
Using Git with friends
(or coworkers, if you don't have friends)

Distributed vs centralized version control

Git is a distributed version control system (DVCS):
● History is stored locally with every copy of a repository
● New commits and objects become part of the local history first
● Sharing commits and objects is an explicit operation
● No authoritative copy of a repo (except socially)

Compare to centralized VCSes like Subversion, CVS, and Perforce:
● A repository's state and history are stored on a single server
● Clients talk to that server to fetch files and make changes
● New commits are automatically visible to everyone

Git sharing subcommands

git remote: Tell Git what other copies of the repository you care about.
Set up or view remotes, aliases for repositories stored elsewhere that you can
exchange objects with. Git can access a remote stored on the local
filesystem, on an HTTP server, or on any system accessible via SSH.

git fetch: Copy branches from a remote to your local repository.
Branches from a remote are prefixed with the remote's name and a slash. For
example, origin/main.

git push: Copy a branch from your local repository to a remote.
Modifies branches on the remote, so requires write access.

What questions do
you have?

$ git remote add origin /comp/50ISDT/examples/git-zoo/
$ git remote
origin
$ git remote add tom /h/thebb01/git-zoo/
$ git remote -v
origin /comp/50ISDT/examples/git-zoo/ (fetch)
origin /comp/50ISDT/examples/git-zoo/ (push)
tom /h/thebb01/git-zoo/ (fetch)
tom /h/thebb01/git-zoo/ (push)
$ git remote rename tom max
$ git remote set-url max /h/mberns01/repos/zoo/
$ git remote -v
max /h/mberns01/repos/zoo/ (fetch)
max /h/mberns01/repos/zoo/ (push)
origin /comp/50ISDT/examples/git-zoo/ (fetch)
origin /comp/50ISDT/examples/git-zoo/ (push)
$ git remote remove max
$

git remote

With no arguments, lists
remotes. -v shows URLs.

add: Adds a remote with the
given name and URL.

remove: Removes a remote.

rename: Changes a remote's
name.

set-url: Changes a remote's
url.

Add, remove, modify, or query remotes.

$ git init # New, empty repository
$ git remote add origin /comp/50ISDT/examples/git-zoo/
$ git fetch origin
remote: Enumerating objects: 36, done.
<…>
From /comp/50ISDT/examples/git-zoo
 * [new branch] add-file3 -> origin/add-file3
 * [new branch] add-symlink -> origin/add-symlink
 * [new branch] main -> origin/main
$ git branch main origin/main
Branch 'main' set up to track remote branch 'main' from
'origin'.
$ git checkout main
Switched to branch 'main'
Your branch is up to date with 'origin/main'.
$ ls
directory1 directory2 file1 file2 file3 missing-link
$

git fetch

Updates remote-tracking
branches for the given remote.
Doesn't affect your local
branches, index, or working
tree.

Can take a list of one or more
branch names to fetch; if none
are given, fetches all
branches.

--all: Fetches from all
remotes at once.

Copy objects and branches from a remote to local remote-tracking branches.

$ mkdir ../tmp/ && cd ../tmp/ && git init && cd -
Initialized empty Git repository in /h/thebb01/example/tmp/.git/

$ git remote add example ../tmp/
$ git push example main
Enumerating objects: 33, done.
Counting objects: 100% (33/33), done.
Delta compression using up to 6 threads
Compressing objects: 100% (21/21), done.
Writing objects: 100% (33/33), 3.48 KiB | 209.00 KiB/s, done.
Total 33 (delta 9), reused 0 (delta 0)
To ../tmp
 * [new branch] main -> main

$ cd ../tmp/
$ git branch -v
 main 513f37f Add a longer file in directory2
$

git push

Takes a remote name followed
by one or more branch names.
Creates or updates the named
branches on the remote from
matching local branches.

If local and remote branches
have different names, specify
them both separated by a
colon.

Specifying a remote branch
preceded by a colon deletes
that branch on the remote.

Copy one or more branches, and all their objects, to a remote.

What questions do
you have?

SSH and HTTP(S) remotes

laptop$ mkdir zoo && cd zoo && git init
Initialized empty Git repository in /home/thebb/zoo/.git/

laptop$ git remote add origin thebb01@homework.cs.tufts.edu:/comp/50ISDT/examples/git-zoo

laptop$ git fetch origin
remote: Enumerating objects: 36, done.
remote: Counting objects: 100% (36/36), done.
remote: Compressing objects: 100% (15/15), done.
remote: Total 36 (delta 10), reused 32 (delta 8)
Unpacking objects: 100% (36/36), 3.66 KiB | 85.00 KiB/s, done.
From homework.cs.tufts.edu:/comp/50ISDT/examples/git-zoo
 * [new branch] add-file3 -> origin/add-file3
 * [new branch] add-symlink -> origin/add-symlink
 * [new branch] main -> origin/main

laptop$

$ git clone git@github.com:tekknolagi/isdt.git
Cloning into 'isdt'...
remote: Enumerating objects: 464, done.
remote: Counting objects: 100% (464/464), done.
remote: Compressing objects: 100% (284/284), done.
remote: Total 464 (delta 257), reused 334 (delta 141), pack-reused 0
Receiving objects: 100% (464/464), 271.34 KiB | 3.01 MiB/s, done.
Resolving deltas: 100% (257/257), done.
$

git clone

Takes a URL, which will be set
as the origin remote, and an
optional directory name to
clone to.

Shorthand for git init + git remote add + git fetch + git checkout -b.

mailto:git@github.com

What questions do
you have?

Integrating changes from remotes

Just like integrating changes from a local branch!

Three main strategies:
● Fast-forward: If no new local commits and no history-rewriting remote

commits, add all the new remote commits to the local branch.
● Merge: If new local commits and new remote commits, use git merge to

create a merge commit derived from both sets of changes.
● Rebase: If local commits have not been shared anywhere, can alternatively

rebase them on top of new remote commits.

git pull

Fetches changes from the remote branch that your checked-out branch tracks
(see git branch -vv), then merges or rebases those changes into the local branch.

Warning: git pull relies on a lot of implicit configuration (like remote branch
mappings) and can have different results (fast-forward vs merge commit)
depending on the state of the remote. It's often better to explicitly run git fetch
followed by your desired integration command.

--ff-only: Forces a fast-forward merge. Fails if not possible.

--rebase (-r): Rebases local changes on top of new remote state instead of
merging.

What happens if a merge, rebase, or cherry-pick involves two commits that
changed a single base version of a file in two different ways?

● All these operations call git merge-file
● Does its best to reconcile the changes on its own by splitting into hunks
● If two hunks conflict, enters conflict resolution:

○ Conflicting hunks are marked in the working tree
○ Special <<<<<<< lines indicate conflicts
○ Up to you to resolve manually
○ Use --abort if there are too many conflicts

● GUI tools for merging files: WinMerge, Meld

Conflicts

https://winmerge.org/
http://meldmerge.org/

What questions do
you have?

Common open-source development workflow

● One repository copy designated as source of truth
○ e.g. torvalds/linux

● Maintainers are allowed to push to this copy
● Anyone else wanting to contribute communicates their changes to

maintainers out-of-band
○ For Linux, patches on a mailing list
○ For many other project, GitHub pull requests

What questions do
you have?

Maintaining a codebase

Limitations of collaboration via git push

● Requires you to fully trust every contributor.
● Easy for bad code to be committed.
● No built-in way to comment on a commit.
● No way to enforce code review policies.

Solution: merge/pull requests and patches

Out-of-band way for a contributor to propose a change to a repository.

● Merge request (a.k.a. pull request): Instead of a contributor pushing their
feature branch upstream, they push it to their own fork and ask the upstream
maintainer to pull it from there.

● Patch: No pushes or pulls happen at all. The contributor formats each commit
they've made as a textual patch using git show or git format-patch,
sends it to the maintainer (e.g. in an email), and the maintainer applies that
patch using git am or git apply.

Either way, maintainers can comment on the change via the same communication
channel it was sent over and only accept it if they approve of it.

What questions do
you have?

Revising proposed changes

Two schools of thought:
1. Add new commits containing fixes on top of the original ones

○ Pros: easy to see what changed in each revision, commit message can explain what got fixed
○ Cons: no way to "fix" a bad commit message, makes git blame harder

2. Rewrite history to produce new, fixed versions of each commit
○ Pros: results in clean, readable commits at the end of the day
○ Cons: requires maintainers to deal with rewritten history prior to acceptance

(See https://github.com/tekknolagi/isdt/pull/15#issuecomment-920592835.)

https://github.com/tekknolagi/isdt/pull/15#issuecomment-920592835

What questions do
you have?

Bare vs full repositories

