
On Design and Design Documents

Norman Ramsey

Fall 2008

Introduction

Engineering is design under constraint. Sometimes a constraint is imposed from
outside (data must fit on the computer’s hard drive) and sometimes a constraint
embodies what we want from a system (I want a backup server that draws at
most 10 watts of power, so I can leave it on all the time.)

In computer systems, design means breaking a system into pieces which
cooperate to produce a harmonious, useful whole. For the software parts of
a design, the best tool we have for understanding what a piece is and how it
cooperates with other pieces is the interface.

When I give a programming assignment, I often ask for a design document.
A design document is one of many ways to describe software, and software engi-
neers have a huge vocabulary for talking about descriptions. I don’t worry about
the vocabulary, but an analogy with homebuilding might be helpful. If I want
a 4-bedroom Colonial, that might be called a requirement ; if I know how many
square feet and of what materials, that might be part of the specification; brief
descriptions of plan and elevation might constitute a design; blueprints or ar-
chitectural drawings might be detailed design, and of course the house itself is
the implementation.

In class, I ask for a design document to increase your chances of producing a
correct and complete implementation without pain. Writing a design document
develops your ability to think about your design, and such thought will reduce
the number of costly and unplanned changes to your software program (i.e., late
nights). The design document helps you think before you code.

Alert!

Design documents are due well before implementations. Take proper advantage
of this structure: start thinking about how to design your program before you
start writing it. Think first, code later, finish early, and enjoy life.

1

Contents of a Design Document

To help your reader (and yourself) focus on whatever part of your design may
be relevant at any given time, I ask that you break down your design document
into clearly labelled sections. You’ll want to write these sections (in the order
in which they appear):

• Problem statement. In one or two sentences, state the problem that your
program will solve. Make it short and high-level: how would you tell your
roommate?

(This section helps verify that you have understood the problem.)

• Use cases. In a few sentences, say how your program will be used. Describe
who or what will interact with your program: a person? Another program?
Most important, show an example of how your program will be used,
perhaps giving sample input and output.

(This section helps solidify your understanding of the problem. It may
also suggest a plan for testing your code.)

• Assumptions and constraints. Do you need to make assumptions about
what sorts of input you expect—where input comes from, what happens
after the program executes, or other constraint?

(This section helps bring focus to open-ended problems. For simple, clearly
stated problems it is of minimal use and should be short.)

• Architecture. What are the major components in your system and what
are their interfaces? How do components interact? From least formal to
most formal, you might

– Draw pictures

– Sketch the contents of each interface using some sort of pseudocode

– Write out interfaces in a suitable programming language

Pseudocode is often a good path.

(This section is the most important section and will take you the most time
to write. It will help you develop a full understanding of the assignment
and will also require serious thinking about how you plan to attack the
problem.)

• Implementation plan. What algorithms and/or data structures will each
component need? Which pieces of your program will you build first? What
will you build yourself? What will you reuse from a library? How long
will each component take you? When will it be completed? Give dates
and times!1

1It may seem very strange to give dates and times in an implementation plan, especially
when that plan may not survive first contact with the code. But in the real world, you will
be asked over and over to estimate how long your work will take. I’m giving you a chance to
practice this skill now, when the stakes are low.

2

The most critical aspect of your implementation plan is to decide on
the representation of your abstract data types. Paraphrasing what Fred
Brooks wrote in The Mythical Man-Month,

Representation is the essence of programming. . . Much more
often, strategic breakthrough will come from redoing the repre-
sentation of the data. This is where the heart of a program lies.
Show me your procedure bodies and conceal your data-type dec-
larations, and I shall continue to be mystified. Show me your
data-type declarations, and I won’t usually need the bodies of
your procedures; they will be obvious.

(This section helps make sure that your architecture is actually imple-
mentable, or that if it isn’t, you’ll discover it quickly. Moreover, it in-
creases the chances that writing your program will bring you joy, not
drudgery, confusion, or loss of sleep.)

• Test plan. How will you convince anybody (starting with yourself) that
your program works? What test cases will you use? Be specific. Give
examples of test cases. Plan for corner cases and error conditions. You

will often need to write test code that does not have to be turned in as part

of the assignment.

(This section takes your high-level ideas about how your program will be
used and force you to come up with concrete ways of testing to see if your
program actually meets requirements.)

Advice on your implementation plan

The key to successful implementation is to get an end-to-end solution working

as quickly as possible. You want a program that does something which you can
work with and then improve. Programming is easier and more fun when your
code always does something.

Something trivial is a good place to start. For example, if your ultimate
goal is to read a bitmap, remove black edges, and write a modified bitmap, you
might have a plan like this:

1. Read a bitmap and write the same bitmap on standard output, without
ever putting a pixel into a data structure. Make a quick check for correct-
ness using an image viewer (15 minutes).

2. Read a bitmap into a two-dimensional array of bits, then write the bitmap
to standard output in PBM format (30 minutes).

3. Perform a trivial transformation on the bitmap, like changing every black
pixel to white and every white pixel to black. Check in image viewer
(10 minutes).

4. Identify black edge pixels and make them white (30 minutes).

3

After the design document

Once you’ve finished your design, start with your implementation plan. As you
proceed, you may find use cases, requirements, and corner cases that you did
not anticipate. In response, your design might change. It’s all good—my goal
is to have you think about design decisions; you won’t usually need to update
your design document to reflect new decisions. If I ever want an updated design
document, I’ll let you know.

When you have difficulty

Both design and programming will challenge your intellect and ingenuity. Don’t
let anybody kid you that it’s easy,2 and if you don’t know how to get started,
don’t get discouraged. One benefit of the design document is it’s a cheap way
of discovering that you’re confused. Take whatever you’ve written and bring it
to a member of your course staff. Everybody on the staff likes teaching, and
we’ll do our best to ask you questions that will get you on track. Eventually
you’ll learn to ask yourself helpful questions!

Frequently asked questions

Why do I have to write a design document? Computer scientists need an edu-
cation in design as well as programming. Design is one of the most interesting,
challenging, and fun things computer scientists get to do. When you graduate,
I want you never to be stuck in a situation where other people have the fun of
designing the programs you write.

How long and how much detail should be in my design document? Regard-
ing detail, focus on the architecture, especially its novel features. Detailed code
is usually out of place: the design document focuses on the interaction of com-
ponents, not the implementation of each component. Your implementation plan
should include more detail than just what components will be written in what
order. When will you write which components? How long will they take? How

will you test your system when it is still small and manageable, but incomplete?
Regarding length, provided you give the information needed, shorter is always
better. Overall, your design document should embody a clear, concise, and
simple specification for the implementation you plan.

An obsessive-compulsive design document

Here’s an acceptable design document. This one is over the top; there’s much
more detail than necessary. The extra detail is there to give you ideas about

2Part of the culture of computer science is that when working engineers are collaborating
on a design, someone may say, “from this point on it’s just a Simple Matter of Programming.”
The secret passphrase is uttered by one programmer to another when both parties know well
that almost nothing about programming is simple. Properly translated, the statement means
“well, we’ve done a lot of preliminary work, and things look good enough that now we can
get started on the hard stuff.”

4

how to make an implementation plan in a way that gives you an end-to-end
system as soon as possible—and that lets you test as you go.

• Problem. Implement a sort function that can be used by C programmers
to sort lists of double-precision floating-point numbers.

• Use case. Here’s a use case that sorts a statically initialized array in place.

/* user defines a list of doubles */

double magic_numbers[] = { 0.0, 3.1415926535, 2.718281816, 1.0, 1e-179 };

/* user defines comparator to sort in ascending order */

int compare_double(double x, double y) {

return x == y ? 0 : x < y ? -1 : 1;

}

/* we use a macro good for any statically initialized array in C */

#define NELEMS(A) (sizeof(A)/sizeof((A)[0]))

/* we sort the array in place */

void sort_magic() {

sort(compare_double, magic_numbers);

/* now as postcondition, the list magic_numbers is sorted in place */

}

• Assumptions and constraints The sort function is to be provided with a
pointer to the first element of the array to be sorted, the length of the
array, and a comparison function that determines the sort order.

– The pointer to the array is non-NULL.

– The array is an array of doubles.

– The comparison function is a valid function pointer; otherwise we
have an unchecked run-time error.3

– The comparison function must provide a total ordering; to provide
a comparison function that is not a total ordering is an unchecked
run-time error.

– The comparison function should take two inputs x and y. If x must
precede y in the sorted list, the comparison function should return
−1. If x must follow y in the sorted list, the comparison function
should return 1. If x and y can appear in either order (because they
are considered equal), the comparison function should return 0.

– The sort mutates the input list in place, so it is a destructive sort.

3It is an annoying defect in the C language standard that there is no portable way to
compare a function pointer and a null pointer; on some architectures, comparing a function
pointer with NULL will not even compile. For example, on some older machines a data pointer
(like NULL) is a 16-bit value but a function pointer is a 32-bit value.

5

– The mutated list will be totally ordered according to the comparison
function. More precisely, for any suitable i, compare(a[i], a[i+])

may be −1 or 0, but it will never be 1.

– In the worst case, the sort algorithm should require O(n log(n)) space
and time.

– The sort algorithm may use additional storage beyond the input list.

Except where noted above, if any of its preconditions are violated, the
sort procedure halts the program with a checked run-time error.

• Architectural design. My plan is to use merge sort, which guarantees
O(n log(n)) performance.

Components: Use of merge sort more or less dictates that the sort rou-
tine will be composed of two components: a sort function and a merge
function. This architecture follows directly from the algorithm:

– Split an array into halves and sort each half recursively

– Merge the sorted halves

There are two base cases: an empty array and an array with one element.
These arrays are already sorted and do not need a special component to
handle them.

The solution will use one helper function merge, with this specification:

void merge(const double *a1, unsigned size1,

const double *a2, unsigned size2,

int (*compare)(double x, double y),

double *result);

/* write the merger of arrays a1 and a2 into result,

of which elements 0 through (size1+size2-1) are

be overwritten */

Parameters a1 and size1 specify the first array; a2 and size2 specify
the second. Both are sorted; neither is mutated. The pointer result

points to properly allocated (but possibly uninitialized) memory of size at
least sizeof(*result)*(size1+size2). If size1 is nonzero then a1 is
non-NULL, and similarly for size2 and a2.

The output of merge is written indirectly through the result pointer.
There is no return value; if anything goes wrong, merge halts with a
checked run-time error.

Interactions: Procedure merge is an independent component. Procedure
sort calls merge, and it also calls itself on arrays that are strictly smaller
than the input array (thereby guaranteeing termination).

6

• Implementation plan. I am an experienced C programmer, and I have
written merge sort in other languages. A beginning C programmer might
take 4 to 8 times as long to carry out the same plan.

1. A function to print the contents of an array of doubles (5 minutes).

2. A test that defines these two arrays in memory:

double sorted[] = { 1.0, 2.0, 3.0, 4.0 };

double unsorted[] = { 4.0, 3.0, 2.0, 1.0 };

And a main function that prints both arrays. At this point, there
will be a trivial end-to-end system that prints. (5 minutes)

3. Next, write the merge function, and test it by using two statically
initialized, sorted arrays (like the ones above) and one uninitialized

array large enough to hold them both. The main test function should
include an assertion like

assert(NELEMS(a1)+NELEMS(a2) <= NELEMS(result));

(15 minutes)

4. Next, write the sort function, and test it by sorting unsorted and
reusing my code for printing arrays. (5 minutes)

5. Write a function to compare two arrays to see if they are structurally
equal, that is, they are arrays of the same size, and they contain
equal elements in equal positions. (5 minutes)

6. Change the test so it compares arrays, then prints a message indi-
cating whether after sorting, the two arrays are structurally equal.
(2 minutes)

7. Make the single test into a a test framework : a main loop that reads
in a list of numbers from the user as well as a list sorted in ascending
order. The unsorted numbers are stored in an array, which is passed
to the sort procedure. The main loop then compares the result of
the sort with the sorted input list for structural equality, then prints
the result of the comparison. (15 minutes)

Testing the merge function first builds confidence in implementing the
recursive merge sort. The entire project should take about an hour and
should be done on a single day, say, August 14, 2011. About 40% of the
time budget is devoted to testing.

• Test plan. In a test-as-you-build sort of way, significant unit testing is
built into the implementation plan. For overall testing, I will test these
kinds of inputs:

– A list of length 1

– A two-element list that is initially sorted (e.g., 1 3) and a two-
element list that is initially unsorted (e.g., 3.14 3).

7

– Sorted and unsorted lists whose size is not a power of two, so I can be
sure that “split the array into halves” works even when the “halves”
are of unequal size.

– An empty list (array of length 0).

– A list with negative numbers.

– A list with multiple copies of the same element (e.g., 1, 1, -3, 3, 3, 2, 2).

– A list of 10,000 random numbers, produced by

dd if=/dev/urandom bs=10000 count=1 | od -v -t d1 | sed ’s/^[0-9]*//’

– Lists of 100,000 and 1,000,000 random numbers, so I can use /usr/bin/time
to be sure behavior is really O(n log(n)).

Commentary on the design: Goldilocks and the missing memory

There are two ways in which the design document above is not a model to
follow. One simply a mistake commonly made by C programmers. The other,
which is more imporant, I’ll call the “Goldilocks effect;” it’s a problem common
to almost all programming methodologies taught in universities.

• The common mistake. Almost always, the most difficult part of getting a
C program correct is managing memory allocated on the heap (with malloc

and free). On this important topic, the document above is completely
silent. Don’t let this happen to you!

• The Goldilocks effect. The design document above is the software equiva-
lent of using an elephant gun to shoot a fly. The mergesort problem doesn’t
need a three-page design document. In fact, unless you are a beginning
programmer, you can implement a perfectly lovely mergesort by writing
down only the specification of merge plus a few test cases. If you are not
a beginning programmer, I hope you found the description excruciatingly
painful.

Why do I call this the “Goldilocks effect?” Because this design docu-
ment is like Goldilocks in the baby bear’s chair: it’s so big and heavy
that it crushes the problem completely, destroying any fun we might have
had writing the solution. This sort of thing happens all too frequently,
especially in the teaching of that part of software engineering called pro-

gramming methodology.4 In your Tufts classes, I hope you’ll write design
documents that are just right for the problems you encounter—just as
Goldilocks really should have stayed in the mama bear’s chair. But the
real reason to do a design document is for the big problems—when you
have to sit in papa bear’s chair. Please remember, then, the purpose of
the design document:

4I once heard a student complain about a software-engineering course, not at Tufts, by
saying “we used all these heavyweight methods for a problem I could have finished in a
weekend.”

8

– To discover early when you are confused

– To keep you from spending late nights at the computer

If you find yourself on a programming binge or a debugging binge, step
slowly away from the computer and return to your design.

Acknowledgment

This document is adapted from a document written by terrific teaching assis-
tants who worked for Radhika Nagpal and Margo Seltzer; I’m sorry I cannot
acknowledge them by name. Thanks to Radhika for permission to adapt it.
Any errors or infelicities are my own.

9

