
Make: hands on

Make documentation

The official GNU Make manual is the authoritative reference for GNU Make. Every
feature we cover in this module is also described in the manual:

https://www.gnu.org/software/make/manual/html_node/index.html

https://www.gnu.org/software/make/manual/html_node/index.html

Make

Reads the following from a file called Makefile:
● Rules

○ Target
○ Prerequisites
○ Recipe

● Variable definitions
● Special targets

myprogram: myprogram.c myprogram.h

gcc myprogram.c -o myprogram

Anatomy of a Make rule

Target: A file that the rule produces. Make will
check the timestamp of it to see if the rule needs
rebuilding. A rule cannot have multiple targets.

Prerequisites: Files that the rule depends on. If
any prerequisite is newer than the target, the
recipe runs. If a prerequisite has its own rule,
Make will run that rule first if necessary. It's up to
you to get this right.

Recipe: A list of shell commands to run to
generate the target. Each line runs in its own
shell, so cd and setting shell variables won't
persist across multiple lines.

Target

Recipe

Prerequisites

Tab, not spaces!

What questions do
you have?

demo time!

Simple Makefile without dependencies

myprogram:
gcc myprogram.c -o myprogram

Target

Rules

"Build
myprogram using
gcc"

Uh oh... it doesn't rebuild

$ make myprogram
gcc myprogram.c -o myprogram
$ vim myprogram.c
...
$ make myprogram
make: myprogram is up to date.
$

Sample Makefile

myprogram: myprogram.c myprogram.h
gcc myprogram.c -o myprogram

Target Dependencies

Rules

"(Re)build
myprogram if
either
myprogram.c or
myprogram.h
changes"

myprogram

myprogram.c myprogram.h

depends
on

Use gcc to build myprogram.c Not passed to gcc, but still affects the program!

$ make log.o
gcc -c log.c

$ make main
gcc -c main.c
gcc main.o log.o -o main

$ make # Same as "make main"
make: 'main' is up to date.

$ make clean
rm -rf *.o main
$

make

By default, builds the
first target in the file.

-j[n]: Runs up to n
rules simultaneously.

-f <file>: Reads
rules from <file>
instead of Makefile.

--silent (-s): Don't
print commands.

Run rules from Makefile to build the given target(s).

Split compilation

● It's possible to compile C files to .o files of machine code and then link them
together

● Make makes this more useful by only rebuilding the .o files whose
corresponding .c files changed

.PHONY

"A phony target is one that is not really the name of a file; rather it is just a name
for a recipe to be executed when you make an explicit request. There are two
reasons to use a phony target: to avoid a conflict with a file of the same name, and
to improve performance.

If you write a rule whose recipe will not create the target file, the recipe will be
executed every time the target comes up for remaking."

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

demo time!

Make vs shell script

● Shell script can do all the things Make can do
○ BUT there are first-class features of Make that make your life easier

● Shell scripting is already familiar to you
○ BUT may not be the right hammer for this nail

● Shell script might be shorter at first
○ BUT as your build system feature needs get longer, Make will be shorter in the end

● You can always do shell scripting from within Make

