.

Reproducible builds improve security by allowing anyone to verify that a release of
a project was built from the source code it claims to have been.

● Maximum one output per rule
○ Though GNU make has a nonstandard notion of grouped targets

● Out-of-tree builds are opt-in rather than opt-out
● Doesn't facilitate reproducible builds
● Always uses mtime to compare

○ Switching between branches might change mtime and lead to longer builds
○ mtime is at best a heuristic

Limitations of Make

https://www.gnu.org/software/make/manual/html_node/Multiple-Targets.html#Multiple-Targets

Types of build system

Language-agnostic
● Recipes usually call arbitrary tools, as with Make
● Lesser-used: usually Make is "good enough" or a tailor-made system exists

Language-specific
● Support a single language
● Tie into their language's package ecosystem
● Used by most open-source projects in their language

Multi-language
● Bring benefits of language-specific systems to multi-language projects
● Often created by larger companies
● Don't usually integrate with language package ecosystems

Nearly all build systems have a concept, either user-visible or internal, of rules
with inputs and outputs that are rebuilt only when necessary. But, surprisingly,
many build systems don't actually include logic to run those rules.

Such systems instead translate their rule definitions into a set of lower-level
definitions in the language of a different build system, which then can be invoked
to run the build. Common build runners include:
● Ninja (see next slide)
● Make
● MSBuild (bundled with Visual Studio)

Not every build system is a build runner

It's a
compiler!

Sampling: Language-agnostic

Make

Makefile
EXE := main

COMMON_FLAGS := -O2

CFLAGS := $(COMMON_FLAGS) -Wall -Wextra -std=gnu99
LDFLAGS := $(COMMON_FLAGS)

$(EXE): main.o log.o

main.o: main.c log.h
log.o: log.c log.h

.PHONY: clean
clean:
 rm -f $(EXE) *.o

For reference, here's an
idiomatic Makefile for the
project all the following
samples will also build.

$ make

$ make clean # clean

Ninja: the ultimate build runner

build.ninja
common_flags = -O2
cflags = $common_flags -Wall -Wextra -std=gnu99
ldflags = $common_flags

rule compile
 command = gcc $cflags -c -o $out $in

rule link
 command = gcc $ldflags -o $out $in

build main.o: compile main.c | log.h
build log.o: compile log.c | log.h

build main: link main.o log.o

Language designed to be
emitted from a higher-level
build system, not to be
hand-written.

Focuses on speed and sane
defaults (e.g. builds on all
cores by default).

Has first-class notion of a
"generator", used to
regenerate Ninja rules.

Influenced by Tup!

$ ninja
$ ninja -t clean # clean

Rakefile
common_flags = "-O2"
$cflags = "#{common_flags} -Wall -Wextra -std=gnu99"
$ldflags = common_flags

def compile_file(c_file, o_file)
 sh "gcc #{$cflags} -c -o #{c_file} #{o_file}"
end

file "main.o": ["main.c", "log.h"] do |t|
 compile_file(t.name, t.prerequisites.first)
end

file "log.o": ["log.c", "log.h"] do |t|
 compile_file(t.name, t.prerequisites.first)
end

file "main" => ["main.o", "log.o"] do |t|
 sh "gcc #{$ldflags} -o #{t.name} #{t.prerequisites.join(' ')}"
end

task :clean do |t|
 sh "rm -f main *.o"
end

task default: ["main"]

Rake

Build rules defined using Ruby.

Special functions for defining
rules available, but all normal
Ruby syntax also available.

Inputs and outputs can be
files, but they can also be
named rules that are totally
internal to the build system.

$ rake

$ rake clean # clean

https://ruby.github.io/rake/

Tup

Tupfile
COMMON_FLAGS = -O2
CFLAGS = $(COMMON_FLAGS) -Wall -Wextra -std=gnu99
LDFLAGS = $(COMMON_FLAGS)

: foreach main.c log.c |> gcc $(CFLAGS) -c -o %o %f |> %B.o
: main.o log.o |> gcc $(LDFLAGS) -o %o %f |> main

Rules are specified as shell
commands, like Make.

No need to specify header
dependencies! Hooks into the
operating system to monitor
what files are read during each
command invocation.

Keeps DAG state on disk.
paper link

$ tup init
$ mkdir build
$ touch build/tup.config
$ tup
$ rm -r build # clean

http://gittup.org/
http://gittup.org/tup/build_system_rules_and_algorithms.pdf

