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1.6 Overview and Motivation

One trend among programumers s the increased use of
absiractions.  Through encapsulation technigues, abstractions
cxtend the repertory of data structures and their concomitant
operations that are processed directly by a compiler. For
example. a compiler might not offer sets or set operations in its
base language, but abstractions allow a programmer to define sets
in terms of constructs already recognized by the compiler. In
particular, abstractions can allow new constructs to be defined in
terms of other abstractions, Although significant power is gained
through the use of layered abstractions, object code guality
suffers as increasingly less of a program’s data structures and
operations are exposed to the optimization phase of a compiler.
Multiple references to abstractions are also inefficient, since the
interaction between abstractions is often complex yet hidden
from a compiler. Abstractions are most flexibie when they are
cast in general terms; a specific invocation is then tailored by the
abstraction to obiain the appropriate code. A sequence of
references 1o such abstractions can be inefficient due to
functional redundancy that cannot be detected at compile-time.
By integrating the references, the offending segments of code can
be moved 1o a more advantageous position. Although procedure
integration materializes abstracted constructs, the abstractions
can still be ineligible for optimization using current techniques;
in particular, abstractions often involve loops and conditional
branches that can obscure code that would otherwise be eligible
for code motion.

To make abstractions viable as an efficient programming tool,
optimizations such as code motion must overcome the obstacles
presented by abstractions. The problem of code motion has been
addressed by Lowry and Medlock [Lowry69], Wulf [Wulf69],
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Schwartz [Schwartz73], Aho and Ullman [Aho78], Morel and
Renvoise [Morel79] Reif and Lewis [Reif77] [Reif82], and
Ferrante and Ottenstein [Ferrante83]. These approaches fall
short of handling abstractions because they fail to consider the
following issues in a unified manner:

1. Some code cannot be moved unless accompanied by its
surrounding control structures. For example, two definitions
of a variable may reach a use, with swrounding control
structures determining which definition actually reaches the
use. Unless the control siructure accompanies the motion
of the definitions, neither the definitions nor the use can be
moved.

2. The motion of stores should be considered as well as the
motion of expressions.

3. It can be profitable to move a computation from an area
where it might never be execuied to an area where it is
always executed.

4. Second order effects are significant to thorough code motion.
The motion of one piece of code may be dependent on the
motion of some other piece of code.

This paper presents two code motion algorithms that account for
the above issues and are particularly appropriate for abstractions.
One algorithm is conservative with respect to the third issue;
program performance can only be improved by this algorithm.
Another algorithm is more aggressive,; the resulting code should
execute faster given a widely accepted model of branch behavior.
A common subexpression algorithm is presented that accommo-
dates control structures and enhances the effectiveness of the
code motion algorithms.

2.0  (eneral Approach

Since abstractions are typically implemented by procedure calls,
a form of procedure integration is useful for incorporating the
code due to abstractions. The technique proposed by Wegman
and Zadeck [Wegman33} couples procedure integration with a
powerful constant propagation algorithm that avoids some of the
intermediate space problems normally associated with this
technique.

In order to accommodate complex control structures, a program
is regarded as a collection of imfervals in the style of Tarjan
[Tarjan74], Graham and Wegman [Graham76], and Schwartz
and Sharir [Schwartz79]. Note that these differ from the maximal
intervals originally suggested by Allen and Cocke [Allen70] in
that maximal intervals contain some nodes that are not in the
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strongly connecied component dominated by the interval header.
Wherever we refer to interval, we mean the former not the later.

Subject to criteria presented in ensuing sections, the statements
and control structures that are moved from within the interval are
moved before that interval.  Each interval is accordingly
augmented with a landing pad, just before entry, to provide a
repository for moved code. The landing pads ordinarily contain
prologuc code and so are guarded by the same conditions that
guard the interval; thus, code moved to a landing pad is never
executed unless it would have been executed inside the interval.
After moving as much code as possible out of an interval, that
interval {s summarized in terms of its data flow properties. The
interval can then be considered as an atomic entity, eligible for
motion out of its surrounding intervals.

3.6 Preliminaries

3.1 Strictness and Profitability

The goal of any optimization technique is 10 decrease the
execution time of a program while maintaining the observed
behavior of that program; accordingly, a particular transforma-
tion can be characterized with respect to it effectiveness by its
strictness and profitability.

Strictness indicates whether a transformation is conservative with
respect to decreasing the execution time of a program. Under a
strict transformation, code can be relocated only if the execution
of that code in its new location occurs no more frequently than
in its original location. By relaxing strictness, code can be
relocated to positions where it probably would be executed less
frequently. This paper will pursue both strict and nonstrict
transformations.

Profitability describes the degree that nonstrict transformations
affect the performance of a given program. The profitability
problem is generally unsolvable at compile-time, since program
branching can depend on run-time values; however, compile-time
predictions, based on the structure of a program as viewed in
terms of its control flow graph, allow code to be relocated to areas
of probable profitability. This paper will make two assumptions
about the frequency of execution of statements within a program:

1. The frequency of executing a statement grows, possibly
exponentially, as the number of intervals that surround that
statement increases.

2. Ewvery statement within an interval has a high probability of
being executed whenever the interval is executed.

3.2 Correctness and Safety

An optimization technique must be applied in a context in which
its effects on the observed behavior of a program are well
understood.  Accordingly, a particular transformation can be
characterized with respect to program output by its correciness
and safety.

The transformations presented in this paper are correct in the
sense that the data dependences of a program are respected. The
values used by expressions are always produced by the same
computations as in the original program. The transformations
may move the expressions to locations where the frequency of
execution is reduced (strict transformations) or where the
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frequency of execution is expected to be reduced (nonstrict
transformations).

Although nosstrict transformations may cause execution of a
statement that would not have been executed in the original
program, this need not violate correctness. The nonstrict transf-
ormations in this paper can only cause such spurious executions
when it can be guaranteed that the calculated values will not be
used incorrectly. Any statement left in the loop or reachable from
the loop will always get the correct value.

Safety describes the degree to which a transformation preserves
the observed behavior of a program. Safety is thus related to the
detail at which the output is scrutinized. For example, if a
program is observed as an instruction trace, then any motion
whatsoever causes a change in the output. If a program is taken
as a sequence of results and exceptional conditions, then code can
be moved so long as the sequence remains unaltered. The issue
of safety does not influence the actual mechanism of a code
motion algorithm; rather, a given definition of safety dictates
which operations are eligible for motion. The compiler writer can
therefore allow any statement 10 be moved by the algorithms
given here as long as that statement does not directly produce
output. The decisions made by the compiler writer should reflect
whatever view of safety is desired.

Many optimizing compilers allow interrupt producing statements
to be moved under strict code motion. When this occurs, the
frequency and location of interrupts may change from the original
program, but a program produces interrupts after strict code
motion if and only if it produced interrupts before strict code
motion. Note that it is possible and efficient on some machine
architectures to separate the parts of an operation that produce
the calculation from the part of an operation that may produce
an interrupt. When this is the case, the first part of the operation
may be moved.

3.3  Landing Pads

Code can be moved out of intervals in either of two directions:
backward, so that ifs execution precedes the interval, or forwvard,
so that its execution follows the interval. In either case, code
moved out of an interval should not be executed unless the
interval would have been entered in the original program. This
level of profitability is easily maintained by introducing landing
pads into the interval control structure as shown in Figure 1.

As illustrated in Figure 1. an interval is equipped with one entry
pad and possibly several exit pads. In order to restrict the entry
pad from executing unless the interval is entered, the entry pad is
guarded by the same conditions that guard its associated interval.
In the example of Figure 1, the test 7 is duplicated to accommo-
date the landing pad. Although such duplication causes in a slight
increase in program size, the execution time of the program is not
increased, since the test is executed only once per iteration of the
interval.2 A different exit padis associated with each interval exil:
different code can then be placed in each exit pad, and such code
is executed if its associated exit is taken. By the definition of an
interval used in this paper, all landing pads are outside the interval
with which they are associated. For each exit from an interval,
control is transferred to the landing pad associated with that exit.
After executing the code in the landing pad, control is then
transferred to the original target of the branch.

ot of a5 turning a WHILE construct into s REPEAT-UNTIL construct embedded inside inside an IF-THEN stractore.



{_anding Pads:
appear as squares.

Figure 1.

Landing pads are inserted into a loop as shown here. The entry pad is shown as a diamond and exit pads

3.4  Ordering the Nodes of an Interval

The wlzorithms presented in this paper consider the nodes of an
interval in their topological order with respect to the control flow
graph DAG of the interval. This DAG is comprised of all control
flow arcs except those targeted for the header of the interval (the
back-vdges). A topological order is only a partial order over the
nodes, yet a deterministic algorithm considers the nodes with
respect 1o some total order.  Although there is considerable
freedom in choosing that total order, the algorithms presented in
this paper use the following dominated topological order, for
reasens that accompany the presentation of the algorithms.

A dominated topological order is any topological ordering of the
control flow graph with the following constraint: Of all the nodes
that follow a particular node N, those nodes that ¥ dominates
precede all other nodes. This ordering of nodes is more restrictive
than the interval corders defined by Tarian or Graham and
Wegman.

The actual construction of the dominated topological order is
simplified through the following observation: Every edge of the
control flow DAG is either in the dominator tree or is targeted
on the sibling of an ancestor {in the dominator tree) of the source
of the edge. The left column of Figure 10 shows each node of a
DAG labelled with the order as visited by a dominated topological
traversal of the DAG.

4.8  Code Motion Algorithms
The ensuing sections consider five transformations that can
improve program performance. The first algorithm, RENAME,
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accepts a standard intermediate program representation
comprised of operations on source variable names and produces
an eguivalent program expressed in terms of compiler-managed
temporary names.  Where possible, references {(uses and
definitions) to the source names are replaced by references to
these temporaries. The purpose of this transformation is to
remove spurious dependences that arise from a single variable
name that holds multiple expressions. As a result, many more
temporary names can be generated than source names that are
replaced. Although the RENAME algorithm performs a limited
amount of code motion, its true purpose is 1o afford the other
algorithms more latitude by eliminating unnecessary depend-
£TCES.

There are two code motion algorithms: STRICT and
NONSTRICT. Although the NONSTRICT algorithm is more
aggressive with respect to the conditions that permit code motion,
both algorithms have the same general structure. The intervals
of a program are examined, from their innermost to outermost
nesting. Upon visiting an interval, code is moved to the entry or
exit landing pads associated with that interval. Upon leaving an
interval, the interval is summarized in terms of its dataflow
information. Once summarized, the interval behaves as any other
statement; the term statement will therefore refer to simple
statements as well as summarized intervals. The landing pads
associated with a summarized interval are contained in the
surrounding interval.

Both STRICT and NONSTRICT account
structure inside an interval.

for the control
By visiting the statements of an



interval in the proper order, control structures can be copied to
landing pads, thus allowing the subsequent motion of statements
guarded by the control structures. Although a copy of the control
structure must remain inside the interval unless all guarded
statements are moved, the gnards inside the interval can be
replaced by simple bit tests that are computed in the landing pad.
If all stateraents are moved, then the control structure can be
deleted from the interval.  With the exception of control
structures, code appears in either a landing pad or in the interval.

The STRICT algorithun performs strict code motion. Unlike
traditional code motion algorithms that only analyze control flow
information to determine profitability, this algorithm utilizes such
information 1o create a repository for statements moved 1o the
fanding pad. Upon visiting an interval, branches that can be
decided in the landing pad are copied there. Statements are
moved to the landing pad, so as to guard them by the same
conditions that determine their execution in the interval. Thus, a
statement moved to the landing pad is executed only if it would
have been executed in the interval.

To maintain profitability, the STRICT algorithm cannot move
code that is guarded by branches that cannot be decided in the
tanding pad. However, if some code is common across all paths
from an immovable branch, then that code can be moved above
the branch by an advanced form of common subexpression
elimination thal accommodates control siructures. The
COMMON algorithm uses a restricted form of pattern matching
over the control flow graph to identify areas that are common
across, yet independent of, all paths from a branch. Like the
STRICT algorithm, control structures are copied above the
branch. Instances of statements that are common across all paths
are replaced by a single copy above the branch, positioned
appropriately within the copied control structure. By removing
such statements from immovable control structures, the
statements become eligible for code motion by the STRICT
algorithm.  Although the COMMON algorithm should be
performed before the STRICT algorithm, the subjects are
covered in the reverse order because the deficiencies of the
STRICT algorithm motivate the COMMON algorithm,

In the MOMSTRICT algorithm, the strictness constraint is
relaxed; statements guarded by immovable branches are moved
1o the landing pad, even though such motion causes a spurious
execution of the moved statements. Like the STRICT algorithm,
all loop-invariant statements are moved to positions in the landing
pad where they are guarded by the samc movable tests that
guarded their execution in the interval. Unlike the STRICT
algorithm, such code may be guarded by immovable branches in
the original program. Thus, the code moved by the NONSTRICT
algorithm is a superset of the code moved by the STRICT
algorithm.

Note that the COMMON algorithm also improves the perform-
ance of the NONSTRICT algorithm by making more code
available for more profitable movement. For code that is
common across some {but not all) paths from a branch, the
NOMSTRICT algorithm has the property of moving all copies of
such code above the branch. The COMBINE algotithm
maintains a dictionary of the expressions that are moved to the
landing pad. Any expression for which an entry exists in the
dictionary is removed from the interval but not duplicated in the
landing pad.

both USEs and DEFs the variable.
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4.1 Renaming of Variables

The RENAME algorithm consists of a collection of transf-
ormations that are applied in succession prior to code motion, in
order to increase the effectiveness of the code motion.
Essentially these transformations will have the effect of
expressing the summary of the dataflow information by utilizing
a large number of program temporary names.? The STRICT,
COMMON, NONSTRICT and COMBINE algorithms then use
this information rather than the source names, because source
names do not have the inherent dataflow information. The major
advantage of this approach is that the subsequent algorithms
perform transformations that preserve the consistency of this
representation. Therefore, there is no need to recompute the
datafiow information to get second order effects.

The final result of the transformations is related to the Global
Value Graph described by Reif and Tarjan [Reif81], in that we
make explicit the birthpoints for all variables, along with the uses
that they reach. The concept of birthpoint is very closely related
to the dataflow concept of a definition. Whereas a single use of
a variable may be reached by several definitions of that variable,
a use is reached by exactly one birthpoint. The birthpoint is
located in the control flow graph so as to intercept and represent
collectively all those reaching definitions.

The proper placement of birthpoints for a variable depends only
on the control flow graph and the patlern of definitions for that
variable; definitions for other variables are irrelevant. Although
the transformations presented in this section compute birthpoints
for all variables simulianeously, the concept is most easily
understood in terms of an analysis that considers one variable at
a time.

Computing birthpoints for a given variable x consists of
partitioning the control flow graph inio a number of disjoint
collections of nodes, called components, of the graph. Each
component must meet all of the following constraints:

1. Every node in a component must be reached by exactly the
same definitions for x as all the other nodes in that
component. Thus, all the nodes in a single component share
a common definition set with respect to x.

2.  The component must correspond o a single-entry region of
the control flow graph. That is, with the exception of exactly
one node in the component, no node may have a control flow
predecessor that is not in the component.

3. A component is the maximal collection of nodes that meets
the above constraints.

The single entry node for each component is a birthpoint for the
variable x. Because of the single-entry nature of the components,
only one birthpoint can reach any node. Each birthpoint repres-
ents the common set of definitions that reach the nodes in the
component.

Birthpoints arise for two distinct.reasons. First, any definition for
a variable is also a birthpoint for that variable, as it is the only
definition that meets any use that occurs before the next join
point. Second, birthpoints appear wherever multiple birthpoints
for a variable reach a node along different incoming edges. The
first type of birthpoint.is called a definition birthpoini, whereas the
second is cailed a join birthpoint.

The  transformations described in. this -section  locate  the

birthpoints for all variables in an interval, and replace all source
varjables with temporary variables that denote the birthpoints.



Ata definition birthpoint, the birthpoint name becomes the target
of the assignment, Assignments are added to transmit values
among the temporary variables as required at join birthpoints.

For any scalar name in the source program, the transformations
can introduce o number of temporary names for that variable.
Fhe unalysis described by Banerjee  |Banerjee79], Wolle
JWolfe821 and Allen {Allen83] determines independence of
subseripted variables. With the appropriate extensions. these
technigues can be applied to treat elements of arrays as scalars
and 1o recognize that two subscripted references are always
distinet. Intuitively, expressions that are not bound to
user-uccessible names have greater freedom with respect to code
motion. bach temporary name constrains the ordering of the only
those definition sites that reach its birthpoint, A reference (o a

source name constrains the ordering of all the definition sites for
that variable.

Consider the example shown in Figure 2. Only the definitions
at (2) and (3) can reach the use at (4). If definitions (2) and (3)
can be removed from the interval in a manner that preserves their
relat.ve order of assignment, then the use at (4) can be moved as
well. MNote that this can be done irrespective of what happens to
the definition at (1) as long as the results of definitions (2) and
(3) are avaitable after the definition to (1). Renaming captures
the multiple values that were assigned to a single name into
distinct names, making them available throughout a computation.
Provided that the dependences for each temporary names are
respected, code may be moved by the STRICT and NOMNSTRICT
algorithms.

if not () goto exit

while () loop:
(1w = not movable a.l <« not movable
a.5 <« al
i movabletestd if movabletest!
then do then do
(2} a4 = movahle a.2 =« movable
a4 e 3.2
i movabletest2 if movabletest2
then do
(3 then o = movabile 2.3 = movable
a4 « a3
end
clse : else ;
a5 = a4
{4) P ? « 3.4
end end
(5)7 = a ? = a3
if () goto toop
end exit;

Source Program Renamed Program

Figure 2. Renaming to Break Order Dependencies

if not() goto exit
if movabletest!
then do
2.2 = movable
a4 « a2
if movabletest2
then do
a.3 « movable
2.4 <« a3
end
else ;
? a4
end
loop:
a.1 = not movable
a5 w a.l
if movabletest!
then do

a.5 « 2.4

end
7+ a5
if {) goto loop
exit:
After Code Motion

4.1.1

The transformations are defined in the rest of this section.
Figure 3 and Figure 4 represent the transformation process step
by step. Each transformation preserves the correctness of the
program. These transformations are restricted to scalars where
the patiern of aliasing is understood. No reordering can be done
on variables that are potentially aliased, because the real patterns
of toads and stores for those variables are unknown. See Myers

Renaming Transformations
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V{Myerssﬂ, Cooper [Cooper83] or Burke {Burke84] for a

discussion of aliasing analysis.

in Figure 3, the left column contains a program fragment that is
expanded to four basic blocks, as shown in the right colurn.
MNote that in the intermediate code, the interval has been eqguipped
with an entry pad before the loop label and an exit landing pad
after the exitpad label. The test that guards the interval has been
duplicated above the entry pad.



il (i >== n) gotoexit

while (1 < n) loop:
fn>3 b ifn>23
then do 2: then do
ken*6 k= n*h
m = k*i m o« k *j
end end
clse do 3: else do
k=n#*8g kKent*§
end end
jek+3 4 j=k+3
ioae i1 P i
if (i < n) goto loop
exit__pad:
end exit:

Program Fragment Intermediate Code

Figure 3. A Program is Composed of Basic Blocks

The first transformation identifies the definition birthpoints in the
interval and assigns cach a unique temporary name.* Because this
processing is performed interval by interval, the birthpoints result
not just from the definition sites within the interval, but also from
those definitions that enter the interval. In order to identify the
variables that may reach the interval, a special form of definition
is placed in the entry landing pad for every variable either used
or defined within the interval. This special definition is called an
identity assignment and has the form x « x for variable x. Each
identity assignment forces the creation of a definition birthpoint
that acts as an interface between this interval and the rest of the
program.

The definition birthpoints are identified by splitting every
assignment statement into two statements. The first statement
computes the right-hand side of the original statement and stores
the result into a unique temporary name. The second statement
performs an assignment from the temporary name into the
original program variable. In this way, the use and definition
components of each statement are separated; thus, the part of a
statement that computes values can be moved independently of
the definitions produced by the statement. Note that the identity
assignments added to the entry pad are included in this splitting
process. The first transformation as applied to the above example
is shown in the left column of Figure 4.

The second transformation identifies the join birthpoints in the
interval DAG. Reif and Tarjan [Reif81] describe algorithms for
locating join birthpoints in arbitrary flow graphs. However, since
interval bodies are single-entry DAGs when they are processed,
a simpler solution suffices for such graphs. The process is
described for a single variable x.

The approach begins by adding a birthpoint at the top of the
interval for x if x is defined within the interval. This is the

In the examples, the temporary names for variable x have the form x.n.

: A delinition is said 1o cover a use i it is the only definition yeaches that use.

birthpoint for the values carried along the back-edges of the
interval that join with the values entering the interval through the
header.

Next, the nodes in the DAG are visited in topological order.
When a node is visited that is not already a birthpoint for x, its
DAG predecessors are examined. If all the predecessors are
covered by the same birthpoint for x, then this node is marked as
covered by that birthpoint. Otherwise, a new join birthpoint for
x is established at the node,

In the second column of Figure 4, join birthpoints have been
added for all defined variables at the top of the interval. Within
the interval, join birthpoints have been added for k.5 and m.4.
Two assignments are created for each birthpoint added. The first
is of the form x.n <« x. The second is of the form x « x.n.

The third transformation takes the names created at the definition
and join birthpoints and forward-substitutes these names into the
uses that are covered® by these definitions. The result of this
transformation is shown in the third column of Figure 4.

The fourth transformation removes all remaining assignments to
source variables from the interval. Definitions that are dead in
the interval body may be removed immediately. Any other
definition must have a subsequent birthpoint as its only use. By
back-substituting the birthpoint variable for the lefi-hand side of
the assignment, the source variable assignment is removed. Aler
this has been accomplished for all source variable definitions, the
assignments from source to birthpoint variables that appear at the
join birthpoints themselves must also be removed. A birthpoin
marker is created for use by the subsequent algorithms.

Additionally, this transformation transmits values defined within
the interval to the appropriate external use sites. The targets of
those definitions are birthpoint variables, whereas the uses have
not yet been renamed. The interface is accomplished by adding
assignments to source variables at each exit pad. Each assign-
ment assigns whichever birthpoint variable is currently active for
the source variable being defined.

Note that all assignments involving source variables that were
added to landing pads by either transformation one or transfor-
mation four will undergo renaming when the next outermost
interval is processed, since the landing pads will be considered as
members of that interval. When the euntire program has been
processed in this fashion, no references to source variables will
remain.®

In order for the code motion algorithms to perform correctly, it
is important for the introduction of birthpoints to preserve the
semantics of uninitialized variables.” This may be accomplished
by introducing a definition for each variable at the top to the
program. This definition would assign the special value uninitial-
ized to each variable. This will assuire that the temporary variables
will not rearrange the order of assignment for uses where an
uninitialized variable may reach. - Of course it ismnot necessary 1o
actually generate any code for these definitions,

N This is not true for external variabies. Each nonintegrated subroutide call must be treated as a birthpoint for all external variables: Stoves for these varfables
are still required before any external subroutine catl - After the subroutine call; o reference must be made that rosets the appropriate wmporary variable.. This
result can be sharpened in the presence of fnterprogedural analysis as mentioned above.
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if {i >== n) goto exit

fae L] i

if (i >= n) goto exit
joae L1 e

j- il
ke k1 =k
m e ml + m
n+nlwn

ke kol ek
m o m] = m
n=+nl=n

loop: loop:
I i 12 i
il
ko k2 <k
m = m2 < m
I fn>3 ifnl>3
2: then do 2: then do
kK3 =n*6 k3 = nl*6
ke k3 k= k3
m3 e k*i m3 e k*i
m < m.3 m e m3
end end
3 else do 3 else do
kd =n*8 kdan*g
K= kd ke k4
cend end
4 kS5 =Xk
k< k.3
m4d = m
m =« m.4
4 i3 =k 43 i3 e k43
fe i3 j )3
13 e i 13 e i
e 1.3 1 1.3
H(t < ny goto loop if {i < n) goto loop
exit_ pad: exit__pad:
N
SHE exit;

After Addition
of Birthpoinis

Adter Separation

Fignre 4. The Translormations Involved in Renaming

if {1 >=n) goto exit

if (i >= n) goto exit

[EE s Q| 12 <+ 11 =i
o gl e g §.2 e 31 e
ke klwk k2« k1=k
mo= ml - m m2 = m.l +m
0= 11 =n 0.l < n

loop: loop:

Lo+ i2 i 1:  birthpoint 1.2
joe 12 e birthpoint .2
ko« kK2«k birthpoint k.2
m < m2 = m birthpoint m.2

m.éd = m.2
ifnl>3 fnl>3

2: then do 2: then do

k3 «nl*6 k3« nl*o6

k<« k.3 k5 « k.3

m.3 « k3 %12 m3 e k3 *i2

m = m3 m.4 - m.3
end end

3: else do 3: else do

k4 - nl*8 k4 «n1*8
k= k4 kS « k.4
end end

4: kS5 ek 4:  birthpoint k.5
k= k.5 k2 = k.5
m.4 « m birthpoint m.4
m < m.4 m.2 « m.4
P 3=k5+3 i3 - k5+3
j=i3 j2 = 1.3
13 - 12+ 33 13+ 1.2+ 13
i 13 i2 = 13
if (1.3 < n.1) goto loop if (1.3 << n.1) goto loop

exit__pad: exit__pad:
i 13
j= i3
kK = k5
m =+ m.4
exit: exit:
After Forward After Back-
Substitution Substitution

Note that many temporary variables may be created whose only
other reforences are 1o set other temporaries.  After the last
transformation described above, it is advisable to perform a pass
of dvad code elimination and remove all of the temporary names
that are never otherwise referenced.

After ull of code has been moved it is possible to coalesce many
of these temporaries into a much smaller number of compiler
twmporaries by a process known as coloring. While this process
v NP complete for an exact solution. Chaitin [Chaitin81]
|Chaitin®2] hos developed a heuristic approach that has very good
performance.

4.2 The Sirict Algorithm

bn this section. o strict algorithm is presented for moving
statements from inside an interval to the landing pad guarding the
entrance of that interval. To accomplish strict execution, the
algorithm first copies the control {flow that surrounds movable
stutements, Consider the example shown in Figure 5.
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I |
while {i < n)
ifj=3
thenk = 6
else k = 8
i il
end

Figure 5. A Simple Example

Meither assignment to k& can be moved without violating both
correctness and strictness, unless the test and branch accompany
the motion.

The STRICT algorithm visits the statements of an interval to
determine which statements are eligible for movement to the
eniry pad. The order of the traversal is the dominated topological
order that was defined in Section 3.4, This ordering guarantees
that when a statement is considered for movement, any other



statement whose movement might free this statement for
movernent will already have been visited. Thus a single pass over
the interval is sufficient to determine the movability of the code.

As the traversal progresses, movable tests are copied into the
entry pad, and replaced in the inierval body by simple bit tests.
Other code that is found to be movable is moved to the landing
pad without leaving any code behind in the interval. After the
processing Is complete, the interval body and the landing pad may
both be subjected to a form of dead code elimination that locates
and discards tests that no longer guard any code.

The

tests for movability involve the concept of control

dependence, which is developed by Ferrante, Ottenstein, and

Warren

[Ferrantie84). Informally, a statement is control

dependent on those tests that may cause the statement to be
executed. More precisely, a statement ¥ is control dependent on
a statement X if

i,

2.

There exists a path from X to ¥ such that all nodes in the
path, except X and ¥, are post-dominated’ by ¥, and

X is not post-dominated by Y.

Coensider the program fragment shown in Figure 6. By the above
definitions, each assignment to j is control dependent on the test
of 7, but the the test of k and assignment to m are not. A larger
example of a program flow graph and its associated contro}
dependence graph can be found in Figure 10.

while (1 < n)

ifi<3
thenj = §
else j - 7
ifk=20
thenm = 6
P i1
end
Figure 6.  Variant and Invariant Branching

The conditions that allow a statement or a test to be movable are:

1.

The statement must not be control dependent on any
immovable test.

This condition insures that the conditions for executing the
statement are invariant of the interval and can be duplicated
in the entry pad. It accounts for control dependences that
govern the correctness and strictness of relocating a
statement.  The NONSTRICT algorithm relaxes this
constraint.

In Figure 6, this condition precludes movement of either
assignment to j because they are control dependent on the
loop-variant test on /. However, the test on k and the
assignment to m that it guards are unaffected by the test and
branch on 1.

Definitions that reach uses within the statement must come
from statements outside the interval.” A birthpoint marker is
treated as a use of the variable it marks.

This condition accounts for one of two data dependence
constraints that must be observed to insure correciness. A
violation of this constraint can reorder statement execution
in such a way that a variable is used prior to its having been
assigned the proper value.

Note that if all the definitions for a particular name can be
moved from the interval to the landing pad, then statements
reached by those definitions may become eligible for
movement,

Since this condition concerns correctness rather than
strictness, it also appears in the nonstrict algorithms.

3. A definition for a variable may not be moved if the birthpoint
for the variable has already been processed, or if an earlier
definition for the same variable was found to be immovable.

This data dependence constraint is required to insure the
correctness of the transformed code. The birthpoint
constraint depends on the observation that the birthpoint for
a variable either dominates all definitions for the variable in
the interval, or it post-dominates them. In the former case,
this condition will preclude movement of any of the
definitions. This is necessary since the birthpoint must result
from the merging of a loop-carried definition and a definition
from outside the interval. Moving any definition for such a
variable would result in an incorrect value for the variable
during the first iteration of the interval.

The second part of this condition is motivated by similar
considerations. Consider the type of join birthpoint that

posi-dominates the definitions that reach it.  These ~
definitions all reference the same variable name and must
therefore be executed in topological order. Since the landing
pad is executed before the interval, definitions that reach this
birthpoint can be placed in the landing pad, provided that the
ordering of definitions is respected. Thus, in a topological
traversal, no definition can be placed in the landing pad
uniess all previously encountered definitions are also moved.

The actual construction of an appropriate control structure begins
by copying a skeleton of the control structure from the interval
into the landing pad. In the landing pad, loop exits are redirected
to the bottom of the landing pad. If such a branch is taken in the
landing pad, then the loop is guaranteed to exit from its first
iteration at the same exit in the interval. The statements and the
conditional tests are then processed in dominated topological
order. Any code that is found to be movable is simply moved
from its position in the interval body to the corresponding
position in the landing pad skeleton.

A complication arises when an immovable test is encountered.
The test that was naively copied to the skeleton must be removed,
along with any additional control structure that is directly or
indirectly control dependent on the test. Since an immovable test
cannot be decided in the landing pad, control is transferred to itx
immediate post-dominator in the landing pad. Code that is
subsequently found to be control dependent on the test remains
in the interval due to the first condition.

When this traversal is' finished, unreachable “portions of the
skeleton can be removed from the landing pad.  Such nodes must
have ‘been situated  between  an  immovable test and its
post-dominator, and thus its sole means of entry was eliminated
when 'the fnmovable branch was deléted from the landing pad.

A node ¥ is post-dominated by a node ¥ if all paths from 3 to the program exit include ¥.

7



while i< m)

1:

irn>3

then do 2:

Ken*h

m e K™

end

¢lse o 3:

K e n*y

end

je k43

RS

end
Original Loop

Figure 7.

i {i == n) goto exit
L2 = L] et

l: g ]l R J

K2« kKt =k

m.2 « i e m
nl «n

loop:
birthpoint 1.2
birthpoint }.2
birthpoint k.2
birthpoint m.2
m4 = m2
ifnl >3
then do
k3« nl*6
K5« k3
m3 = k3 *12
m4 = m3
end
else do
k4« nl*3
k.5« k.4
end
birthpoint k.5
k2 = k.5
birthpoint m.4
m.2 = mé
i3 «k5+3
2 = 13
13 e 12 + 1.3
1.2 =« 1.3
if {13 <« n.1) goto loop
exit_ pad:
ie i3
j=i3
k « k.5
m o= m.4
cxit:
{ntermediate Form

Full Example of Strict Code Motion

if {i >= 1) goto exit
12 = ] i

B2 gl e

K2 e ki =k

m,2 < m.l e m
nl = n

0 Tl (nl>3
Tl

2: then do

k3 «nl®*o
k5« k3
end

3: else do

kd < ntl*8
kS « k.4
end

4: birthpoint k.5

i3« k5+3
loop:

1. birthpoint 1.2
birthpoint j.2
birthpoint k.2
birthpoint m.2
m.4 = m.2
it T4

then do

2: m3 « k3 *i2
m.4 <« m.J3
end

k.2 =+ k.5
4:  birthpoint m.4
m.2 « m.4

§.2 = i3

13« 12 4+ 1.3

1.2 « 1.3

if (i.3 < n.1) goto loop
exit__pad:

{13

j= i3

k = kS

m = m.4
exit:
After Strict Code Motion

in Figure 7,

the example shows three forms of a program

fragment, Mote that this is the same example used in Section 4.1
The left column is the high-level source. The center column is the
intermediate code after renaming. The right column is the code
after being processed by this algorithm. Processing proceeds
according to the dominated topological ordering of the control
flow graph: the block before the ¥, the then block, the else and
finally the block after the test.
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The birthpoint of /.2 (where the value of / carried around
the loop joins with the value entering from above) is not
moved out of the loop, because it is treated as a use for 1.2
that is reached by a definition that has not yet been moved
out of the loop. The same is true for the birthpoints of

J.2, k.2, andd m.2. In fact, none of the join birthpoints that

are inserted at the top of a loop will ever be moved out of
the loop.



The assignment to m.2 cannot be moved because its use
of m.2 is reached by a definition remaining in the loop.

The computation of #.1 > 3 can be moved outside the loop
since neither n./ nor 3 are redefined within the loop. The
temporary T/ is assigned the value of the test and the
branch within the loop tests this temporary rather than
recalculating the real condition.

2: The calculation of k.3 may be moved from the loop since
the entire right side is outside the loop or constant.

The assignment to k35 may be removed since the
birthpoint for k.5 has not been reached yet.

The assignment to m.3 is not moved since its use of .2 is
reached by a definition that is in the loop. This
subsequently holds the assignment to m.4 inside the loop.

3: All of the code in the else block is movable in the same
manner that the code was movable in the then block.
4: The birthpoint k.5 is movable since both definitions of k.5

have been moved. However, since a definition for m.4
was left in the loop, the birthpoint for m.4 must be left as
well.

The assignments to k.2, m.2 and j.2 must remain in the
loop because their birthpoints have been processed.

The assignment to j.3 is movable since all definitions for
k.5 have been removed from the loop, and there is no
birthpoint for j. 3.

The definition for .3 is not movable because its use of i.2
is reached by a definition of i.2 That very definition is
therefore held in the loop as well, as is the calculation of
the test condition i.3 < n.1.

4.3

The STRICT algorithm cannot move code out of an interval
unless the control structure that governs the execution of that
code is also moved. The goal of the COMMON algorithm,
described in this section, is to move code out from under the
influence of immovable tests, thereby increasing its likelihood of
being eligible for movement. The algorithms described here may
be performed on a renamed interval, prior to the application of
the STRICT algorithm,

The STRICT and COMMON algorithms are similarly motivated.
Algorithms should accommodate secondary effects in 2 natural
way. The motion of simple statements should be accompanied
by the motion of their relevant control structures, since since
common control structures occur quite often in the context of
high-level data abstractions. Consider the example in Figure 8.

Structural Common Subexpression Elimination

while i
it LV
then b « f(d)
else b « f(e)
end

Figure 8.

If procedure integration has incorporated the references to f; then
a reasonable amount of code should be' common to both branches
of loop-variant test L¥. Even if the procedure integration has
extensively tailored the call sites, as proposed by Wegman and
Zadeck [Wegman85], portions of the incorporated code, due
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perhaps to addressing and parameter checking, should be
common to both successors. Consider the following example:

if L1
then x = a
else x = b
ifLY if LV
then if L1 then if L1

then do

X e 3

y ¢+ 1 theny <« ¢ + i
end
else do

X<« b

yec+2 else y = c+ 2
end

else if L1 else if L1

then do

X« a

Yy« C+ 3 theny « ¢+ 3
end
else do

X« b

yec+4 elsey = c+ 4
end

Before Movement After Movement

A Movable Test That is Control Dependent on
an Immovable Test

Figure 9.

The loop-variant test LV ordinarily prevents movement of any
code dependent on that test. In this case, the circumstances that
determine which value is assigned to x arc governed only by the
loop-invariant test L/, because it is common Lo both sides ol the
LV branch. The assignments to x can thus be removed from
control of LV as seen in the right column of Figure 9. Asin the
STRICT algorithm, statements such as the assignments 1o .y must
be accompanied by their associated control structure when
moved.

The COMMON algorithm will initially be presented that cun
move assignment statements above a test, il the assignment
statement occurs along all paths from that test. This algorithm
will be enhanced to allow commoning of certain classes ol control
structures as well,

The algorithm is composed of two afternating phases that iterate
over all the tests that occur in an interval. -Given a test 7, the first
phase constructs collections of statements to be analyzed lor
possible  movement above 7. - Each’ collection represents
statements controlled by one of the possible branches from 7. In
the second phase, the collections are compared to discover which
statements are common along all paths from 7, and cach such
statement is moved to a single instance above 7.

The movement . is performed so. that a particular statement is
never moved past. more than one of its guards at a time. Thus, in
order to insure that a statement will be moved past as many
guarding tests as possible; the tests that control the execution of
a statement must be considered successively, in an.inner-to-outer
fashion with. respect-to- conditional nesting. “In the two-phase
analysis, a test must be considered only after all the tests that it
directly or indirectly controls have been considered. This is
accomplished by visiting the  tests according lo a reverse



topological traversal of the control dependence DAG that is
constructed for the interval®

Whenever two or more common assignment staiements are
merged into a single statement and moved above a common
guard, the variables on the left sides of those statements must be
aliased throughout the remainder of the compilation. Because the
alias relationship need mever be undone, a disjoint union-find
structure can be used to maintain the necessary global dictionary,
Fach set maintained by the dictionary corresponds to a collection
of aliased names. The name by which a set is known, called the
represeniative name, is returned by the find operation on any
member of its associated set, If two variables are aliased, they
will always have the same representative name. Therefore, all
references to variables will be made via the aliasing dictionary.

4.3.1 Phase One: Identifying Candidates for
Movement

Once a test 7 has been chosen as a potential target for
commoning, the control dependence graph is used to construct a
number of coliections of statements that are considersd for
movement above 7. Each collection corresponds to one of the
conditional branches emanating from 7, and contains any
statement whose only control dependence is on 7 by that
branch.” It is easy to show that each included statement is also
dominated by 7.

Any assignment that appears in all the collections constructed for
T must occur on all paths emanating from 7, and so must be
executed regardless of the ouicome of 7. The second phase
extracts those common statements and moves them above T.

Unless a statement is dominated by T, some path that excludes 7'
could lead to executing that statement in the original program.
Only staternents dominated by 7 are considered for commoning.

4.3.2 Phase Two: Selecting and Moviog Common
Code

Assignments are considered common if their right-hand sides are
identical. Bince the COMMON algorithm is designed to work on
renamed programs, the left-hand sides of any two assignments are
necessarily distinet temporary variables in the case of definition
birthpoints. When comimon assignments are promoted to a single
instance above a iesi, the temporary variables that were the
targets of the original assignments are unioned into the alasing
dictionary. The representative name for the variables remains as
the target of the new assignments. The aliasing dictionary is
searched for names occurring in right-hand side expressions to
make subsequent expressions eligible for commoning.

Suppose a target 7 is considered with statement collections €1
and €2, The second phase proceeds as follows:

1. Allright-hand sides of C2 are hashed into a dictionary so that
any given expression can be quickly checked for inclusion in
C2.

2. The statements in ] are examined in topological order
according to the control flow graph. If an assignment is

found that is eligible for movement, its right-hand side is
looked up in the hash table for C2.

3. Whenever a match is found in step two, each of the assign-
ments s moved from its current position, and a new assign-
ment is constructed immediately before the test 7. The two
variables are entered into the aliasing dictionary, and the
resulting representative name is used as the target of the new
assignment. A Birthpoint can also be moved if those
definitions are the only ones that reach the birthpoint.

In order to avoid the rehashing the statements in €2 after moving
an assignment, none of the representative names of variables used
in €2 must change as a result of the new aliasing. This can be
accomplished easily when performing the wnion operation by
choosing the €2 name as the result name. 10

Note that to be eligible for movement, the right-hand side of an
assignment must not use any variables for which definitions exist
that are dominated by the test 7. This is trivially satisfied by the
above algorithm due to the renaming. If a definition did exist, it
would have caused a new name, and the statements’ right-hand
sides would not have matched.

4.3.3 Commoning of Control Structures

This section presents an extension of the above algorithm, that
includes the motion of entire regions of control structures as well
as assignment statements. Candidate common structures are
identified by the fact that they have common tests and are control
dependent and dominated by the same test. This is analogous to
the matching of assignments in the previous section, except that
conditional expressions rather than right-hand sides are
compared,

In general, a moved control structure is not copied exactly. Some
of the code contained in the structure may not be common to all
instances, or some portions may be immovable due to data
dependence considerations. For this reason, the regions to be
moved must be editable, in that they can be copied selectively by
parts without incurring undue costs. In particular, due to the
difficulty of backing out of aliasing and other decisions, situations
in which a piece of code is moved and then later pulled back are
avoided.

This policy can be enforced by restricting movement to structures
in which all required editing is in terms of single-entry single-exit
regions of the flow graph. In order to avoid a costly
pre-examination of the structure to determine which nodes head
such regions, a simpler test is performed to decide whether or not
the region wunder consideration is a series-paralle]l (8-P)
graph--the type that normally occurs in structured programs.'! In
such a graph, there is a one-to-ong correspondence between split
nodes and join nodes, such that each split node dominates its
corresponding  join node, and conversely, each join node
post-dominates its corresponding split node. Thus, each split
node (arising from a conditional branch) necessarily heads a
single-entry single-exit region, and thus may be edited from the
overall structure without disturbing the other parts of the graph.

The control dependence DAG was introduced in Section 4.2, An example of such a DAG is presented in Figure 10.
That is, Tollowing that branch of T guarantees execution of the statement, whereas some other branch of T may avoid executing the statement.
Although this works if only two-way branching is encountered, it can be extended to multi-way branching as well, In this case, collections €2 through £n

will be hashed, and collection €/ will be traversed as above. In this case, however, it is not possible to keep an aliasing operation from changing represen-
tatives for all of the collestions C2 through Cn. Instead, update of the global alias dictionary must be deferred, and a simple table linking names from €/
with its alisses in the other collections is maintained. This suffices throughout processing of test T since every variable in €7 will have at most one alias in
cach of the other collections. After processing T, the information in this simple alias table is merged with the global dictionary.

The decision that only 5-F control structures are eligible for movement somewhat Himits the power of the COMMON algorithm. However, the 5-P restriction

is a reasonable compromise between power and cost. Moreover, the $-P restriction does not limit the algorithm when applied 10 structured Programs.



A single pass over the control flow DAG suffices to determine
whether a node heads a 5-P region 12

in phase two of the COMMON algorithm, when common tests
heading S-P regions are identified along all branches from test
node T, a new copy of the common test is created above 7, and
the common portions of the 8-P regions are copied to form a new
region under the promoted test. Any code in the original regions
that is not common must remain in those regions, along with any
required control structures.

Discovery of common code here is roughly the same as in the
simple COMMOM algorithm. The only difference is that
conditions guarding a statement in the $-P region must be hashed
along with the statement itself. In this way only statements in the
same place relative to the entrance of the §-P region will be
considered common.

As in the simple COMMON algorithm, any assignments that are
commoned as a result of structure commoning must cause updates
to the aliasing dictionary in order to allow the commoning of later
assignments and tests that make use of the aliased variables.

In order to ease the process of copying code from common
control structures, traversal of the structure in the CJ/ collection
is performed according to the dominated topological order
defined in Section 3.4. The domination aspect of this ordering
allows the 8-P diamonds to be copied easily without having to
close up dangling control flow paths.

4.4 A Nonstrict Algorithm

The STRICT algorithm disallows movement of any code that is
control dependent on immovable tests. In this algorithm,
strictness is relaxed, thus increasing the opportunities for
movement substantially, although the profitability of some moves
becomes guestionable. This algorithm is based on the assumption
that it is generally more profitable to execute every statement in
the interval once if the interval is to be executed, rather than
possibly execute some statement many times by leaving it in the
interval. Asin the STRICT algorithm, all motion is from the body
of the interval to the landing pad.

Like the STRICT and COMMON algorithms, the motion of a
control structure precedes the motion of its guarded statements.
If that control structure is itself dependent on some immovable
test, then motion of the control structure improves profitability
of statements that it guards, but such statements are not executed
strictly. Further, the motion of a control structure can free other
code for movement, but at the cost of strictness. Strictness can
only be guaranteed for statements that are control dependent only
on movable tests.

As in the STRICT algorithm, the intervals of a program are
traversed from their innermost to outermost nesting. Upon
visiting an interval, the DAG that corresponds to the body of the
interval is traversed by the dominated topological order described
in Section 3.4. Upon visiting a node that is control dependent
only on movable tests, that node can be immediately placed in the
landing pad, since its control dependent predecessors have
already been visited by the dominated topological traversal. Thus
far, the motion is strict. However, a node that is control

dependent on some immovable test cannot be guarded by that test
in the landing pad. For nonstrict execution, statements of such
nodes can still reside in the landing pad, and the location chosen
for those statements determines the profitability of the nonstrict
motion. In particular, the node may be control dependent on
some movable test, which, by nature of the traversal, already
appears in the landing pad.

More specifically, the motion of control siructures must account
for the types of branches upon which a node N is coniro
dependent.t

1. If & is control dependent on an immovable branch, then its
execution cannot be strict with respect to that branch.
Suppose ¥ is control dependent on branch 6 of node P. The
nodes along the frontier determined by a traversal from P
along its b branch are executed under conditions that require
execution of node N. Reaching any node of that frontier
must guarantee the execution of node N, and so the branches
of all nodes on that frontier must be targeted to node N,
Similarly, suppose node U unconditionally transfers control
to node M. By the above mechanism, the branch from I/ may
have been redirected to some node other than N. The same
mechanism must be applied to the frontier determined by U,
which may consist of only U if no redirection was performed
on U1

2. If Nis control dependent only on movable branches, then N
can be placed as in the original control flow DAG. provided
that the relevant branches are still unresolved. If any branch
relevant to the placement of N is already resolved, then N is
placed as if it were under control of some immovable branch.

This nonstrict motion results in three levels of profitability, cach
associated with a set of criteria that determines the correciness
of moving statements.

1. Nodes that are control dependent only upon movable
branches can be executed strictly, Thus, the conditions
described in the STRICT algorithm apply 1o the motion of
statements from such nodes.

2. Nodes that are control dependent on immovable branches
are unconditionally executed with respect to the immovable
branches. The conditions that permit motion in this case are
described in Section 4.4.2.

3.  Due to the placement strategy, some nodes may be control
dependent only on movable branches, yet be placed as if they
were under control of some immovable branch. Such nodes
are executed profitably. The motion is in general more
profitable when there are many movable branches between
an immovable branch and N. The conditions that permit
motion in this case are described in Section 4.4.3.

4.4.1 An Example of Control Structure Copying

Consider the control flow DAG shown in the left column of
Figure 10. The arcs are directed, with the destination of an arc
lower ‘in the figure than its source. Using the techniques of
[Ferrante84], the controt-dependence graph is contructed as
shown in the middle coluran of Figure 10.

2 Consider a test node T. Visit the successors of T in topological order. Each node wili be labeled with the conditions that guard its ¢xecution (refative to
conditions on T). For the graph to be S-P, that fabeling may be represented by a conjunctive clause, with negated terms where false branches are taken. At
each join node, the conditions labeling each of the predecessors must be identical, except the last termi-one should be the complement of the other. The list
becomes emply at an exit node. If the labeling cannot-be represented in the manner described here, then: ' does.not head a 8-P region. other than.the trivial

region consisting solely of T itself.

" For purposes of this discussion, a node that is independent of all tests is considered to be trivially dependent on a movable test that always causes execution

of that node.

" This process can be accomplished efficiently by maintaining frontier pointers in the nodes and adjusting the pointers using path-compression technigues.
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Phe right column shows the results of applying the above branch, originally targeted for node 17, must now be targeted for

technigues o the DAG and its control dependence graph. This
sweetion examines in detait how code can be copied into the landing
pad. Thus Jur. no issucs of safety are addressed. This section
addresses only where code can be placed in the landing pad, given
that the conditions that determine safety are satisfied.  The
algorithm traverses the DAG in the order shown by the node
lubels. Each node of the DAG corresponds 1o a straight-line
sequence of code terminated by a branch. Node 1 is control
dependent only on program entry.'S The code of node 1, including
the movable branch with which it exits, can be moved. Node 2
is control dependent on that movable branch, so its code can be
moved up 1o its immovable branch. Nodes 3 and 4 are control
dependent on the immmovable branch of node 2, so they are
cxeeuted unconditionally with respect to node 2. The branch of
node 3, previously targeted for node 5, is resolved prematurely to
ceuse this unconditional execution. The branch from node 1,
which is still open, can protect node 6, which is dependent only
on the mowvable branch from node 1. Because the relevant
branches are stitl open and only movable branches are the source
of control dependences, nodes 7 and 8 are placed under control
of node 6, node 9 is the successor of nodes 7 and £, and nodes
10 and 11 follow the join of nodes 5 and 9. Nodes 12 and 13 are
control dependent on immovable branches and follow node 11 in
the landing pad; there are no relevant branches to close. MNode
14 is control dependent on the movable branch of node 13, and
is appropriately guarded in the landing pad.

Mode 15 deserves special attention. It is control dependent on the
immovable branch of node 12, All unresolved branches between
nodes 12 and 15 must be closed and targeted to node 15. MNode
13 contains such a branch. The branch has two successors; one
successor is already closed and targeted to node 14. The other

Like unconditional branches, program entry is a movable branch.
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node 15. Thus, node 15 is executed less profitably than could be
expected. In particular, arriving at node 14 implies that node 15
is not executed. However, node 15 must be placed such that if
node 12 executes {the node upon which it is control dependent),
then node 15 executes. The conditions that determined the
placement of nodes 14 and 15 also apply to the placement of
nodes 16 and 17.

Consider nodes 18, 19, and 20. They arc dependent only upon
movable branches, but these branches have already been
resolved. They are therefore placed as if they depended on
immovable branches.

Node 21 is dependent on the immovable branch of node 11, and
all branches for nodes 11 through 21 are already resolved. Node
21 concludes with a movable branch, which is copied into the
landing pad. Wode 22 is then placed under control of that branch.
Similarly, nodes 23 and 24 are placed under control of the
movable branches of node 22 and 21, respectively. Nodes 25 is
dependent on the immovable branch of node 24 so its execution
follows node 24. MNode 26 is control dependent on nodes 24 and
22, thus forcing all unresolved branches in nodes 22 through 26
1o be targeted to node 26. The branches from nodes 22 and 25
are thus targeted for node 26, Node 27 can be placed as in the
original DAG since the relevant branches are still open. Node 28
is control dependent on the immovable branch at node 24. All
branches from 24 through 28 are targeted for node 28. MNodes
29 and 30 are similarly placed

4.4.2 Unconditionally Executed Statements

Statements executed unconditionally are more restricted with
respect to code motion. These restrictions are required to assure



that the semantics of the program are preserved in the absence

of normal control structures that guard the statements.'®

1. Definitions that reach uses within the statement must come
from statements outside the landing pad or other uncondi-
tionally executed statements already moved to the landing
pad.
This restriction does not allow these unconditionally
executed statements to use values generated by sections of
code are either strictly or profitably executed since these
values may not be available.

2. A variable defined by this statement must cover all of its
uses, i.e. it must be the only definition of that name to reach
any use of that name.

Since none of the control structure is moved with this code,
multiple definitions for the same variable cannot be distin-
guished.  This restriction will only affect assignments
between temporary variables since the renaming guarantees
that all expressions with non-trivial right-hand sides generate
unigue names.

4.4.3 Profitably Executed Statements

Statements of this type are control dependent on a chain of
branches. The first member of that chain is an immovable branch
and it is followed only by movable branches. Consider a region
of nodes, defined as those nodes dominated by the first movable
branch of that chain.'” Statements of a region are eligible for
motion, subject to the first criterion of the unconditionally
executed statements and two additional criteria:

1. If a variable defined by the statement has a birthpoint, then
that birthpoint must be in the region. This condition
guaraniees that the sequencing of the definitions that reach
the birthpoint is preserved in the landing pad.

2. Definitions for variables may be moved out if the birthpoint
of the variable has not been processed and no earlier
definitions for that variable remain within the interval.

4.5 The Combine Algorithm

The COMMON algorithm given in Section 4.3 is strict in the
sense that it does not move an expression above a branch unless
the expression is common along all paths from that branch. If
some path failed to include the expression, then moving the
expression above the branch causes its unconditional execution
with respect to the branch.

Consider a situation in which an expression is not guite common
along all paths from a branch. For example, from a three-way
branch, some expression could oceur along two paths but be
absent on the third path. The COMMON algorithm is unable to
move the expression since it is not common along all paths from
the branch. Now suppose that the NONSTRICT code motion
algorithm is applied to this example, and the test was not movable.
Both instances of the expression could be moved above the
branch, causing redundant execution of the expression.

A solution to this problem is to maintain a dictionary of available
expressions that are unconditionally executed in the landing pad.
An expression contained in the dictionary need not be placed

o Of course the loop condition still guards the statement on entrance 10 the lunding pad,
1 The nodes that comprise this region are easily determined by the dominated topological traversa
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again in the landing pad. References to expressions that are
deleted in this manner must be accommodated by aliasing the
left-hand side variables, as discussed in the COMMON algorithm.

5.0 Concluding Remarks

Although the algorithms presented in this paper are improve-
ments over existing code motion technigues, the algorithms have
the following shortcomings:

1. The success of the STRICT and NONSTRICT algorithms is
greatly affected by the COMMON algorithm. since the
COMMON algorithm transforms nonstrict code into either
strict or profitably movable code. The COMMON algorithm
has a heuristic component that limits its effectiveness to
obtain a polynomial time bound.

2. Statements moved by the algorithms must receive the same

values on all iterations of the loop. Consider the program
shown in Figure 11:

while ()
tei+5

i = nonmovable

te=i4+35
end
Figure 11. Variant but Removable code

The value of i changes for each iteration. As a consequence,
the techniques presenied here fail to move either of the
assignments to ¢ from the loop. It is correct to move either
the first before the loop or the second after the loop. This
example can be accommodated by unrolling the loop once.
copying all of the right-hand sides of statements from the
loop to the entry landing pad where they are unconditionally
executed. The statements of the loop that are redundant are
then eliminated, as are the statements in the landing pad that
never contribute to the code within the loop. This case is
easily analyzed for code that is unconditionally executed in
the landing pad. = Since the goals of STRICT and
NONSTRICT are to execute code as profitably as possibie,
control structures accompany the motion of statements.

3. The success of the algorithms often depends on the order in
which nodes are considered. Since the dominated topological
order is not a unique total order, the solutions can be order
dependent. The dominated topological order can usually
select any successor of a branch as the next node to visit.
The result of this freedom is that some assignments to join
birthpoint names may not be removed. In Figure 12, if the
then block is evaluated first, neither assignment to 2.3 is
removed. If the else block is evaluated first, the assignment
to 1.3 in that block is removed. This type of order depend-
ence is not really important since in neither case is the
birthpoint for +.3 movable. Without a movable birthpoint,
no real uses of 7.3 can be moved.

1.



if movabletest

then do
.1 « notmovable
1.3« 1.1

end

else do
1.2 « movable
£3 e 1.2

end

birthpoint £.3

Figure 12.  Order Dependence

In the NONSTRICT algorithm, nodes are placed in the order
determined by the dominated topological traversal. Upon
placing a node N that is control dependent on an immovable
branch, certain branches that are unresolved in the landing
pad are targeted on node N. Such branches may be capable
of guarding a subsequently placed node, but the
NONSTRICT algorithm  precludes reopening  resolved
branches. The work of Ferrante and Mace [Ferrante85] can
place nodes such that they execute more profitably. For
programs that correspond to some correct sequential order,
the control dependences suffice in placing nodes. Since the
immovable tests cannot be decided in the landing pad, such
tests imply the concurrent execution of all successors, and
data dependences might exist that preclude a correct
sequential order. The algorithm of Ferrante and Mace can
place the nodes of such programs, but either the control flow
order is violated or tests have to be duplicated 10 maintain
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that order. Since that order is important fo the algorithms,
this approach is not used.

Although the above arguments appear to raise doubts as to the
effectiveness of the algorithms presented in this paper, recall that
one goal of these algorithms is to effectively accommodate
abstractions. Code moved from intervals retains its relevant
surrounding control structure, which makes these algorithms
attractive for the stylized code that results from the heavy use of
abstiractions or other integrated subroutine mechanisms.

In the worst case, the algorithms may swell the code size by 24,
where 4 is the depth of interval nesting. In the worst case, all of
the control structure is copied to the landing pad for cach interval
and none of that conirol structure is deleted from within the
interval.  This situation, albeit unlikely, can be controlled if
algorithms are restricted to some fixed nesting of inner intervals,
For example, Scarborough has observed that most of the
execution time is spent in inner loops [Scarbourgh80] and the
IBM Fortran H compiler therefore performs optimizations only
over the deeply nested intervals,
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