
Build systems



Has this ever happened to you?

"Hmm 🤔 how do I build this project? <up> <up> <up> <up> <up> <up> <Enter>"

"Hey Tom, use this command to build the project. Wait, no, this one 👍"

"Can't believe I've been forgetting to compile myfile.c all day 💀💀💀"



Manually typing out 
g++ every time you 
compile your project

Copy-pasting the 
command every time 
you compile

Using the up arrow 
to navigate your 
shell history every 
time you compile

Writing a shell script 
to build your project 
for you

Using a build system 
like Make

Throwing away your 
computer and 
becoming a digital 
ascetic



What does a build system provide?

● Consistency
○ One simple command runs arbitrarily complex build rules
○ Build happens identically for everyone working on the project
○ Rules can be developed alongside code, tracked in version control

● Efficiency
○ Build is split up into multiple rules, which transform inputs into outputs
○ Each rule only needs to run if its inputs have changed
○ Build system figures out the minimal set of rules that need to run



How do you use a build system?

1. Define build rules by writing code
○ Each build system has its own language for rules
○ Some, like Make, have totally custom languages
○ Others build on top of existing languages (e.g. Ruby or Python)
○ Generally the build system looks for rules in a file with a specific name

2. Run the build
○ Invoke the build system using its command-line tool (or an IDE integration)
○ Generally takes few or no arguments—configuration comes from the build rules instead



What kinds of build systems exist?

● Language-agnostic (usually represent 
rules as shell commands)
○ Make
○ Rake
○ SCons
○ Ninja

● Language-specific (often have common 
operations like compilation hardcoded)

○ CMake (C/C++)
○ npm (JavaScript/Node.js)
○ setuptools (Python)
○ Cargo (Rust)
○ go build (Go)
○ Cabal (Haskell)
○ and many more

● Language-specific, with support for 
multiple languages
○ Meson
○ Bazel
○ Buck

If your project's language comes with a build 
system, use it! Don't pick a different one just 
because you happen to already know it.



Why not scripts?

You can replicate a build system's functionality with sufficiently complex scripts. 
But it won't be fun:

● You'll reinvent functionality that build systems already have
● Your rule definitions will likely be up much more verbose
● Others won't know how to write build rules for your project



What questions do 
you have?



Build rules: a closer look

● A rule represents a single (generally idempotent) operation that transforms 
one or more input files into one or more output files.

○ Example: producing a .o file from a .cpp file
○ "Building" doesn't just mean compilation—rules can do anything

● Build systems don't generally run rules themselves, but instead call external 
utilities (e.g. clang++) or libraries

● If one build rule's input is another build rule's output, the first build rule 
depends on the second.

○ Forms a DAG (like Git!)
● By knowing what output file you want, the build system can figure out all the 

build rules transitively depended on by that output.



Introducing Make



Make: pros and cons

Pros:
● Immediately relevant to you at Tufts
● Isn't language-specific
● Widely used in the real world
● Knowledge applicable to other build systems

Cons:
● The Make language can be unintuitive
● Not the best choice for many projects
● Missing features that more modern build system provide





Make

Reads the following from a file called Makefile

● Variables
● Targets

○ "recipes" for building things
● Commands

○ steps in a given target



Sample Makefile

myprogram: myprogram.c myprogram.h
gcc myprogram.c -o myprogram

Target Dependencies

Commands



demo time!


