
Git: greatest hits
(also see man gittutorial, man gitglossary)

Querying

git status

Shows various pieces of
information:

● Current branch
● Uncommitted changes

○ Untracked files
○ Tracked (staged) files

● Hints about commands
you might use next

--short (-s): Shows
short-format listing of
uncommitted changed files,
one per line.

$ git status
On branch main
nothing to commit, working tree clean

$ touch new-file
$ git status
On branch main
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 new-file

nothing added to commit but untracked files present (use "git
add" to track)
$

What's going on in the repo right now?

What is the staging area (a.k.a. the index)?

A snapshot of the working tree indicating what will become part of the next commit
you make.

● Only snapshots files with modifications
● Only snapshots files you've added to it with git add
● Can be updated at any time with git add, git reset, and others
● Not shared: each copy of a repository has its own index
● Resets every time you make a commit

Ways to refer to a commit

(See man gitrevisions for more detail.)

● Hash (e.g. 46e2f3b): either the full SHA-1 hash, or enough of the beginning
of the hash to match only a single object.

● Ref (e.g. main): generally a local or remote branch name. Looks in
.git/refs/ under the hood.

○ The special ref HEAD refers to the commit or branch that you're currently "on." HEAD is what
commands like git diff --cached and git status compare against, and it's the parent of
new commits you make.

When you need to specify a commit or branch, you can generally use either of
these methods.

Shows all the parents of a
given commit. Defaults to
HEAD.

-- <paths>: Shows only
commits for the given paths.
-- stops Git from treating a
path as a branch.

--patch (-p): Show the diff for
each commit.

--oneline: Show each
commit as a single line.

git log

What history is visible from the given commit (or HEAD) for the given files?

$ git log
commit e67e22ba38560e1a644d09e04afc4374bd5a2ebc (HEAD ->
main)
Author: Thomas Hebb <tommyhebb@gmail.com>
Date: Wed Oct 6 08:35:19 2021 -0400

Add a longer file in directory2

<…>

$ git log --oneline add-symlink
ff553ab (add-symlink) Add a symlink to file1
46e2f3b Initial commit

$ git log --oneline -- file2
8320c08 (HEAD -> main) Fix file2 to match file zoo
fe7b7f5 Add file2
$

mailto:tommyhebb@gmail.com

git show

Shows commits, blobs, trees,
tags in a human-readable
format. Defaults to showing
HEAD. Like git log, but
doesn't show parents.

--no-patch: Don't show a
commit's diff (same as git
log without -p).

--stat: Show only a summary
of the diff (number of lines
added and removed in each
file).

$ git show 46e2f3b
commit 46e2f3b72116845599bc868cb8aa65ddf23c5b9d
Author: Thomas Hebb <tommyhebb@gmail.com>
Date: Tue Oct 5 18:20:02 2021 -0400

Initial commit

I like this file from the file zoo. Let's make a repo
with it!

diff --git a/file1 b/file1
new file mode 100644
index 0000000..a28a390
--- /dev/null
+++ b/file1
@@ -0,0 +1 @@
+I'm a file
$

What's in this object (usually a commit)?

mailto:tommyhebb@gmail.com

What questions do
you have?

$ git blame file1
^46e2f3b (Thomas Hebb 2021-10-05 18:20:02 -0400 1) I'm a file
6d6a4d11 (Thomas Hebb 2021-10-19 18:59:31 -0400 2) I have two
lines
9360e395 (Thomas Hebb 2021-10-19 18:59:48 -0400 3) And now I
have three!

$ git blame 9360e395^ -- file1
^46e2f3b (Thomas Hebb 2021-10-05 18:20:02 -0400 1) I'm a file
6d6a4d11 (Thomas Hebb 2021-10-19 18:59:31 -0400 2) I have two
lines
$

git blame

Note that any difference in a
line, no matter how small,
counts as a change: you
sometimes have to go through
several iterations of blame to
find the change you're
interested in.

<commit> --: Shows the file
(and it's blame) as it was at the
given commit.

-w: Skips commits that only
changed a line's whitespace.

Find out what commit last changed each line of a file.

git diff

By default, shows unstaged
changes (i.e. the difference
between the index and the
working tree).

--cached: Shows the index
compared to HEAD or the
given commit.

<commit>: Shows the working
tree compared to <commit>.

<commit1> <commit2>:
Shows <commit2> compared
to <commit1>.

$ echo 'A second line!' >>file1
$ git diff
diff --git a/file1 b/file1
index a28a390..6cec40f 100644
--- a/file1
+++ b/file1
@@ -1 +1,2 @@
 I'm a file
+A second line!
$

What changed (since HEAD, since a given commit, or between two commits)?

What questions do
you have?

Operations on the working tree

git add

Takes a snapshot of the given
file(s) and updates the index
with that snapshot.

--patch (-p): Interactively
select which changes within
each file to add to the index
(see next slide).

$ git status
On branch main
Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 new-file

nothing added to commit but untracked files present (use "git
add" to track)
$ git add new-file
$ git status
On branch main
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: new-file
$

Update the index with a file from the working tree.

git add --patch/-p

$ git add -p
diff --git a/directory2/entryway b/directory2/entryway
index d5ba6ac..4765745 100644
--- a/directory2/entryway
+++ b/directory2/entryway
<…>
@@ -33,4 +29,5 @@ shoot you."
 differences, but I had hoped to clear them up tonight by
inviting him. I did
 not kill him! Please help clear my name!"

-You make your way into the living room.
+"Perhaps that would be easier to do were you not named David
Knifehands," you
+suggest, and brush past David into the living room.
Stage this hunk [y,n,q,a,d,K,g,/,e,?]? y

$

Splits changes between the
index and working tree into
individual hunks (groups of
changed lines), and asks you
whether each one should be
added to the index.

"y": Includes the hunk
"n": Omits the hunk
"s": Splits the hunk into
smaller ones
"?": Explains other options

Update the index with specific changes from the working tree.

git rm

Note that this deletes the file
on disk as well as in the index,
unlike git add, which only
ever changes the index. Won't
delete a file with uncommitted
changes without -f.

--cached: Removes the file
from the index, but leaves the
working tree copy.

-r: Remove a directory and all
files in it.

$ git rm file1
rm 'file1'
$ ls
directory1 directory2 file2 file3 missing-link

$ git rm directory2/entryway error: the following file has
changes staged in the index: directory2/entryway (use
--cached to keep the file, or -f to force removal)

$ git status -s
git status -s
 M directory2/entryway
D file1
$

Remove a file from the index and working tree.

git mv

Git cannot represent renames
in commits, but this is a
convenient way to remove a
file from the index and add the
same file with a different
name.

--cached: Alters the index but
not the working tree.

--force (-f): Moves the file in
the working tree even if it will
overwrite an existing file.

$ git mv file3 directory1/
$ git status
On branch main
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: file3 -> directory1/file3

$

Rename a file in the working tree and index.

What questions do
you have?

git restore

Note that this command does
not change HEAD to the given
commit. That means that the
restored contents will appear
as unstaged changes.

Note: This command is new
and may not exist for you.

--source (-s): The commit to
restore to.

--patch (-p): Interactively
select hunks to restore.

$ git log --oneline file2
8320c08 Fix file2 to match file zoo
fe7b7f5 Add file2

$ git restore -s fe7b7f5 file2
$ git diff
diff --git a/file2 b/file2
index a5c1966..48d5349 100644
--- a/file2
+++ b/file2
@@ -1 +1 @@
-Hello, world
+hello wodrl
$

Restore individual files to versions from a previous commit.

git checkout <commit> <file…>

Note that the list of files after
the commit are crucial. If you
omit them, the command does
something else (detailed in a
later slide). This is why git
restore was introduced as a
separate command.

Unlike git restore, adds
restored changes to the index.

--patch (-p): Interactively
select hunks to restore.

$ git checkout fe7b7f5 file2
Updated 1 path from d5f1e5a
$ git diff --cached
diff --git a/file2 b/file2
index a5c1966..48d5349 100644
--- a/file2
+++ b/file2
@@ -1 +1 @@
-Hello, world
+hello wodrl
$

Like git restore, but more widely available.

What questions do
you have?

.gitignore file

You generally don't want to
commit things like compiled
programs and editor swap
files. The .gitignore list
makes it harder to accidentally
include such files in a commit.

Includes one glob pattern per
line. Patterns that start with /
match files relative to the
repository root. Other patterns
match files in any directory.

See man gitignore.

$ touch newfile
$ git status
?? newfile

$ cat >.gitignore
/newfile
<Ctrl-d>

$ git status -s # newfile no longer shown!
?? .gitignore
$

Holds a list of file names to exclude from git add . and git status.

What questions do
you have?

Branching

A Git history is made up of an arbitrary
number of commits, each of which has
one or more parent commits. This
forms a directed acyclic graph (DAG).

Branches are how we give names to
the leaves of the graph (commits with
no children).

A hash will always point to exactly the
same object—there is no way it won't,
since an object's hash is derived from
its contents.

But branches (and, more generally,
refs) can change what they point to.

Branches and the commit graph

* f4d4d12 (HEAD -> main) Add a longer file in directory2
* 095961d Add more files
* 878b7f0 Merge branch 'add-file3' into main
|\
| * cf70a44 (add-file3) Update file3
| * d8b477d Add file3
* | 48a918c Add missing-link
|/
* 8320c08 Fix file2 to match file zoo
* fe7b7f5 Add file2
* 31f7261 Add directory with "hello world" file from zoo
| * ff553ab (add-symlink) Add a symlink to file1
|/
* 46e2f3b Initial commit

What questions do
you have?

What does "rewriting history" mean?

● Branches generally only move "forwards"
○ i.e. the old commit they pointed to is an ancestor of the new one

● A branch moving "backwards" or "sideways" is often called rewriting history.
○ i.e. the new commit is a parent or cousin of the old one
○ One or more commits are removed from the branch's history
○ New commits may be added that are fixed versions of the old ones
○ The new commits have no relation to the old ones from Git's point of view

● Key point: existing commits never change
○ A commit is identified by its hash
○ A commit's hash is inextricably tied to its contents
○ It's impossible to change a commit but keep the same hash

git branch

With no arguments, tells you
what branches exist in your
local repository.

--all (-a): Lists remote (as
well as local) branches.

With a branch name, creates
that branch at the given point.

--move (-m): Renames a
branch.

--delete (-d): Deletes a
branch.

--force (-f): Overwrites

$ git branch
 add-file3
 add-symlink
* main
 bar

$ git branch -d bar
Deleted branch bar (was
f4d4d12).
$ git branch
 add-file3
 add-symlink
* main
$

$ git branch
 add-file3
 add-symlink
* main

$ git branch foo
$ git branch
 add-file3
 add-symlink
* main
 foo

$ git branch -m foo bar
$

List, create, or delete branches.

git checkout <branch> (no files)

Fails if you've modified any
files that would be changed by
switching branches.

-b: Create a new branch with
the given name that points to
the same commit as your
current HEAD. (Same as
running git branch first.)

--force (-f): Discard local
changes instead of failing.

--merge (-m): Merge local
changes, like a cherry pick.

$ git branch
 add-file3
 add-symlink
* main
$ git show --oneline --no-patch HEAD
f4d4d12 (HEAD -> main) Add a longer file in directory2
$ ls
directory1 directory2 file1 file2 file3 missing-link
$ git checkout add-symlink
$ git branch
 add-file3
* add-symlink
 main
$ git show --oneline --no-patch HEAD
f4d4d12 (HEAD -> main) Add a longer file in directory2
$ ls
file1 file1-link
$

Switch to a different branch (i.e. change HEAD) and update files to match.

Checking out a commit directly

If you give git checkout a commit hash instead of a branch name, it will point
HEAD directly at that commit; you will no longer be on any branch. This is known
as a detached HEAD state.

● Useful for viewing a previous commit
● Never useful for making new commits!

○ Not part of any branch
○ Can only be found if you know their hash directly
○ Not permanent

■ Git can delete objects that are not reachable from a branch
■ git gc forces it to do this, but it also sometimes does it automatically

What questions do
you have?

Operations on commits

git commit

The new commit's parent will
be HEAD when git commit is
run.

-m: Uses the given commit
message instead of opening a
text editor.

--amend: Replaces the current
branch's tip with a new version
of the same commit, with the
same parents. Points the
branch at the new version so
the old one is no longer in its
history.

$ git log --oneline
9360e39 (HEAD -> main) Add third line to file1
6d6a4d1 Add second line to file1
<…>
$ git status
On branch main
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: file1

$ git commit -m "Add fourth line to file1"
$ git log --oneline
git log --oneline
4d1e8fc (HEAD -> main) Add fourth line to file1
9360e39 Add third line to file1
<…>
$

Create a new commit and update the current branch to point to it.

How to write commit messages

Title with less than 65 chars in imperative mood, like

Add lecture notes to main page

Summary containing not just the broad "what" but also the "why" -- think of it as a
letter to your future self or another maintainer

git revert

--no-edit: Use the default
commit message instead of
opening an editor.

--no-commit (-n): Undoes the
changes in the working tree
and index, but skips actually
committing those changes.
Useful if you want to make
further edits.

Create a new commit that undoes the changes of a previous one.

$ git show --stat --oneline HEAD
513f37f (HEAD -> main) Add a longer file in directory2
 directory2/entryway | 32 ++++++++++++++++++++++++++++++++
 1 file changed, 32 insertions(+)

$ git revert --no-edit HEAD
[main 919aa08] Revert "Add a longer file in directory2"
 Date: Thu Oct 14 18:21:09 2021 -0400
 1 file changed, 32 deletions(-)
 delete mode 100644 directory2/entryway

$ git show --stat --oneline HEAD
919aa08 (HEAD -> main) Revert "Add a longer file in
directory2"
 directory2/entryway | 32 --------------------------------
 1 file changed, 32 deletions(-)
$

What questions do
you have?

git cherry-pick

Does not change that commit
but instead re-applies a copy
of it (new hash)

$ git cherry-pick some-branch
[main 39b9276] Some commit title
 Date: Tue Oct 5 15:10:17 2021 -0700
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 my-file
$

Apply a single commit to your current HEAD

git rebase

The -i or --interactive flag
allows you to piecemeal build
your history in your editor of
choice

Especially useful if you want to
edit your commits in the middle

 Assume the following history exists and the current
branch is "topic":

 A---B---C topic
 /
 D---E---F---G master

 From this point, the result of either of the following
commands:

 git rebase master
 git rebase master topic

 would be:

 A'--B'--C' topic
 /
 D---E---F---G master

Rewrite history

What questions do
you have?

Fixing Git mistakes

git reset

Remove changes from the
staging area. Can optionally
take a list of files to reset; if no
files given, resets all files.

--patch (-p): Interactively
select which changes within
each file to unstage.

$ git status -s
 M directory2/entryway
M file1
 M file3

$ git reset
Unstaged changes after reset:
M directory2/entryway
M file1
M file3

$ git status -s
 M directory2/entryway
 M file1
 M file3
$

Reset the index to HEAD (or a given commit).

git reset --keep

Like git checkout, but
changes where the current
branch points instead of
switching to a new branch.

--merge (instead of --keep):
Tries to merge uncommitted
changes to a file with changes
between the old and new
branch tips instead of failing.

$ ls
directory1 directory2 file1 file2 file3 missing-link
$ git show --stat --oneline HEAD
513f37f (HEAD -> main) Add a longer file in directory2
 directory2/entryway | 32 ++++++++++++++++++++++++++++++++
 1 file changed, 32 insertions(+)
$ git status -s
 M file1
 M file3

$ git reset --keep HEAD^

$ ls
directory1 file1 file2 file3 missing-link
$ git status -s
 M file1
 M file3
$

Change where the current branch points without discarding uncommitted changes.

git reset --hard

DANGEROUS! This command
will discard uncommitted
changes with no extra
confirmation.

Does not remove untracked
files, but discards any working
tree or index changes to all
tracked files.

$ ls
directory1 directory2 file1 file2 file3 missing-link
$ git show --stat --oneline HEAD
513f37f (HEAD -> main) Add a longer file in directory2
 directory2/entryway | 32 ++++++++++++++++++++++++++++++++
 1 file changed, 32 insertions(+)
$ git status -s
 M file1
 M file3

$ git reset --hard HEAD^

$ ls
directory1 file1 file2 file3 missing-link
$ git status -s # Changes gone!
$

Reset the branch, working tree, and index to a given commit.

What questions do
you have?

git reflog

Since branches and other refs
change over time (with commits,
amends, rebases, resets, etc), it
can be useful to see where a ref
pointed in the past.

You can git reset to somewhere
in the reflog to undo an accidental
commit, a botched rebase, or any
other accidental operation
concerning branches.

(Look for command-specific ways
like a --abort flag first, though.)

Show all the places a ref (HEAD by default) has pointed.

What questions do
you have?

Odds and ends

The Git stash

Imagine you're in the middle of writing a feature when suddenly you get an urgent
bug report! How can you get your working tree back to a clean state so you can
start debugging?

1. git reset --hard
○ Bad idea: loses all your in-progress changes!

2. Create a feature branch, commit WIP changes, switch back to main branch
○ Three separate operations
○ Will need to amend commit later

3. git stash (see man git-stash)
○ Quick and lightweight way to save uncommitted changes for later
○ Easy to get back with git stash pop
○ Can get confusing if you have lots of stashed changes, though

git bisect

● Provide with known good
commit and bad commit
(for your particular issue)

● Have a command to run
to check if the current
commit is good

● Binary search on your
commit history

● Two modes: manual and
automatic

For those who would like to go spelunking to find when something broke.

$ git log --oneline --graph
* a2ca8cb (HEAD -> bisect-demo) Allow the user to pick a string
* 6c5ece9 Use a more descriptive function name
* b6aa4c1 Follow Google style guide
* 00a1ccf Fix capitalization
* 7cc1b18 Using constants is good style
* 7ea7ece New phrase
* 01f344f First commit of my sample C program
$ git bisect start HEAD 01f344f --
<...>
$

