G .t
“all meaningful operations can be expressed in terms of the rebase command”

Linus Torvalds, 2015

a talk by alum Ross Schlaikjer
for the GNU/Linux Users Group

Sound familiar?

add diff Init
commit clone
log
push status branch

pull merge

Git only know a handful of tricks

Once you know them, it's quite simple
Command names don’t give away what they do

But it all sorta make sense if you know internals

(and the internals are good. Linus is just not an interface designer)

Getting Started

git init

git clone

Lets make a repository

Demo
init ,
itory in shome/

applypatch—msg, sample
commit-—msg, sample
post—update .sample
pre—applypatch,sample
pre—commit sample
prepare—comnit-—nsg,sample
pre—push,sample
pre-rebase,sample
update,sample

exclude

Getting stuff done

git add

git commit

Getting stuff done

ross@Beast:/h/r/Demo$ echo 'Hello git!' | tee foo
Hello git!
ross@Beast:/h/r/Demo$ git add foo

‘git add’ writes to the repository.

Creates a ‘binary object’

Getting stuff done

ross@Beast:/h/r/Demo$ git commit -m “Commitment”

Add wrote to the repo, commit does not

Commit:;

- Creates a commit object with an ID
- Adds labels to it

HEAD

Mmaster

You’ve just seen 80% of git

Let’s add again

ross@Beast:/h/r/Demo$ echo 'Hello once more' | tee -a foo

Hello once more
ross@Beast:/h/r/Demo$ git add foo

Adds a new copy of foo to the repo

Doesn’t move the labels

HEAD master

Commit: a

And commit

ross@Beast:/h/r/Demo$ git commit -m ‘Second commit!’

HEAD master

Creates another commit object
Move the labels

That's it!

Branching

Branching is super easy!

What happens if we do:

ross@Beast:/h/r/Demo$ git branch feature

?

HEAD| master

Branching

Branching is super easy!
J P y feature

What happens if we do:

ross@Beast:/h/r/Demo$ git branch feature

Commit: a

We add another label
That's it!

HEAD| master

Checkout

Checking out code changes

. _ feature
which label moves when | commit

ross@Beast:/h/r/Demo$ git checkout feature

Foo

Commit: a

HEAD| master

Checkout

Checking out code changes

. _ feature
which label moves when | commit

ross@Beast:/h/r/Demo$ git checkout feature

Foo

Commit: a

Committing will now move feature,
not master

Branching

So let’'s add a new file HEAD master

ross@Beast:/h/r/Demo$ echo “New branch” | tee bar
ross@Beast:/h/r/Demo$ git add bar

Foo

Commit: b

Commit: a

feature

HEAD feature

. Foo
Branching
So let’'s add a new file master
ross@Beast:/h/r/Demo$ echo “New branch” | tee bar -
ross@Beast:/h/r/Demo$ git add bar nggb
And commit

ross@Beast:/h/r/Demo$ git commit -m “cool feature” Foo

Commit: a

That's branching!

Staging Area

aka ‘Index’
aka ‘Cache’

Staging area

When you add, git writes to a staging area
Commit commits the data in the staging area

Allows you to build up commits

Let’s talk IDs

Git IDs are SHA1sums

- What's a checksum
- Git SHAs contain:

content (files), author, date, log message, previous commit

- Every ID is unique
- Every commit is unique
- Commits never change

Typical git workflow

branch feature
checkout feature
~—y edit .

test

add
commit

~ merge master <&/
test

checkout master

merge feature

Typical git workflow (simpler)

Isolate

@ Work ?
Update

Share

Merge

Feature is complete!

Demo$ git checkout master
Demo$ git merge feature

Updating 7cef3ce..ed48af8d
Fast-forward
bar | 1 +
1 file changed, 1 insertion(+)
create mode 100644 bar

Special case: fast forward

HEAD

Foo

Bar
Commit: ¢

Foo

Commit: b

Foo

Commit: a

feature

master

Merge (fast-forward)

Demo$ git merge feature

Updating 7cef3ce..ed48af8d
Fast-forward
bar | 1 +
1 file changed, 1 insertion(+)
create mode 100644 bar

It's all in a line, just move the label!

HEAD

master

Foo
Bar

Commit: ¢

feature

What if it’s not simple?

What if we change master?

Demo$ git checkout master
Demo$ echo “Time for something new” > foo
Demo$ git add foo

HEAD feature
Foo
Bar
Commit: ¢
master
Foo
Commit: b

Foo

Commit: a

What if it’s not simple? feature

master

What if we change master?

Demo$ git checkout master
Demo$ echo “Time for something new” > foo
Demo$ git add foo

feature

What if it’s not simple? master

HEAD

Foo
Commit: d

Foo

Bar
Commit: ¢

Foo
Commit: b
Commit: a

What if we change master?

Demo$ git checkout master
Demo$ echo “Time for something new” > foo
Demo$ git add foo

And commit:

Demo$ git commit -m “Change comes from within”

So now let’s merge

Demo$ git merge feature
--asks for a commit message--

Merge made by the 'recursive' strategy.
bar | 1 +
1 file changed, 1 insertion(+)
create mode 100644 bar

Merge commits have two parents!

HEAD

master

feature

Foo

Bar
Commit: ¢

Foo
Commit: d

Disaster strikes

Turns out | didn’t want to do that

feature

Reset

Demo$ git reset --hard HEAD”

Reset moves labels around

(--hard means checkout after moving)

Commit ID e still exists -
you can go back

Playing well with others

push
fetch

pull

Playing well with others

push
fetch
pull

This is where the trouble starts

Remotes

For sharing, you need to know where

Demo$ mkdir ../Remote
Demo$ git init --bare ../Remote
Demo$ git remote add origin ../Remote

Git doesn’t care how it gets at the remote
(http, SSH, filesystem, git protocol)

So let’s share

Demo$ git push origin master

feature

Remote Local

So let’s share

Foo

Bar
Commit: e

Foo

Bar
Commit: e

feature

git push origin master

< |

Commit: a

Remote Local

git push

Like most git ops, works on current branch

Can do funky things -

// Push local branch feature to remote branch master
Demo$ git push origin feature:master
// Push nothing to remote branch feature (aka delete feature)

Demo$ git push origin :feature

Wait, what’s that?

HEAD

origin/master

When you talk to master,
git takes note of where it
thinks things are

master
feature

Commit:

remote branch vs. remote/branch

remote/branch = local label (ref)
remote branch = the branch, on remote

diff, log, etc. want refs
push wants to to know the remote and branch

HEAD

origin/ﬁ

tags

master

Label, just like everything else.
v0.1

Git is just the same trick over and over!

Tags cannot move, however

Going along as normal

Demo$ git checkout master
Demo$ echo “Totally bug fee line of code” >> foo
Demo$ git commit -am “Everything is fine”

Everything is not fine

Demo$ git checkout master
Demo$ echo “Totally bug fee line of code” >> foo

Demo$ git commit -am “Everything is fine”

| made an error in code | already committed!
| guess I'll just fix it and commit again

Demo$ sed -i.bak ‘s/fee/free/g’ foo
Demo$ git commit -am “Typo fix”

Demo$ git push

Rebase

Rebase

Often described as ‘rewrites history’
But history is immutable!

It really creates a whole new history.

Let’s rebase

Demo$ git rebase -i HEAD™"

.gfr(git—rebase—tmb
6of ything is 1

Let’s rebase

Demo$ git rebase -i HEAD™"

+ g/ r*/gitj‘ellase—totio

2ec, . 4db0413 onto fldc2ec

S q u as h I n g (Other rebase operations are available)

o be committed:

7 | Lgit/COMHIT_EDITHSG <: | utf-2 | gitcommit

What does this mean for DAG?

master HEAD

f: Introduce error N\
g: bugfix commit

origin/master

Commit: e feature

-/

v0.1

What does this mean for DAG?

f. Introduce error

g: Bugfix commit

-- rebase --

h: Squashed commit

Cool, glad we sorted that

Demo$ git push

To ../Remote/
I [rejected] master -> master (non-fast-forward)

error: failed to push some refs to '../Remote/'

What have we wrought

What went wrong?

master HEAD

feature

git push origin master?

<

master

feature

NEVER rebase pushed code

This is how you make enemies

NEVER rebase pushed code

This is how you make enemies =

Fetch

Pull refs (labels) from a remote

Find out what others have done

Pull

Pull = fetch + merge

(by default)

If you're lucky, it's a fast-forward

If you have more than one developer, it's not

(and that’s bad)

Word of caution

Merging many branches all the time is a mess

@ renaming, fixing unit tests
@® big renaming
Merge branch :

Services ...
‘ Merge br:
q\ Merge bri
® implemer. 185
commit befare sync
added appticzion frontend
i added security n:ethods an
added user fiiter and servic
g re-factored and added sossmr
refactoring and fixas

small fixes in java ce~--
fixes RequestS--
small fi: i
adds V: \chC\\ Y DT VL.
updateu pruc-
Merge branct
add service nNicwwus swup and move r
initial commit for rules
£~ 2orocess definitions and unit tes

Merge branch 107-get -sheet- by -id’
Naming convention fix for template* in degreesheet
Add degree sheet entries directly to sheet object
Get degree sheet by ID endpoint
~Merge branch '78-degree-requirements-api'
Add creation timestamp to sheets
Add template details to degree sheet
Merge branch 'refactor-review'
Move the review for class method into schema.go
Use full class no just Id in classcategory
Split degree sheet categories from class categories
Add method to generate class requirement trees
Fucking case
Simple endpoint
Merge branch ‘full-review-data’
Insert the Review field into list_reviews data
Merge branch '101-more-user-endpoints'
Remove redundant delete
Logging
Serve result on success for Del/Mod
No Validate in logline
Add Get/Modify/Delete code for user
\Merge branch '100-class-descriptions'
ﬂ Rename existing uses of description, add real desc
\Merge branch '98-instructor-list-for-classes'
Pull instructor data in GetClassByld

\..0..

How to avoid?

Git pull will merge by default

But there’s another behaviour...

How to avoid?

Git pull will merge by default

But there’s another behaviour...

~ rebase ~

The situation:

You are working on a branch
Someone else works on that branch, or master
They push, changing either master or branch

- You can't just push (You're behind!)
- You don’t want to merge (It's messy!)

The Situation:

master

Commit: g
Commit: f
Commit: e

Commit: d
Commit: ¢
Commit: b

The solution

If the branch | am working on changed:

Demo$ git pull --rebase
(which is sugar for)
Demo$ git fetch --all

Demo$ git rebase origin/branch

If the branch | am branched off of changed:

Demo$ git rebase master

What does this look like?

master

Foo

Commit: g

Foo

Commit: d

Commit: e

Foo

Commit: ¢

Foo

Commit: d

GOD

Commit: ¢

@
Commit: b

Foo

Commit: e

Foo

Commit: b

That’s the big secret

Rebase = the clean history you hear about

@ renaming, fixing unit tests
@® big renaming
Merge branch !

Services ...
‘ Merge br:
L 3 Merge br:
o implemer. 185
commit befare sync
added appticzion frontend
i added security n:ethods an
added user fiiter and servic
g re-factored and added scssmr
refactoring and fixas

small fixes in java ce~--
fixes RequestS--
small fi: i
adds V: \chC\\ Y DT VL.
updateu pruc-
Merge branct
add service nNicwwus swup and move r
initial commit for rules
£~ 2orocess definitions and unit tes

Merge branch 107-get -sheet- by -id’
Naming convention fix for template* in degreesheet
Add degree sheet entries directly to sheet object
Get degree sheet by ID endpoint
~Merge branch '78-degree-requirements-api'
Add creation timestamp to sheets
Add template details to degree sheet
Merge branch 'refactor-review'
Move the review for class method into schema.go
Use full class no just Id in classcategory
Split degree sheet categories from class categories
Add method to generate class requirement trees
Fucking case
Simple endpoint
Merge branch ‘full-review-data’
Insert the Review field into list_reviews data
Merge branch '101-more-user-endpoints'
Remove redundant delete
Logging
Serve result on success for Del/Mod
No Validate in logline
Add Get/Modify/Delete code for user
\Merge branch '100-class-descriptions'
' Rename existing uses of description, add real desc
\Merge branch '98-instructor-list-for-classes'
Pull instructor data in GetClassByld

\..0..

One last thing: reflog

Or, “How to recover from anything”
Git keeps track of all commits it's seen lately

Even if they are no longer referenced

52263d9 HEAD@{4}: rebase -i (finish): returning to
refs/heads/master

52263d9 HEAD@{5}: rebase -i (squash): Everything is fine
96fd397 HEAD@{6}: rebase -i (start): checkout HEAD"*
4db0413 HEAD@{7}: commit: Typo fix

That’s all folks

Questions? Comments? Obscenities?

