Build systems

Has this ever happened to you?

"Hmm &) how do | build this project? <up> <up> <up> <up> <up> <up> <Enter>"

"Hey Tom, use this command to build the project. Wait, no, this one ¢

"Can't believe I've been forgetting to compile myfile.c all day s os e

Manually typing out
g++ every time you
compile your project

Copy-pasting the
command every time
you compile

Using the up arrow
to navigate your
shell history every
time you compile

Writing a shell script
to build your project
for you

Using a build system
like Make

What does a build system provide?

e Consistency
o One simple command runs arbitrarily complex build rules
o Build happens identically for everyone working on the project
o Rules can be developed alongside code, tracked in version control

e Efficiency
o Build is split up into multiple rules, which transform inputs into outputs
o Each rule only needs to run if its inputs have changed
o Build system figures out the minimal set of rules that need to run

How do you use a build system?

1. Define build rules by writing code

Each build system has its own language for rules

Some, like Make, have totally custom languages

Others build on top of existing languages (e.g. Ruby or Python)
Generally the build system looks for rules in a file with a specific name

2. Run the build

o Invoke the build system using its command-line tool (or an IDE integration)
o Generally takes few or no arguments—configuration comes from the build rules instead

o O O O

What kinds of build systems exist?

e Language-agnostic (usually represent
rules as shell commands)

O

O
O
O

Make
Rake
SCons
Ninja

e Language-specific (often have common
operations like compilation hardcoded)

O

O O O O O O

CMake (C/C++)

npm (JavaScript/Node.js)
setuptools (Python)
Cargo (Rust)

go build (Go)

Cabal (Haskell)

and many more

e |anguage-specific, with support for
multiple languages

o Meson
o Bazel
o Buck

If your project's language comes with a build
system, use it! Don't pick a different one just
because you happen to already know it.

Why not scripts?

You can replicate a build system's functionality with sufficiently complex scripts.
But it won't be fun:

e You'll reinvent functionality that build systems already have
e Your rule definitions will likely be up much more verbose
e Others won't know how to write build rules for your project

What questions do
you have?

Build rules: a closer look

e A rule represents a single (generally idempotent) operation that transforms

one or more input files into one or more output files.
o Example: producing a .o file from a . cpp file
o "Building" doesn't just mean compilation—rules can do anything

e Build systems don't generally run rules themselves, but instead call external
utilities (e.g. clang++) or libraries
e If one build rule's input is another build rule's output, the first build rule

depends on the second.
o Forms a DAG (like Git!)

e By knowing what output file you want, the build system can figure out all the
build rules transitively depended on by that output.

Introducing Make

Make: pros and cons

Pros:
e |Immediately relevant to you at Tufts
e Isn't language-specific
e \Widely used in the real world
e Knowledge applicable to other build systems

Cons:
e The Make language can be unintuitive
e Not the best choice for many projects
e Missing features that more modern build system provide

M Wen Kokke
>4 @wenkokke

Hot take, but | kinda like Make?

5:00AM - Sep 6, 2021 - Twitter Web App

Make

Reads the following from a file called Makefile

e \Variables
e TJargets

o "recipes" for building things
e Commands

o stepsin a given target

Sample Makefile

Dependencies

myprogram: myprogram.c myprogram.h
gcc myprogram.c -o myprogram

demo Cime!

