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1 Introduction 

Most previous redundancy elilmination algorithms have 
been of two kinds. The lexical algorithms deal with the en- 
tire program, but they can only detect redundancy among 
computations of lexicatlly identical expressions, where ex- 
pressions are lexically identical if they apply exactly the 
same operator to exactly the same operands. The value 
numbering algorithms,, on the other hand, can recognize 
redundancy among ex:pressions that are lexically different 
but that are certain to compute the same value. This is 
accomplished by assigning special symbolic names called 
value numbers to expr,essions. If the value numbers of the 
operands of two expressions are identical, and if the op- 
erators applied by the expressions are identical, then the 
expressions receive the: same value number and are certain 
to have the same values. Sameness of value numbers per- 
mits more extensive optimization than lexical identity, but 
value numbering algor:ithms have usually been restricted in 
the past to basic blocks (sequences of computations with 
no branching) or extended basic blocks (sequences of com- 
putations with no joins). 

We propose a redundancy elimination algorithm that 
is global (in that it deals with the entire program), yet able 
to recognize redundancy among expressions that are lexi- 
tally different. The al,gorithm also takes advantage of sec- 
ond order effects: transformations based on the discovery 
that two computations compute the same value may cre- 
ate opportunities to discover that other computations are 
equivalent. 

The algorithm applies to programs expressed as re- 
ducible [l] [9] control flow gratphs. As the examples in 
section 7 illustrate, our algorithm optimizes reducible pro- 
grams much more extensively than previous algorithms. In 
the special case of a program without loops, the code gener- 
ated by our algorithm is provably “optimal” in the technical 
sense explained in section 8. Thiis degree of optimization is 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

0 1988 ACM-O-89791-252-7/88/0001/0012 $1.50 

achieved while improving the worst-case time bound, when 
compared with previous algorithms that perform extensive 
optimization. 

READ(A,B,C;D,L,M,S,T> / 
A 

L+C*B DtC 
McL+4 L+D*B 

AtC 
ScA*B 
TtS+i 

I X+-'A*B 
Y+X+I 

Figure 1: Original Program 

READ(A,B,C.D,L,H,S,T> 
LtC*B 

I 

/ \ 
ntL+4 D+-C 

YcL+I StA*B 

AtC T+S+I 

X+L x-s 
Y+T 

Figure 2: Improved Program 

Figures 1 and 2 illustrate the optimization achieved by 
our algorithm. It removes a redundancy between computa- 
tions of A*B, identifies a common use of C*B and removes 
it from the loop, and finally removes a partial redundancy 
[13] between computations of X+1. 

Suppose the program has already been translated into 
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a standard intermediate form that uses temporary names 
for the values of the subexpressions of complex expressions. 
In an intermediate text expression, the operands are al- 
ways variable or constants. The worst-case time bound of 
our algorithm can be stated, somewhat pessimistically, as 
C(C * Iv * E), where C is the number of computations in 
the program’s intermediate text, N is the number of nodes 
in the control flow graph, and E is the number of edges 
in this graph. The worst pessimism comes from N. This 
factor does not represent anything done for every node in 
the graph; rather, it represents the possible increase in the 
number of computations present at intermediate stages in 
our algorithm. In the worst case that can be constructed, 
the expansion factor is N. Practical expansion factors will 
be much smaller. There is also some pessimism in the fac- 
tor E because the algorithm includes searches that might 
explore most of the graph but are likely in practice to ex- 
plore small fractions of it. Section 7 includes a comparison 
of bounds. 

2 Example 

This section sketches our algorithm by working through 
figure 1 in detail. This example illustrates several of the 
new techniques used by the algorithm, but necessarily does 
not discuss how to handle all cases. Sections 3-6 contain a 
complete description of the algorithm, and section 7 relates 
it to previous work. 

Our algorithm will first change this program into a 
si:mpler representation. There is only one assignment for 
each variable in the new program. This transformation in- 
troduces many new names for each separate variable in the 
original program, at least one name for every assignment 
statement. In this particular example, the new names in- 
troduced for the variable V are of the form Vi for some 
integer i. In general, this subtask may be accomplished in 
various ways, as discussed in section 4.3. The phrase sin- 
gle assignment is already in use for programs that assign 
to each variable only once when running. Dynamically, a 
program with loops may assign to the same variable many 
times, even if only one assignment appears in the program 
text. Our transformation puts the program into static sin- 
gle assignment form, which we will abbreviate to SSA form. 

To attain SSA form, we introduce a new type of sssign- 
mtent statement at some of the join nodes of the program, 
where a join node is any node that has two or more inedges. 
We consider the case of two inedges and call them “left” and 
“right” for ease of visualization. Then the new assignment 
will have the form Vi + d(Vj , Vk). If control reaches the 
join node along the left branch, then Vi is assigned the 
value Of V j ; if control reaches along the right, then Vi is 
assigned the value of Vk. This transformation is illustrated 
in figure 3. This representation allows our algorithm to 
effectively manipulate value numbers when it manipulates 
lexical names. Some of our transformations preserve SSA 
form, and those that do not are immediately followed by 
restoration of SSA form. 

Eliminating redundancies can have second order ef- 
fects. Eliminating one computation can provide an oppor- 
tunity to eliminate others. This motivates the notion of 

Figure 3: Program in SSA Form, with Ranks Assigned 

runt. Ranks are like heights of expression trees. Most of 
the computations that produce operands for an expression 
are assigned a rank lower than the rank of the expression. 
(The exceptions involve program loops.) We can therefore 
process the program in order of increasing ranks and be 
sure of getting most of the second order effects. The ranks 
are shown in parentheses to the left of each computation 
in figure 3. The subalgorithm to compute the ranks is in 
section 4.4. 

In a program in SSA form, trivial assignments (i.e., one 
variable gets the value of another) can be,removed simply 
by changing all uses of the target of the assignment to uses 
of the variable on the right-hand side of the assignment. In 
figure 4, the assignments to A3 and Dg have been removed. 
The #I functions that used these variables as operands have 
been changed along with the other expressions. 

Phase 2 of our algorithm eliminates redundant compu- 
tations by looping over ranks. For each rank, the nodes in 
the program graph are processed in an order established by 
the graph analysis explained in section 4.1. In the present 
example, the only edge drawn with an arrowhead in the 
figures is also the only backedge in a loop. With backedges 
ignored, the graph becomes a DAG and may be topolog- 
ically sorted (i.e., the nodes may be listed in such a way 
that the source of each edge comes before the destination 
of that edge). This is topsort order, and we will process 
nodes in the reverse of topsort order. In the figures, we 
work up from the bottom. 

The first computation we consider is the assignment to 
Xl in figure 4; this is the lowest ranked computation within 
the last node in topsort order. Intuitively, we move this 
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L3 + / 1*B1 
L4tCl*Bl 

H3 + L3; + 4 
S3tA2*Bi 

\ 
T3 -S3+1 

/ 

Yl -x1 + 1 

Figur,e 4: A3, Dg Removed 

Figure 5: Splitting of Xi * A4 * B1 

computation Q to nodes earlier in topsort order (upward in 
the figures). We move Q as far as possible without changing 
the semantics of the program. Because Q is at a node with 
two inedges, we split it, into copies Ql and Q2 as it moves up- 
ward. Each copy will have its own chance to move upward 
later, and one or both may eventually be found to be re- 
dundant. The original computation Q will be redundant as 
soon as both copies have been placed in predecessor nodes. 
Because we will eliminate global redundancies of the cur- 
rent rank after moving computations of the current rank, it 
will do no harm to leave Q at its original node after placing 
the copies. Figure 5 shows Ql and Q2 at the inedges of the 
join node. Each copy Qi assigns to a new temporary vari- 
able Zi. Ordinarily, a computation cannot move past an 
assignment to one of its operands, and A4 is assigned to at 
the join node. However, the assignment to A4 is from a 4 
function. We can move a computation past this particular 
type of assignment by renaming the operands to reflect the 
values from which each operand was formed. The general 
technique is described in sectio:n 5.1.2. 

We can recognize that there are two computations 
in the same node with identical. operands and operators. 
Thanks to SSA form, this identity implies that they must 
compute the same value, and one can be eliminated simply 
by replacing it with a trivial assignment from the output 
of the other. The replacement by the trivial assignments is 
shown in figure 6. 

We remove the new trivial assignments as soon as they 
are introduced. In figure 7, those trivial assignments have 
been removed. Also shown in that figure is the result of 
copying the calculation of Ci * Bl into the branch node. 

A 
L3 +Cl*Bl 

LqtCl*Bl 

M3 - L3 + 4 
S3 c- A2 * Bi 

Zl CL3 
T3 +Sg+i z tS3 

V 
Yi + Xl + 1 I 

Figure 6: Local Redundancies Removed 
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Z3+-Cl*Bl 
I 

READ(Ai,B~~C~DC:,*LB;II,SirTi) 

I 

Figure 7: Cl * Bl Copied to Branch Node 

Figure 8: Cl * Bl Copied Above Loop 

Copying can occur here because the same value is calculated 
in both successors of the branch node. The copy assigns to 
i% new temporary Z3. 

Any computation of the current rank that reaches 
a loop header (i.e., a node that is the destination of a 
backedge) may be copied to the node immediately preced- 
ing the loop, provided that the computation is redundant 
along each path through the loop body and back to the 
header. In this case, the computation of Cl * Bl is copied 
out of the loop, as shown in figure 8. The general subalge 
rithm is in section 5.2.2. 

Now that rank 1 computations have been copied to 
their earliest possible locations, it is time eliminate every 
computation Q of rank 1 that is redvndanZ because there 
are equivalent computations El, . . . . En such that every path 
from the start of the program to Q performs one of the Ei 
before reaching Q. The redundant computation is replaced 
by a use of a new temporary. At the location of each Ei, 
an assignment to the new temporary from the output of Ei 
is added. (If n = 1, then the redundant computation may 
be simply replaced by a use of the output of El, without 
a new temporary.) The computations of the current rank 
are checked in any convenient order, and each redundant 
computation is eliminated before proceeding. The details 
of this subalgorithm are presented in section 5.4. 

Identifying computations by the variables they assign 
to, we might find the redundant computations in figure 8 
i.n the order Xi, L3, ~4,Z3. The results of finding them in 
this order are essentially as in figure 9, where there are now 
two assignments to the variable ~5. We restore SSA form 

A 
L3 +Z3 L4 +-Z3 

Mg CL3 +4 
S3 +A2*Bl 

Z5+-L3 
T3 -Sg+i 

2 

V 
cS3 

Figure 9: Rank 1 Redundancies Removed 
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READ@0 B B ,CI,DI,L J~,SI,TI) 
4'Ci" I 

4 I\’ \ 
M3+ 4+4 S3 +Az*Bi 

Y2 + z4+1 T3 +S3+1 

\ Y3 -T3 

/ 

Figure 10: Movement of Y1 c Xi + I 

and remove trivial assignments ‘before proceeding. 
Removal of trivial. assignments has a second order ef- 

fect on the q5 function that computes Lg in figure 9. The 
removal process renames both operands of that function 
to ~4, so this 4 fuction can be replaced by a new trivial 
assignment Ls + Z4 (which will then be removed). This is 
one example of the many ways that subalgorithms of our 
algorithm provide opportunities for each other. 

It is now time to process the program for the next rank. 
The computation of interest is the assignment to Yi. (The 
operand Xi is of lower rank and has already been moved 
out of the block.) In figure 10, we split the computation 
and move it up each side. Since i.t matches the computation 
of ~3 + I on the right branch, it is replaced with a trivial 
assignment on the right branch. 

The trivial assign.ment to Y3 must now be removed 
(not shown). Phase 3 then eliminates 4’s and returns the 
program to conventional form, with no limit on the number 
of assignments to any variable. The output is as was shown 
in figure 2. 

3 Overview of the Algorithm 

Figure 11 displays the algorithm in pseudocode. The sec- 
tion numbers in parentheses on some lines indicate where to 
find detailed explanati.ons. For the moment, the previous 
section’s intuitive explanations should suffice for concepts 
like backedges, topsort order, and loop header nodes. The 
pseudocode also mentilons landing pads of loops. These are 
nodes added to the program control flow graph to provide 
convenient places to put code that is moved out of loops. 

(4) 

(4.1) 

(4.2) 
(4.3) 
(4.4) 
(4.5) 

(5) 

/* Phase I */ 

Perform depth-first search, noting 
backedges and topsort order. 

Insert some nodes into 
control flow graph. 

Translate to SSA form. 
Assign ranks. 
Remove trivial assignments. 

/* Phase 2 */ 

for each rank R = O,i,... do 
for each node n 

(in reverse topsort order) do 
select on the node type of n 

case normal: (5.1) 
Move any movable computations of 
rank R from successors into n. 
Identify any computations of 
rank R that may be movable 
from n into predecessors. 

case loop header: (5.2) 
Proceed much as in normal case, 
but move certain computations of 
rank R out of the loop. 

case landing pad: (5.3) 
Proceed much as in normal case, 
but move certain computations of 
rank R from loop exits to n. 

end 
end 
Eliminate globally redundant 

computations of rank R. 
end 

(6.4) 

/* Phase 3 */ 

Translate from SSA form. 
Eliminate empty nodes. 

(6) 

Figure 11: Overview of the Algorithm 

4 Phase 1: 
Preprocess the Program 

First we do some preliminary analysis. Then we insert 
some empty nodes into the graph at various convenient 
places. These nodes will become places to which code can 
be moved. Finally, we perform special transformations and 
analyses that will make the program easy to manipulate in 
Phase 2. 

It is customary to describe optimizing transformations 
under various simplifying assumptions about the program 
text. For example, it is assumed that assigning to one vari- 
able does not affect the value of any other variable. It is 
also assumed that program statements are either simple 
assignments 

(variable)+(expression) 
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or simple tests that branch on Boolean variables. Complica- 
tions like procedure calls or the READ statement in figure 1 
pose some subtle problems [16] that have given rise to a 
substantial literature on the analysis of aliasing, side effects, 
and so on. Applying our algorithm to programs with realis- 
tic complications is no more difficult than applying previous 
algorithms, so we make the customary assumptions freely. 
In section 2, READ was treated as a set of assignments from 
arbitrary distinct constants. This was correct in context. 
In general, READ is like a procedure call that both uses and 
modifies a file parameter while modifying the parameters 
representing variables read in. 

4:.1 Analyze the Graph 

As is usual, we assume that the program text has been 
grouped into basic blocks and that the control flow graph 
has been built with a node for each basic block and an edge 
for each transfer of control. We assume that all nodes are 
reachable from the node representing program entry, and 
that each node has at most two outedges. These last as- 
sumptions are not crucial, but they are convenient in several 
places. 

A backedge of the program control flow graph is any 
edge whose destination is an ancestor of its source in the 
tree defined by a depth-first search [18] rooted at the pro- 
gram entry node. (In a reducible graph, the set of backedges 
does not depend on the arbitrary choices made during the 
depth-first search [9] .) 

With backedges ignored, the graph becomes a DAG 
and may be topologically sorted (i.e., the nodes may be 
listed in such a way that the source of each edge comes be- 
fore the destination of that edge). The sorting can be done 
during the depth-first search by noting the order in which 
subsearches terminate. Hecht and Ullman [IO] show that 
this order (sometimes called “endorder” or “postorder”) is 
the reverse of a topological order. (Though stated only for 
reducible graphs, Lemma 4 of [lo] actually applies to all 
graphs.) Throughout this paper, topsort order will be the 
reverse of the order in which subsearches terminate. 

A loop header is any node that is a destination of a 
backedge. Given a loop header h reached by backedges from 
nodes sl, . . . . sk, the corresponding loop body consists of all 
nodes u such that there is a path of the form h A u 5 si 
that traverses no backedges. An edge from a node in a loop 
body to a node not in the loop body is an exit edge of the 
loop. The destination of an exit edge is an exit node. 

At each loop header, we wish to keep a list of loop en- 
trance and exit edges. There are several ways to compute 
the loop body and loop exit edges for each loop without 
tracing paths. A simple way that depends upon the pro- 
gram being reducible is as follows. (In a reducible graph, 
the edges that enter a loop are just the inedges of the header 
thlat are not backedges.) 

We first determine the nodes within the loop with 
header h by searching the graph, starting at the sources 
of the backedges to h. The search follows edges backwards 
(from destination to source), and ignores backedges. Each 
branch of the search that reaches h (or a previously visited 
node) terminates. Each node visited is marked as being 
in the loop body for h. Exit edges can be determined by 

examining nodes in the loop body for any outedges that do 
not go to other nodes in the loop body. 

The worst-case time for this technique is within the 
overall time of our algorithm. More efficient, but more 
complicated, ways to compute loop bodies and loop exit 
edges can be obtained by adaptations of known analytic 
techniques [19]. This is done by traversing the loops in- 
nermost to outermost (by visiting the headers in reverse 
topsort order) and by merging the set of nodes in an in- 
ner loop into the next outer loop (by means of an efficent 
union-find algorithm). 

4.2 Modify the Graph 

The modifications made in this section can be performed 
in linear time, and they add a linearly bounded number 
of nodes and edges to the graph. The modifications are 
so slight that the results of previous analysis can easily be 
updated to allow for them. We do the analysis first because 
we need to identify loops. 

We give each loop a landing pad representing entry 
to the loop from outside, as distinct from looping back. 
Landing pad insertion is illustrated in figures 12 and 13 for 
a while loop (i.e., a loop whose header has an outedge that 
is an exit from the loop), which is the only case that is not 
completely straightforward. Following [8], we duplicate the 
old header (forming two TEST nodes) and make the loop 
look like an until loop guarded by a TEST. Then the start 
of the loop body becomes the header and receives a landing 
pad. (Making while look like until permits more extensive 
optimizations.) Formally, each loop header is given a new 
predecessor that will be its only predecessor outside the 
loop. The old edges entering the loop at the header become 
the inedges of this new predecessor. Because landing pads 
are new nodes added for every loop header, no node will be 
both a landing pad and a loop header. 

I 
TEST 

I I 

BODY 
I 

NEXT 

Figure 12: While Loop Without Landing Pad 

Any edge that goes directly from a node with more 
than one outedge (a brunch node) to a node with more 
than one inedge (u join node) is split into a pair of edges, 
one from the branch node to a new node and another from 
the new node to the join node. 

Splitting edges will allow the algorithm to move a com- 
putation from a join node to each of its predecessors with- 
out running the risk of exposing that computation to con- 
trol paths that go through the predecessor and not the 
original node. In figure 14, the insertion of a node be- 
tween (c) and (b) will allow the computation at (b) to 
be moved without inserting it into the (c) to (d) control 
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I 
r TESlq 

55 LANDING PAD 

Figure 13: Addition of a Landling Pad to a While Loop 

path. The computation is redundant along the (a) to (b) 
control path. If it is m.oved to a node along the (c) to (b) 
control path then it will be available at (b) regardless of 
which path enters (b)l. That movement will improve the 
(a) to (b) control path. 

. . . +A+B . . . +-A+B 

(b) Cd) (b) (d) 
. . . +A+B 

Figure 14: Insertion of a Node to Split an Edge 

A virt~ol edge is added to the landing pad for each 
exit from the loop that that landing pad is associated with. 
The virtual edge goes from the landing pad to the exit node. 
(The list of exit edges was calculated in section 4.1 and is 
associated with the header node of the loop.) Virtual edges 
provide a mechanism -for moving code past a loop without 
moving it into the loop, but most of the work we do will be 
along the realedges that were in the graph initially. 

4.3 Translate to SSA Form 

We rename variables throughout the program to put it 
into static single assignment (SSA) form: each variable is 
assigned to exactly once in the program text. A new type 
of assignment statement is added at join nodes, to indicate 
that a variable is assigned the value of one variable (if con- 
trol enters along one hedge) or another variable (if control 
enters along another i:nedge). 

Each mention of a variable V will be replaced by a 
mention of one of the new names for V. The various new 
names will be denoted Vi where i is an integer. After 
renaming, every point in the program will be reached (in 
the sense explained below) by exactly one of the names 
for V. Intuitively, the name that reaches a point represents 
whatever value V has when control reaches that point. New 
names are to be generated and assigned so as to satisfy 

the following SSA rules, which are stated for join nodes 
that have just two inedges (called “left” and “right”) to 
minimize notation: 

1. 

2 

3 

4. 

5. 

6. 

Each variable V at the start of the program is assigned 
the name Vg there. This name reaches the start of the 
program and any other point p such that every path 
from the start to p is free of assignments to names of 
V. 

Each assignment to V is replaced with an assignment 
to Vi for some unique positive i. The name Vi is 
the one that reaches the point p immediately after the 
assignment, and any other point q such that every path 
from p to q is free of assignments to names of V. 

The name of V that reaches an edge in the graph is the 
one that reaches the end of the code associated with 
the source of the edge. 

At any node in the graph where the same name for V 
reaches all inedges of the node, that name is the one 
that reaches the entry point p of the node, and any 
other point q such that every path from p to q is free 
of assignments to names of V. (In particular, the entry 
point of any node with one predecessor is reached by 
the name that reaches the end of the predecessor.) 

At any join node in the graph where two different 
names for V reach the inedges of the node, a new assign- 
ment is inserted. The new assignment has the form 
vk + +(vi,vj), where Vi and V. are the two names 3 
of V that reach the left and right inedges of the node 
and Vk is a unique new name. The name Vk is the one 
that reaches the entry point p of the node, and any 
other point q such that every path from p to q is free 
of assignments to names of V. 

The meaning of Vk + +(Vi, VJ) at a node u is that if 
control reaches u by the left inedge, then Vk +- Vi. If 
control reaches by the right inedge, then Vk t Vj. 

If Vi is the new name of V that reaches a point in the 
transformed program, then the value of Vi is always 
the same as the value of V at the same point in the 
original program. 

The results of renaming are illustrated in figure 15. 

A+B Al'Bl 

DcB+C D2 +-Bg+Ci 

Figure 15: Example of Renaming 

The foregoing specifications for SSA form can be im- 
plemented in several ways. The next subsection explains a 
simple way to use the rules to achieve SSA form, followed 
by a subsection explaining more complex ways that lead to 
more extensive optimization. 
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4.3.1 Simple SSA Form 

The following algorithm is essentially from [8], where 
the formulation looks different because explicit 4 functions 
are not used. 

Visit the nodes in topsort order, performing the fol- 
lowing steps for each node: 

1. 

2. 

3. 

4. 

If the node is a loop header, then insert a 4 function 
for each variable V. The target of the assignment is a 
new name for V. The first operand of the 4 function is 
the name of V that reaches the node from the landing 
pad. There is another operand for each backedge and 
these will be filled in later. 

If the node is a join node that is not a loop header, 
then apply rule 5 of the SSA rules. 

For each assignment in the node, apply rule 2 of the 
SSA rules. 

If the node is the source of a backedge, then the names 
that reach the bottom of the node are used to fill 
in operands of 4 functions at the destination of the 
backedge. 

These rules define a renaming to SSA form in which 
clistinct variables have distinct .names. This simple SSA 
form may be used, but the time bounds of our overall al- 
gorithm leave room for more sophisticated renaming ex- 
plained in the next subsection. 

43.2 Reduced SSA Form 

The algorithm for simple SSA form sometimes assigns 
more names than are needed, and this can cause opportu- 
nities for optimization to be missed when programs have 
1,oops. Consider figure 16. The simple algorithm will give 
separate sets of names to P and Q, and the redundancy in 
this program will not be eliminated. A more ambitious al- 
gorithm might notice that P and Q always have the same 
value and can therefore share storage. 

F’ c I 
Cl +- 1 
alile(. . .) do 

P+P+l 
Q-Q+1 

end 

Figure 16: Example of More Names than Necessary 

Section 7.2 will briefly discuss some previous work on 
recognizing equivalences among program variables. Find- 
ing all equivalences is an undecidable problem, but various 
decidable subproblems are known. In effect, these algo- 
rithms translate a program to simple SSA form and then 
compute a set of pairs of variables, such that the value 
assigned to one variable in a pair is always the same as the 
v.alue assigned to the other. If variables A and B are paired, 
and if the computation assigning to B dominates the com- 
putation assigning to A (by coming before it on all paths 
through the program), then it is safe to replace the original 
computation for A by the statement A t B. For any given 
means of recognizing equivalences, a program is in reduced 

SSA form if it is in SSA form and if all such replacements 
have been done. The optimization in section 4.5 will then 
be applicable. 

In figure 16, any equivalence algorithm that recognizes 
the equivalences between the various SSA names of P and Q 

will lead to a reduced SSA form in which each name Qi of 
Q is defined by assigning from the corresponding name Pi 
of P. The optimization in section 4.5 will effectively merge 
these names. 

4.4 Assign a Rank to Each Computation 
Moving forward over the program, without traversing any 
backedges of loops, we will assign a rank to any variable or 
expression appearing at any point in the program. When 
computing the rank of an expression in a loop header, we 
may need to use a rank value for an operand variable that 
reaches the loop header along a backedge. The rank of such 
a variable will not have been computed yet, but we can 
recognize this situation and can use the value 0 instead of 
the rank. In the following rules, the available rank is either 
the rank (if already computed) or 0 (otherwise). Because 
the program is in SSA form, the rank of any variable or 
expression is unambiguously defined as: 

0, if the variable is an entry point name VO. 

the rank of the expression assigned to-the variable, if 
it is assigned to within the program. 

0, if the expression is a constant. 

the maximum of the available ranks of the operands, 
if the expression is a variable or a 4 function. 

1 + the maximum of the available ranks of the 
operands, if the expression is not a constant, a vari- 
able, or a 4 function. 

The rank of a computation is the rank of the variable i’ 
assigns to. The steps in phase 2 will be performed once for 
each rank assigned in the program (starting with rank 0). 
This ensures that before any computation is processed, all 
of the computations that produce operands for that com- 
putation have already been processed. 

The assignment of ranks has an interesting property 
that enhances the performance of our algorithm. There is 
no need to maintain the order of computations within a 
basic block. All that is required is to remember the rank of 
each computation. Code can be generated later by sorting 
the computations by rank, earliest first. Code for computa- 
tions of the same rank can be generated in any order. This 
is useful because we will frequently add, delete, or look for 
computations in a block. All of these operations are eas- 
ily implemented with a hash table. The local computation 
table (LCT) is maintained for each node in the program flow 
graph. The LCT contains the set of computations that oc- 
cur at that node. It is primarily accessed in three ways, as 
follows: 

l We can loop over all the computations. 

l We can loop over all the computations of a given rank 

l Given an expression, we can loop over all the compute 
tions with right-hand sides identical to the expressicn. 

In all cases, the time required to find n computations i. 

Wn)* 
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4.5 Remove Trivial Assignments 

Assignment statements that have trivial right-hand sides 
(only a single variable) have a spcecial meaning for programs 
in SSA form. These statements ‘can be thought of as asser- 
tions that the two variable names (the one mentioned on the 
left side and the one mentioned on the right side) represent 
the same value. The initial list of trivial assignments to be 
removed includes any that were originally in the program 
as well as any that werce added by recognizing equivalences. 
This worklist may be maintained in any convenient way, 
and removal of the next item on the list may cause other 
items to be added. 

Given a trivial assignment A t B, we replace each men- 
tion of one variable (including those in 4 functions) by a 
mention of the other. To facilitate this replacement, we 
will maintain a list of uses of each variable in the program. 
Whichever of A and B has the shorter list of uses will be 
replaced by the other. Every time a variable is replaced 
it must be replaced by a varia,ble which will be used at 
least twice as often. Thus, the number of times that a vari- 
able can be the survivor in removal of trivial assignments 
is bounded by the logarithm of the total number of uses. 

Renaming of oper,ands of a computation may make the 
right-hand side become identical with the right-hand side of 
another computation in the same node. There may also be 
several computations in a node that happen to have iden- 
tical right-hand sides initially. However they arise, such 
matchings are local reo!undancie.s. Thanks to SSA form, the 
matching computations really are equivalent. We maintain 
a worklist that begins with the initial local redundancies 
in the SSA form of the program. This worklist may gain 
entries during removal of trivial assignments. Eliminating 
a local redundancy, on the otlher hand, creates a trivial 
assignment. Removal of trivial assignments and elimina- 
tion of local redundarrcies feed each other’s worklists until 
both processes quiesce with empty worklists. When both 
worklists are nonempty, it does not matter which list is 
serviced first. 

Later steps in our algorithm will sometimes create triv- 
ial assignments or local redundancies. The later steps will 
always reactivate this .step and then wait until this step has 
emptied its worklists. 

The details of eliminating, local redundancies are as 
follows. If the LCT of a node has II computations of the 
form Vi + E where E is a common expression and i runs 
from 1 ton, then the process of merging those computations 
is as follows: 

1. Retain one of the computations, say Vn + E. The re- 
tained computation is chosen to be one with maximum 
rank, among those being merged. 

2. Replace each of the remaining computations (i < n> 
by a trivial assignment of lthe form Vi t Vn. 

3. Put each trivial assignment, on the worklist for removal. 

In short, merging n computations of the form Vi t E 
results in one computation of the form Vn +- E and n - 1 
trivial assignments that will be removed. 

Renaming of operands of ‘6 functions may have other 
second order effects, beyond cr,eating local redundancies: 

l Vi t +(Vj, Vj) is replaced by Vi t V-j. 

l Vi + $(Vi, Vj) is replaced by Vi +- Vj. 

In each case, the new assignment is added to the worklist 
of trivial assignments. 

5 Phase 2: 
Eliminate Redundancies 

As was explained in section 3, we loop over the ranks in 
increasing order. Within this loop, we first loop over the 
nodes in reverse topsort order, moving code and eliminating 
any local redundancies created by this motion. We then 
eliminate the global redundancies of the current rank. 

The basic processing step for each node is to move any 
available computations from any of the successors into the 
current node, followed by making computations available 
in the current node to any of the predessors. Code motion 
is actually broken into two steps: copying a computation C 

into the LCT of the node into which C is being moved and 
then deleting C from the LCT of the node from which C is 
being moved. When we “move” a computation during the 
pass over the nodes in reverse topsort order, we only do the 
copying. The original computation is temporarily left in 
the original LCT, where it is now redundant. Along with 
other redundancies, this original computation will be elim- 
inated by the global redundancy subphase. Several techni- 
cal simplifications in record keeping are made possible by 
postponing deletion when code is moved. 

The movable computation table (MCT) is maintained 
for each edge in the program flow graph that is not a 
backedge. The MCT contains all computations that are 
currently available for movement from the node that is the 
destination of the edge. Each entry in the MCT at an 
edge contains a computation C and a pointer to the corre- 
sponding computation B in the LCT of the destination of 
the edge. Some general points about this table should be 
borne in mind: 

The MCT holds candidates for movement that may or 
not move. While in the MCT, these computations can 
be accessed in the same way as LCT computations. 
They also count as uses of their operands in removal 
of trivial assignments. 

The MCT persists, like the LCT associated with each 
node. It may gain or lose individual computations, but 
it is never reset during the course of phase 2. 

Visiting the nodes in reverse topsort order assures that 
the MCTs of all outedges of a node are filled in with 
movable computations of the proper ranks by the time 
that node is to be processed. 

The actual processing for each node depends on the 
type of the node. There are three cases: 

l Loop headers. 

l Landing pads. 

l All other nodes (normal nodes). 

Recall from section 4.2 that no node can be both a loop 
header and a landing pad. We will consider the case of the 
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.normal nodes first and then consider the algorithms for the 
other types as special cases. 

5.1 Processing of Normal Nodes 
The work performed while visiting a normal node has two 
parts, corresponding to the following two subsections. The 
first part examines the movable computation tables for all 
the outedges of the node currently being visited and deter- 
mines which computations may be moved into the node. 
The second part determines which computations may be 
made available for movement to a predecessor. 

5.1.1 Move Computations from Successors 

If the current node has only one outedge, then every- 
thing in the MCT of the outedge will be moved into the 
current node. If the current node has more than one out- 
edge, then it has exactly two outedges. Let Ml and M2 
be the MCTs. Consider each computation Cl of the cur- 
rent rank in ~1. If the right-hand side of Cl matches the 
right-hand side of a computation C2 in M2 (regardless of 
rank), then both computations will be moved into the cur- 
rent node. Similarly, the computations of the current rank 
in ~2 are checked against the computations in RI (regard- 
less of rank).l The computations in one MCT that do not 
:share right-hand sides with computations in the other MCT 
remain where they are for the present. 

Moving computations into the current node may create 
local redundancies. An incoming computation may have 
.the same right-hand side as one that is already there. If the 
current node has two outedges, then each incoming compu- 
tation from one edge has the same right-hand side as an 
incoming computation from the other edge. However they 
arise, the new local redundancies are put on the worklist for 
removal. In figure 17, for example, the two computations of 
Ai + Bi have been moved into the node. The computation 
for ~2 has been changed to a trivial assignment from Xi by 
l;he local redundancy removal algorithm in section 4.5. 

Xl -A~~*I+BI 

ensure that it will be eliminated during the global redun- 
dancy subphase. Once any required action has been taken, 
the MCT entry is deleted. 

5.1.2 Identify Movable Computations 

Computations in the LCT of the current node are iden- 
tified as movable if they satisfy all of the following condi- 
tions: 

l The computation has the current rank. 

l The computation is not itself a 4 function. 

l No operand of the expression appears as the output of 
some other non-4 computation in the current node. 

Any computation identified as movable is added to 
all of the MCTs of the inedges. This process may re- 
quire that the computation C be modified in order to be 
moved. This modification is performed according the fol- 
lowing technique, where E is the right-hand side of C: 

1. If the current node has just one real inedge, then we 
generate a unique new variable U for each real or virtual 
inedge and put the new computation U +- E into the 
MCT of that inedge. 

2. If the current node is a join node, then all inedges are 
real and are treated essentially as above, but E may 
need to be modified in each new MCT entry. Any 
operand of E that is the output of a 4 function in 
the current node must be replaced by the appropriate 
operand of that 4 function for each inedge. We call 
this process 4 renaming. In figure 18, for example, A3 
is defined by a 4 function in a node and is used in the 
computation A3 + Cl. Therefore A3 is replaced by Ai 
in the expression used in the left-edge MCT entry and 
replaced by A2 in the expression used in the right-edge 
MCT entry. 

Ai + . . . A2 + . . . Ai + . . . A2 t . . . 

A3 - 4CAlr A2) A3 + 4(AI?A2) 
Xl + A3 + Cl Xi +Ag+Ci 

Figure 17: Moving Computations to a Node 

Figure 18: Moving a Computation Up Each Edge 
The MCT entry for each moved computation is in- 

spected to determine what action (if any) is required for the 
original LCT computation B that the MCT entry points to. 
If B has the current rank R, then no action is required. If 
R has a lower rank, then it is promoted to rank R so as to 

lThere is a subtle reason for looping over all computations of 
the current rank in Ml and then over all computations of the 

c:urrent rank in M2. We need to find all pairs of computations 

(Cl in Ml, CB m H2 ) with matching right-hand sides, such that 

one computation Ci is of the current rank. (The other will be of at 
most the current rank.) Considering only pairs with both computa- 
tions of the current rank would miss opportunities. To meet our time 
bound, on the other hand, these pairs must be found in time linear in 
the number of pairs found and in the number of computations of the 
current rank in either table. 

5.2 Processing for Loop Headers 
The processing of a loop header is similar to that of a nor- 
mal node. Computations are moved into a loop header 
exactly as described in section 5.1.1, but a different tech- 
nique is used to identify computations that can move out 
of a loop header. 

In the case of the normal node, computations are 
moved out of a node based only on local conditions. In 
the case of a loop header, we wish to move computations 
out of the loop (and into the landing pad). In order to 
accomplish this safely, we must verify that there exist com- 
putations in the loop that will make the result available 
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whenever control enters the header from around the loop. 
To do this, we use a technique called question propagation 
to determine if there is some computation within the loop 
that will compute the same value as the computation we 
wish to remove. 

5.2.1 Question Propagation 

Question propagation searches as much of the graph 
as necessary, to deterrnine whether a given computation 
Q is redundant. The search is like the movement of com- 
putations in section 5.1, but the rules for propagating a 
question about a computation are somewhat different from 
the rules for moving the comput,ation itself. Virtual edges 
are ignored, and other differences will be explained shortly. 
A question about Q is a renaming of the variables in the 
right-hand side of 9. The renaming uses the variable names 
appropriate to wherever the question is at the moment; it 
is just the 4 renaming of the expression explained in sec- 
tion 5.1.2. 

The given computation 9 is tentatively marked as re- 
dundant before question propagaltion begins. In the course 
of propagation, it may be marked as not redundant. Once 
Q has been marked as not redundant it can never be made 
redundant, so the search may terminate at that point. If Q 
is still marked as redun.dant when propagation terminates, 
then Q is indeed redundant and may be eliminated. 

If any operand of C) is defined by a non-4 computation 
in the LCT of the node n containing Cl, then the search 
is terminated and Q is marked n.ot redundant. Otherwise, 
questions are propagated to predecessors of n. A question 
not answered within a node will be propagated to predeces- 
sors (with 4 renaming as appropriate), unless it is stopped 
by one of the rules stated below. 

The stopping rules for question propagation are stated 
below for two cases. During the current section’s process- 
ing of a loop header, the local search is confined to the 
relevant loop body, and all questions originate at the loop 
header. During the subsequent elimination of redundan- 
cies, the global search will examine as much of the entire 
control flow graph as necessary,, and all computations of 
the current rank are sources of questions. The rules for ter- 
minating the search are slightly different in these two cases. 
Another difference is the fact that the global search main- 
tains a list (initially e:mpty) of computations that might 
make Q redundant. 

1. In local search, if at question is about to be propagated 
to predecessors of the loop header, then the search is 
terminated and Q is marked not redundant. 

2. In global search, if a question is about to be propagated 
to predecessors of the program entry node, then the 
search is terminated and Cl is marked not redundant. 

3. In both searches, if questions are propagated to a 
branch node along more than one of its outedges and 
the questions are not the same on both outedges, then 
the search is terminated and Cl is marked not redun- 
dant. 

4. In both searches, if questions are propagated to a 
branch node along more th,an one of its outedges and 

the questions are the same on both outedges, then only 
the first question to arrive is propagated further. 

5. In both searches, if a question is propagated to a node 
that contains a computation C with a right-hand side 
matching the question, then the question is not propa- 
gated further in this direction. (The marking of Q does 
not change.) In global search in this case, if C is not 
Q, then the list of pointers to computations that might 
make Q redundant is augmented by a pointer to C. 

6. In both searches, if a question is propagated to a node 
and a non-4 computation in the LCT of that node 
defines one of the operands of the question, then the 
search is terminated and 9 is marked not redundant. 

This case is only tested if no match is found in the pre- 
vious case. This test and the previous test are made 
regardless of rank. These tests are simplified by hav- 
ing the program in SSA form. If an expression and an 
assignment that creates an operand for that expression 
occur in the same node, the expression that uses the 
operand will necessarily have to be after the computa- 
tion that creates the operand. 

5.2.2 Move Computations out of a Loop 

Any computation in the loop header that is identified 
as redundant by the local search in the previous step can be 
moved out of the loop. We do this in two steps. Intuitively, 
we copy the computation to the landing pad (which makes 
the old copy in the header redundant) and then eliminate 
the old copy when various other redundancies are elimi- 
nated. Leaving the old copy in the header temporarily is 
a technical convenience. Let vh c E be the computation C 
to be moved out, and let Vp be a newly generated name. 
Let EP be the result of 4 renaming the operands of E (as 
in section 5.1.2) for the inedge from the landing pad. Add 
Vp + Ep to the MCT for the edge from the landing pad 
to the loop header. This MCT entry points back to C. 
As usual, “moving” is just copying for the moment. The 
computation C persists in the loop header, but it is now 
redundant and will be eliminated by the global redundancy 
subphase. 

5.3 Processing of Landing Pads 

Processing of a landing pad is similar to processing of a 
normal node. We begin by moving computations into the 
landing pad from its successor (the loop header) exactly 
as in section 5.1.1. Then we try to move computations 
from the loop exits directly to the landing pad, without 
ever putting them inside the loop. Computations can be 
moved into the landing pad from the exits of the loop if the 
following conditions are satisfied: 

1. The computation to be moved is in the MCTs of all the 
virtual outedges of the landing pad of the loop. If there 
is more than one virtual outedge, then we consider 
each in turn. For each virtual outedge, we loop over 
MCT entries of the current rank and try to match them 
with MCT entries (regardless of rank) for the other 
outedges. This is like the processing of normal nodes 
with more than one real outedge in section 5.1.1. 



:!. Each of the operands of the expressions must be avail- 
able in the landing pad. Because the program is in SSA 
form, this condition is equivalent to having no assign- 
ments to the operands inside of the loop. An easy way 
to test this condition is to check the topsort number of 
the node that contains the definition of the operand. If 
it is earlier than or equal to the number of the landing 
pad node, the condition is satisfied. 

Once the computations that can move into the landing 
pad have been identified, the process of moving them is 
exactly the same as in section 5.1.1. 

The process of identifying computations that can be 
moved out from the landing pad is exactly the same as in 
section 5.1.2. 

5.4 Eliminate Global Redundancies 

This subphase is performed after the pass over nodes in 
reverse topsort order for the current rank. We loop over 
the computations of the current rank in any convenient 
order. (For example, we could visit the nodes in topsort 
order and loop over the computations of the current rank 
in each node’s LCT.) 

For each computation 9, we first test whether q has 
ever been promoted in rank. If so, then it may now have 
higher rank than some computations that use the result of 
9. The overall structure of our algorithm is such that this 
can only matter if the using computations are in the same 
node as 9, so we loop over the local uses of the result of 
9. Each local use is promoted, if necessary, so has to have 
rank R+I or greater. By the time Phase 2 is complete, the 
proper relation between ranks of computations and ranks 
of i;heir operands will have been restored within each node. 

The next step in processing the computation q is to 
check for redundancy by applying the subalgorithm in sec- 
tio:n 5.2.1 with the global rules. If Q is found to be redun- 
dant, then it is eliminated by the following technique: 

1. 

2. 

3. 

Create a new variable V to remember the value that Q 
will (redundantly) compute. 

For each of the computations C that was put on the 
list of computations that might make 9 redundant, an 
assignment of the form V c (output of C) is inserted. 

The expression part of Q is replaced with a use of V. 

If more than one computation C was in step 2 above, 
then the program will no longer be in SSA form. It can be 
restored to SSA form by applying the rules of section 4.3 
to the new variable V. The simple rules of section 4.3.1 
seelm best here, although there are some contrived situa- 
tions where new equivalences could be recognized. Once 
SSA form has been restored, the trivial assignments can be 
removed by putting them on the worklist for the algorithm 
of section 4.5. 

6 Phase 3: Normalization 

To put the program into a more normal form, we order the 
code in each nonempty node, eliminate the purely formal 4 
functions, and delete empty nodes. 

In SSA form we keep all computations in a node as 
a set, without order. Ordering is implied by ranks: some- 
thing of rank 2 depends on a value of rank 1, and hence the 
rank 1 expression must be computed first. The sequenc- 
ing information implicit in a variable’s rank must be made 
explicit by putting all assignments of low rank before high 
rank assignments in each node. This clears the way for 
reversion to multiple assignments to the same variable. 

Every computation of the form A + qS(B, C) is replaced 
by an assignment A c B on one of the entering branches, 
and by A c C on the other. Each assignment is placed at 
the end of the code. 

Any node with no code will have at most one successor. 
If it does have a successor, then it can be deleted after its 
inedges have been changed to be inedges of the successor. 

The program is now much as it was originally, but there 
are more variables and fewer redundancies. Many of the 
variables can be merged together by graph coloring regis- 
ter allocation techniques [5] [6]. The live range of a variable 
consists of those nodes that lie on paths from an assignment 
to the variable to a use of the assigned value. If two vari- 
ables have disjoint live ranges, then those variables can be 
merged into one variable. When we move a computation 
upwards we may shorten the live ranges of its operands, 
but we may lengthen the live range of its result. We have 
no statistical information on whether these changes in live 
ranges are generally helpful or harmful. A topic for future 
research is to find an algorithm which moves computations 
in order to aid register allocation by decreasing the live 
ranges. 

7 Related Work 

7.1 Redundancy Elimination 

A computation C is redundant along a control flow path if 
it is preceded by an equivalent computation B, and so could 
be replaced by a use of the value computed at B. A compu- 
tation is fully redundant if it is redundant along every path 
that reaches it (starting from the program entry point). A 
computation is partially redundant if it is redundant along 
some path that reaches it (starting from the program entry 
point). Elimination of many of the full redundancies has 
long been a major goal of optimizing compilers [2] [X2]. Par- 
tial redundancies have received less attention. The major 
relevant work is that of Morel and Renvoise [13] (abbrevi- 
ated MR hereafter) and the extensions to MR implemented 
in the PL.8 compiler [4]. 

Our algorithm is like MR in one respect: we eliminate 
partial redundancies by moving computations to places 
where some of the moved copies become fully redundant. 
Our integration of analysis and optimization is unlike the 
more traditional organization of MR, which puts analysis 
first and optimization second. Morel and Renvoise use an 
iterative data flow analysis, with a bit vector position for 
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each lexically distinct expression. The system of simulta- 
neous equations computes several bit vectors at each flow 
graph node. The vectors at each node depend on vectors 
at both predecessors and successors. The worst-case time 
required is O((E + N) * N * C), where E is the number of 
edges in the graph, N is the number of nodes in the graph, 
and C is the number of computations. 

The PL.8 compiler chooses temporary names system- 
atically. If an expression like (A*B)+c appears twice in a 
program, then the same temporary variable is used for A*B 
in both places. This systematic naming allows the compiler 
to detect second order effects by applying MR repeatedly, 
until nothing changes. This may require as many itera- 
tions as there are ranks, plus one more iteration to detect 
stabilization. 

The overall worst-case time of the PL.8 compiler’s al- 
gorithm is O((E + IV) * N * (C * R), where E, N, C are 
as above (for a single pass of MR) and R is the number 
of ranks. Both Morel and Renvoise and the PL.8 compiler 
group report that an application of MR typically requires 
only 3 to 5 iterations, rather than the worst-case number 
N + 1 of iterations. 

The example in figure 1 illistrates the differences 
among MR, the PL.8 compiler., and the algorithm presented 
here. At the join node, what is now the value of A*B was 
computed under the name C+B along one path and so is 
unavailable to MR, the PL.8 compiler, or any other lexical 
method. If we remove the trivial assignment and replace 
all uses of C by uses of A in thle original program, we get a 
program that is easier to optimize. A single pass of MR will 
eliminate the redundlant computation of A * B for X. It will 
fail to do anything with the partially redundant computa- 
tion of X + 1. This partial redundancy is a second order 
effect, and it will be eliminated by the PL.8 compiler’s sec- 
ond pass of MR. 

For programs with reducible control flow graphs, our 
algorithm gets everything that the PL.8 compiler gets. We 
identify many redundancies that the PL.8 compiler misses 
because of our use of global value numbering. The worst- 
case time bound for our algorithm is O(C * N * E). If all 
the parameters in both bounds are replaced by a nominal 
parameter n, then .the O(n3) of our algorithm improves 
upon the O(n4) of tlne PL.8 compiler’s algorithm. 

7.2 Value Numbering 
Value numbering as original.ly conceived by Cocke and 
Schwartz [7] was the symbolic execution of a basic block, 
giving all variables entering that block distinct symbolic 
values. Common subexpression elimination on basic blocks 
is straightforward. If a symbolic value is computed twice, 
eliminate it the second time. Thus, in the code 

C + A; D+A*B; EtC*B; 

both D and E have the symbolic value 

( A @ entry ) ;I: ( B @ entry ) 

and the second computation can be eliminated. Hashing 
of symbolic values allows the value numbering to proceed 

without having to manipulate large values. Several com- 
pilers (including the PL.8 compiler) have generalized this 
original val.ue numbering from basic blocks to extended ba- 
sic blocks. 

Reif and Lewis [14] introduce a global approach to 
value numbering. Their approach implicitly includes one 
of many possible ways to recognize that two variables will 
always have the same value. There are other constructions 
[3] [15] that are similar in spirit to the work of Reif and 
Lewis, with various tradeoffs among the amount of infor- 
mation, the worst-case complexity, and the difficulty of im- 
plementation. Any of these constructions could be used to 
start our algorithm by putting the program into reduced 
SSA form. 

Starting the process of redundancy elimination is only 
part of the task, as the code in figure 19 illustrates. The 
computation for T is redundant with the computation for R 
along one path and with the computation for S along the 
other path. The difference between E and A prevents any 
purely lexical approach from removing these redundancies. 
Value numbering is unaffected by this difference, but it still 
can answer only questions posed by the program it sees. 
The three variables R, S, T need to have three distinct 
value numbers. With the traditional organization that puts 
analysis first and optimization second, no optimization will 
be performed. Our algorithm will move the computation 
for T backwards along the inedges of the join node. One 
copy will be redundant with R while the other copy will 
be redundant with S. Our algorithm will eliminate both 
redundancies. It is only after the computation for T has 
been split into two copies that the relevant questions about 
equality of value numbers can be posed. 

if P 
then do 

read(A) 
R+B*A 

end 
else S + B * A 

E+A 
TtB*E 

Figure 19: Redundancy Eliminated by Our Algorithm’s 
Integration of Analysis and Optimization 

7.3 Other Issues 
The p-graph construction [17] is a precursor of static single 
assignment form that has sometimes been used in optimiza- 
tion [ll]. The explicit 4 functions used in SSA form make 
it easier to work with. 

Allen 123 assigns ranks locally (within basic blocks) 
and uses them to organize the elimination of redundan- 
cies within blocks and the movement of invariant code out 
of loops. Our global ranks are used similarly, to organize 
more extensive elimination and movement. 

The name “landing pads” is recent [8), but similar 
ideas have been around for a long time [2] [12]. Morel and 
Renvoise suggest using landing pads to aid in the analysis,- 
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splitting a few edges if necessary. We split more edges and 
thereby perform some additional redundancy elimination, 
as figure 14 in section 4.2 illustrates. Morel and Renvoise 
recognize their loss here [13, p. 1021, but they choose to 
allow no splitting beyond adding landing pads. 

8 Optimality Criterion 
In this section we will discuss what limits the best that 
can be done to eliminate redundant computations. We will 
describe what limits we have chosen to place on the algo- 
rithm. We will show that our algorithm is optimal (within 
these limits) on DAGs. Then we will examine some cases 
missed on programs with loops. 

8.X Programs that are DAGs 
For reasons explained below, it is not possible to remove all 
redundancies from DAGs. We will enumerate three kinds of 
redundancy that it seems unreasonable to try to eliminate. 
An optimal algorithm would then be one that eliminates 
all oZher redundancies. 

1. Even on DAGs it is undecidable whether two expres- 
sions will compute the same value. We will say that 
two values are transparently equivalent if they are con- 
structed by the same sequence of operations on the 
same original operands. Thus in 

A+B 
C+E+(A*3) 
D+E+(B*3) 

we will recognize that C = D, while in 

A+-B+3 
C+A+2 
EtB+2 
D+E+3 

we will not recognize that C = D. For purposes of this 
subsection, transparent equivalence is the only kind we 
consider in defining reduced SSA form. 
We will not eliminate redundancies caused by com- 
putations that are equivalent but not transparently 
equivalent. 

2. Eliminating all computations which transparently pro- 
duce the same value may require either combinatorial 
explosions or unsafe transformations. 
Consider a DAG having a path along which a value 
is computed at a node u. Suppose the path proceeds 
through a node v, and later the same value is computed 
at a node u. Moreover, suppose that in the DAG there 
is a path which goes through v but does not compute 
the value. An example where this occurs is figure 20. 
Nodes u and w are the two computations of A*B. Node 
v is any node in between the two if statements. 

Redundancy could be eliminated by putting a copy of 
the code in v and then a copy of the Q conditional 
under each branch of the P conditional. This would 
allow statement w to be removed from the copy under 
the true branch of P. Such a transformation leads to 
an exponential blowup in the size of the program. 

if P 
then (... X + A * B . ..) 
else (...I 

( > . . . 
if Q 

then (... Y +-- A * B . ..> 
else (...I 

(u) 

(VI 

(WI 

Figure 20: Redundancy with Crossed Paths 

A second way to eliminate the redundancy is to move a 
copy of the computation of A*B to before the test on P. 
This would then allow us to change statements (u) and 
(v> into trivial assignments. Such a transformation is 
unsafe because it introduces a calculation of A*B along 
the path executed if P and Q are both false. This path 
had no such calculation before. 
More formally, we will not eliminate redundancies of 
the following form: (A) there is a path from a node u 
at which a computation is performed, through a node 
v, to a node w at which an equivalent computation 
is performed; (B) there is another path from the root 
through v to w along which the computation at w is the 
first computation of the value; and (C) there is a path 
from v to an exit of the DAG that does not contain a 
computation equivalent, to the redundant one at w. 

3. There are programs in which two inequivalent com- 
putations are performed and (depending on the later 
control flow) either one or the other will make a later 
computation redundant. The redundant computation 
cannot be eliminated unless additional trivial assign- 
ments are inserted into the program to ensure that the 
correct value is stored into the location that the value 
will be picked up from. There are programs that re- 
quire an arbitrary number of such assignments, and 
the cost of the loads and stores can exceed the cost of 
the computation. 
For example, consider figure 21, If P is true, then the 
computation of A*B at the end of the program frag- 
ment will be redundant with the computation of C*B. 
If P is false, then it will be redundant with the earlier 
computation of A*B. 

X+A*B 
. . . 
Y+C*B 
if P 

then A t C 
Z+A*B 

Figure 2 1: Redundancy with Inequivalent Computations 

Formally, if there are two paths through nodes u, v, 
w, and on one path a computation at u is redundant 
with a computation C at w and on the other path a 
computation at v is redundant with C, and on neither 
path are the values computed at u and v transparently 
equivalent, then we will not eliminate the redundancy. 
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We have enumerated three kinds of redundancy that it 
seems unreasonable to try to eliminate, and our algorithm 
does not try to elimin.ate them.. It does try to eliminate all 
the others. On a DAG, it succeeds. 

Theorem: After our algorithm has terminated on a DAG, 
any remaining redund.ancy is off one of the three kinds that 
the algorithm does not try to eliminate. 

Sketch of proofi 
We will consider the program at the end of Phase 2, 

when it is still in reduced SSA form and has no trivial 
assignments. By induction on ranks and path lengths, it 
can be shown that expressions are transparently equivalent 
along a path iff they are lexically identical aside from 4 
renaming at join nodes along the path. More precisely, 
suppose control flows, from a node u to a node v along a 
path (which might be the null path from u to itself) and 
that expressions E and F appear in nodes u and v. We say 
that these expressions are lexically identical aside from 4 
renaming if the result of moving F backwards to u along 
the path is lexically identical to E. At each inedge of a join 
node along the path, moving a:n expression backwards may 
involve 4 renaming, as in section 5.1.2. 

Define a failure to be any remaining redundancy that 
is not covered by the enumeration and so should have been 
removed. To show that there are no failures, we will assume 
there are failures and derive a contradiction. Thanks to 
the local redundancy elimination in section 4.5, any failure 
involves a computation B at a node u and a computation C 
at a node u, such that the nocles are different and there is 
a path from u to us. (The specific path is considered part of 
the failure.) Both B and C compute the same expression E, 
apart from the renaming at join nodes along the path, and 
E cannot be a 4 function. 

We can associate two numbers with any failure: the 
rank of E and the length of lthe path from u to w along 
which the failure occurs. If there are any failures, then 
we can choose one with maximum path length from among 
those with minimum rank. We will derive a contradiction 
by showing that this chosen failure must be of kind 2 or 3. 

Because the operands of E are available (apart from 
applications of 4 functions) for B in u, none of them are 
computed in w. Section 5.1.2 placed an entry for C in the 
MCT of the last edge e on the failure’s path from u to w. 
Let v be the source of this ed,ge. The MCT entry did not 
move in section 5.1.1, so v has another outedge f such that 
no computation equivalent to C was placed in the MCT of 
f. By maximality of the path length in the chosen failure, 
any path from v that starts along f is free of computations 
equivalent to C. 

The nodes u, v. w have been shown to satisfy condi- 
tions (A) and (C) in the definition of the second kind of 
redundancy we do not claim to eliminate. For the chosen 
failure to be a failure, condition (B) must be false. Along 
every path from the root through v to w, a computation 
equivalent to C comes before C. Thanks to edge splitting, 
the branch node v is the only predecessor of w. Therefore, C 
is fully redundant. Global question propagation, however, 
did not eliminate C *as redundlant in section 5.4. This im- 
plies that propagation was stopped by rule 3 in the details 
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8.2 Programs with Loops 
In this subsection, we consider two cases that are missed by 
the global algorithm when applied to programs with loops. 
There are other cases, but these two seem most important 
among the known cases. 

1. 

2. 

Code that is not moved to a loop header may still 
be code that is on every path from the header to an 
exit of the loop. Local question propagation does not 
consider lifting such code to the landing pad. Some 
simple cases of this failing are easily recognized, and 
our algorithm could easily be extended to handle them. 
The general csse is difficult, however. A loop may have 
many exits reached by many paths. There may be 
several equivalent computations that collectively act 
like a single computation that appears on all relevant 
paths. Ideally, the algorithm would be extended to 
recognize such collections as they arise. 

The algorithm does not consider the possibility of mov- 
ing a computation along a backedge. The program 
fragment in figure 22 could be improved by treating 
the loop header like an ordinary join node. If we move 
a copy of the first calculation of A+B along the backedge 
around the loop while moving another copy to the land- 
ing pad, then we can move the copy inside the loop just 
as if it had originally been placed after the conditional 
statement. Copies of the copy would appear in the 
then and the else branches, and the then branch copy 
would be merged with the assignment to Y. This would 
lower the number of calculations of A+B to exactly one 
per iteration (apart from the initial calculation in the 
landing pad). 

of question propagation (section 5.2.1). The redundancy is 
therefore of kind 3, and the contradiction is obtained. 

while (...I do 
XtA+B 
if P 

then do 
A t . . . 
Y+A+B 

end 
else 

end 

Figure 22: Missed Optimization 

Though attractive in this example, movement along 
backedges poses some difficult organizational ques- 
tions. By the time a computation reaches the loop 
header, movement of computations within the loop 
body for the current rank has already been completed. 
Moving along a backedge will not help unless the rank 
used for the copy that stays in the loop is forced to be 
larger than the current rank. This leads to the possi- 
bility of an infinite regress: a computation reaches the 
loop header with rank R, is moved along a backedge 
with rank R + 6, reaches the loop header again but now 
with rank R + 6, is moved along the backedge with rank 



R + S + 6, and so on. When loops are nested, it is dif- 
ficult to see how to keep enough records to avoid infi- 
nite regress without also missing opportunities. One 
might be tempted to try iteration of our entire al- 
gorithm, with the understanding that a computation 
moved along a backedge will not move further until the 
next iteration. This too can lead to an infinite regress, 
as figure 23 illustrates. 

while (...> do 
C+A+B 
A+C+B 

end 

Figure 23: Danger of Infinite Regress 

9 Conclusions 
We have shown how to obtain unusually extensive opti- 
mization of reducible programs at moderate cost, thanks 
largely to synergism among three innovations: global rank- 
ing of expressions, static single assignment (SSA) interme- 
diate form, and 4 renaming of expressions. 

Global ranks let us exploit second order effects rapidly, 
without reanalysis. Ranks also help characterize the num- 
ber of iterations needed when other algorithms are called 
repeatedly to exploit second order effects. 

The SSA form of a program enables us to remove triv- 
ial assignments easily. It also allows us to recognize and 
exploit equivalences among expressions that would not be 
lexically identical in the usual form. If a program is in 
SSA form, then lexically identical expressions always have 
the same value, no matter where they occur. If a program 
is in reduced SSA form, furthermore, expressions with the 
sa:me value number will be lexically identical aside from 4 
reuaming along paths. 

With the help of a linearly bounded amount of edge 
splitting, 4 renaming enables us to preserve SSA form while 
moving a computation from a join node to its predecessors. 
Preserving SSA form throughout the intermediate steps is 
important because it allows the code associated with each 
node to be represented by a table that can be accessed and 
updated efficiently. 

We have also specified a reasonable optimality crite- 
rion. In the special case of a program without loops, the 
code generated by our algorithm is provably optimal in the 
technical sense explained in section 8. 
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