
Git
“all meaningful operations can be expressed in terms of the rebase command”

--
Linus Torvalds, 2015

a talk by alum Ross Schlaikjer
for the GNU/Linux Users Group

Sound familiar?

init
clone

add
commit

branch
merge

diff

log

statuspush
pull

Git only know a handful of tricks

Once you know them, it’s quite simple

Command names don’t give away what they do

But it all sorta make sense if you know internals
(and the internals are good. Linus is just not an interface designer)

Getting Started

git init

git clone

Lets make a repository

Getting stuff done

git add

git commit

Getting stuff done
ross@Beast:/h/r/Demo$ echo 'Hello git!' | tee foo
Hello git!
ross@Beast:/h/r/Demo$ git add foo

‘git add’ writes to the repository.

Creates a ‘binary object’

Getting stuff done
ross@Beast:/h/r/Demo$ git commit -m “Commitment”

Add wrote to the repo, commit does not

Commit:
- Creates a commit object with an ID
- Adds labels to it

You’ve just seen 80% of git

Let’s add again
ross@Beast:/h/r/Demo$ echo 'Hello once more' | tee -a foo
Hello once more
ross@Beast:/h/r/Demo$ git add foo

Adds a new copy of foo to the repo

Doesn’t move the labels

And commit
ross@Beast:/h/r/Demo$ git commit -m ‘Second commit!’

Creates another commit object

Move the labels

That’s it!

Branching

Branching is super easy!

What happens if we do:
ross@Beast:/h/r/Demo$ git branch feature

?

Branching

Branching is super easy!

What happens if we do:
ross@Beast:/h/r/Demo$ git branch feature

We add another label
That’s it!

Checkout

Checking out code changes
which label moves when I commit

ross@Beast:/h/r/Demo$ git checkout feature

Checkout

Checking out code changes
which label moves when I commit

ross@Beast:/h/r/Demo$ git checkout feature

Committing will now move feature,
not master

Branching

So let’s add a new file
ross@Beast:/h/r/Demo$ echo “New branch” | tee bar

ross@Beast:/h/r/Demo$ git add bar

Branching

So let’s add a new file
ross@Beast:/h/r/Demo$ echo “New branch” | tee bar

ross@Beast:/h/r/Demo$ git add bar

And commit
ross@Beast:/h/r/Demo$ git commit -m “cool feature”

That’s branching!

Staging Area
aka ‘Index’
aka ‘Cache’

Staging area

When you add, git writes to a staging area

Commit commits the data in the staging area

Allows you to build up commits

Let’s talk IDs

Git IDs are SHA1sums

- What’s a checksum
- Git SHAs contain:

content (files), author, date, log message, previous commit

- Every ID is unique
- Every commit is unique
- Commits never change

Typical git workflow
branch feature

checkout feature
edit
test
add

commit
merge master

test
checkout master

merge feature

Typical git workflow (simpler)
Isolate

Work

Update

Share

Merge

Feature is complete!
Demo$ git checkout master

Demo$ git merge feature

Updating 7cef3ce..e48af8d
Fast-forward
 bar | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 bar

Special case: fast forward

Merge (fast-forward)
Demo$ git merge feature

Updating 7cef3ce..e48af8d
Fast-forward
 bar | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 bar

It’s all in a line, just move the label!

What if it’s not simple?

What if we change master?
Demo$ git checkout master

Demo$ echo “Time for something new” > foo

Demo$ git add foo

What if it’s not simple?

What if we change master?
Demo$ git checkout master

Demo$ echo “Time for something new” > foo

Demo$ git add foo

What if it’s not simple?

What if we change master?
Demo$ git checkout master

Demo$ echo “Time for something new” > foo

Demo$ git add foo

And commit:
Demo$ git commit -m “Change comes from within”

So now let’s merge
Demo$ git merge feature

--asks for a commit message--

Merge made by the 'recursive' strategy.
 bar | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 bar

Merge commits have two parents!

Disaster strikes
Turns out I didn’t want to do that

Reset
Demo$ git reset --hard HEAD^

Reset moves labels around
(--hard means checkout after moving)

Commit ID e still exists -
you can go back

Playing well with others

push

fetch

pull

Playing well with others

push

fetch

pull

This is where the trouble starts

Remotes

For sharing, you need to know where
Demo$ mkdir ../Remote

Demo$ git init --bare ../Remote

Demo$ git remote add origin ../Remote

Git doesn’t care how it gets at the remote
(http, SSH, filesystem, git protocol)

So let’s share
Demo$ git push origin master

Remote Local

So let’s share

Remote Local

git push origin master

git push

Like most git ops, works on current branch

Can do funky things -
// Push local branch feature to remote branch master

Demo$ git push origin feature:master

// Push nothing to remote branch feature (aka delete feature)

Demo$ git push origin :feature

Wait, what’s that?

When you talk to master,
git takes note of where it
thinks things are

remote branch vs. remote/branch

remote/branch = local label (ref)
remote branch = the branch, on remote

diff, log, etc. want refs
push wants to to know the remote and branch

tags

Label, just like everything else.

Git is just the same trick over and over!

Tags cannot move, however

Going along as normal
Demo$ git checkout master

Demo$ echo “Totally bug fee line of code” >> foo

Demo$ git commit -am “Everything is fine”

Everything is not fine
Demo$ git checkout master

Demo$ echo “Totally bug fee line of code” >> foo

Demo$ git commit -am “Everything is fine”

I made an error in code I already committed!
I guess I’ll just fix it and commit again

Demo$ sed -i.bak ‘s/fee/free/g’ foo

Demo$ git commit -am “Typo fix”

Demo$ git push

Rebase

Rebase

Often described as ‘rewrites history’

But history is immutable!

It really creates a whole new history.

Let’s rebase
Demo$ git rebase -i HEAD^^

Let’s rebase
Demo$ git rebase -i HEAD^^

Squashing (Other rebase operations are available)

What does this mean for DAG?

f: Introduce error
g: bugfix commit

What does this mean for DAG?

f: Introduce error
g: Bugfix commit
-- rebase --
h: Squashed commit

Cool, glad we sorted that
Demo$ git push

To ../Remote/
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to '../Remote/'

What have we wrought

What went wrong?

Remote Local

git push origin master?

NEVER rebase pushed code
This is how you make enemies

NEVER rebase pushed code
This is how you make enemies

Fetch

Pull refs (labels) from a remote

Find out what others have done

Pull

Pull = fetch + merge
(by default)

If you’re lucky, it’s a fast-forward

If you have more than one developer, it’s not
(and that’s bad)

Word of caution
Merging many branches all the time is a mess

How to avoid?

Git pull will merge by default

But there’s another behaviour...

How to avoid?

Git pull will merge by default

But there’s another behaviour…

~ rebase ~

The situation:

You are working on a branch
Someone else works on that branch, or master
They push, changing either master or branch

- You can’t just push (You’re behind!)
- You don’t want to merge (It’s messy!)

The Situation:

The solution

If the branch I am working on changed:
Demo$ git pull --rebase

(which is sugar for)

Demo$ git fetch --all

Demo$ git rebase origin/branch

If the branch I am branched off of changed:
Demo$ git rebase master

What does this look like?

That’s the big secret
Rebase = the clean history you hear about

One last thing: reflog

Or, “How to recover from anything”
Git keeps track of all commits it’s seen lately
Even if they are no longer referenced

52263d9 HEAD@{4}: rebase -i (finish): returning to
refs/heads/master
52263d9 HEAD@{5}: rebase -i (squash): Everything is fine
96fd397 HEAD@{6}: rebase -i (start): checkout HEAD^^
4db0413 HEAD@{7}: commit: Typo fix

That’s all folks
Questions? Comments? Obscenities?

