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1,0 Overview and Motiva'tloe 

One trend among programmers is the increased use of 
abstractions. Through encapsulation techniques, abstractions 
extend the repertory of data structures and their concomitant 
operations that are processed directly by a compiler. For 
example, a compiler might not offer sets or set operations in its 
base language, but abstractions allow a programmer to define sets 
in terms of constructs already recognized by the compiler. In 
particular, abstractions can al]ow new constructs to be defined in 
terms of other abstractions. Although significant power is gained 
through the use of layered abstractions, object code quality 
suffcrs as increasingly less of a program's data structures and 
operations are exposed to the optimization phase of a compiler. 
Muhiplc references tn abstractions are also inefficient, since the 
intcracfion between abstractions is often complex yet hidden 
from a compiler. Abstractions are most flexible when they are 
cast in gcncrat terms: a spout.fie invocation is then tailored by the 
abstraction to obtain the appropriate code. A sequence of 
rci'crcncus to such abstractions can be inefficient due to 
I'unctkmat redundancy that cannot be detected at compile-time. 
By intcgrath~g the references, the offending segments of code can 
be moved to a more advantageous position. Although procedure 
integration materializes abstracted constructs, the abstractions 
can still be ineligible for optimization using current techniques; 
in particular, abstractions often involve loops and conditional 
branches that can obscure code that would otherwise be eligible 
for code motion. 

7"(? make abstractions viable as an efficient programming tool, 
optimizations such as code motion must overcome the obstacles 
presented by abstractions. The problem of code motion has been 
addressed by Lowry and Med~ock fLowry69], Wulf [Wu]f69], 
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Schwartz [Schwartz73], Aho and Ullman [Aho78], Morel and 
Renvoise [Morel79] Reif and Lewis [Reif77] [Reif82], and 
Ferrante and Ottenstein [Ferrante83]. These approaches fall 
short of handling abstractions because they fail to consider the 
following issues in a unified manner: 

1. Some code cannot be moved unless accompanied by its 
surrounding control structures. For example, two definitions 
of a variable may reach a use, with surrounding control 
structures determining which definition actually reaches the 
use. Unless the control structure accompanies the motion 
of the definitions, neither the definitions nor the use can be 
moved. 

2. The motion of stores should be considered as well as the 
motion of expressions. 

3. It can be profitable to move a computation from an area 
where it might never be executed to a~ area where it is 
always executed. 

4. Second order effects are significant to thorough code motion. 
The motion of one piece of code may be dependent on the 
motion of some other piece of code. 

This paper presents two code motion algorithms that account for 
the above issues and are particularly appropriate for abstractions. 
One algorithm is conservative with respect to the third issue; 
program performance can only be improved by this algorithm. 
Another algorithm is more aggressive; the resulting code shouM 
execute faster given a widely accepted model of branch behavior. 
A common subexpression algorithm is presented that accommo- 
dates control structures and enhances the effectiveness of the 
code motion algorithms. 

2°0 Genera~ Approach 
Since abstractions are typically implemented by procedure calls, 
a form of procedure integration is useful for incorporating the 
code due to abstractions. The technique proposed by Wegman 
and Zadeck [Wegman85] couples procedure integration with a 
powerful constant propagation algorithm that avoids some of the 
intermediate space problems normally associated with this 
technique. 

In order to accommodate complex control structures, a program 
is regarded as a collection of intervals" in the style of Tarjan 
{Tarjan74], Graham and Wegman [Graham76], and Schwartz 
and Sharir [Schwartz79]. Note that these differ from the maximal 
intervals originally suggested by Allen and Cocke fallen70] in 
that maximal~ intervals contain some nodes that are not in the 
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strongly connected  componen t  dominated  by the interval header,  
Wherever  we refer to interval, we mean  the former not  the later. 

Subject to criteria presented in ensuing sections, the s ta tements  
and control s tructures that  are moved from within the interval are 
moved before that interval. Each interval is accordingly 
augmented  with a lae~ding pad, just before entry, to provide a 
repository for moved code. The landing pads ordinarily contain 
prologue code and so are guarded by the same conditions that  
guard the interval; thus,  code moved to a landing pad is never 
executed unless it would have been  executed inside the interval. 
After moving as much code as possible out  of an interval, that  
interval is summarized  in terms of  its data  flow properties. The 
interval can then be considered as an atomic entity, eligible for 
motion out of  its sur rounding intervals. 

3.0 Preliminaries 

3.1 Stricmess and Profitability 
The goal of any optimization technique is to decrease the 
execution time of a program while maintaining the observed 
behavior  of that  program; accordingly, a particular t ransforma-  
tion can be characterized with respect to it effectiveness by its 
strictness and pro fTlability. 

Strictness indicates whether  a t ransformat ion  is conservative with 
respect to decreasing the execut ion time of a program. Under  a 
strict t ransformat ion,  code can be relocated only if the execution 
of that code in its new location occurs no more frequently than 
in its original location. By relaxing strictness, code can be 
relocated to positions where it probably would be executed less 
frequently.  This  paper  will pursue both strict and nonstrict  
t rausformatk)ns.  

Profitability describes the degree that nonstrict  t ransformat ions  
affect  the performance  of a given program. The profitability 
problem is generally unsolvable at compile-time, since program 
branching can depend on run- t ime values; however,  compile-time 
predictions, based on the structure of a program as viewed in 
terms of its control flow graph, altow code to be relocated to areas 
of probable profitability. This paper will make two assumptions  
about  the f requency of execut ion of s ta tements  within a program: 

1. The frequency of execut ing a s ta tement  grows, possibly 
exponentially,  as the number  of intervals that surround that 
s ta tement  increases. 

2. Every s ta tement  within an intervat has  a high probability of 
being executed whenever  the interval is executed. 

3.2 Correctness and Safety 
An optimizat ion technique must  be applied in a context  in which 
its effects  on the observed behavior of  a program are well 
understood.  Accordingly,  a particular t ransformation can be 
characterized with respect  to program output  by its correctness 
and sq/k, ty. 

The t rans formatkms  presented in this paper  are correct in the 
sense  that the data dependences  of a program are respected. The 
values used by express ions  are always produced by the same 
computa t ions  as in the original program. The transfOrmations 
may move the expressions to locations where the f requency of 
execution is reduced (strict t ransformat ions)  or where the 

f requency of execution is expected to be reduced (nonstriet  
t ransformations) .  

Al though nonstrict  t ransformat ions  may cause execution of a 
s ta tement  that would not  have been executed in the original 
program, this need not  violate correctness. The nonstrict  transf- 
ormations in this paper can only cause such spurious executions 
when it can be guaranteed that the calculated values will not be 
used incorrectly. Any  s ta tement  left in the loop or reachable from 
the loop will always get the correct value. 

Safety describes the degree to which a t ransformation preserves 
the observed behavior of a program. Safety is thus  related to the 
detail at which the output  is scrutinized. For  example,  if a 
program is observed as an  instruction trace, then any motion 
whatsoever  causes a change in the output.  If a program is taken 
as a sequence of results and exceptional conditions,  then code can 
be moved so tong as the sequence remains unaltered. The issue 
of safety does not  influence the actual mechanism of a code 
motion algorithm; rather,  a given definition of safety dictates 
which operat ions are eligible for motion. The compiler writer can 
therefore allow any s ta tement  to be moved by the algorithms 
given here as long as that  s ta tement  does not directly produce 
output.  The decisions made by the compiler writer should reflect 
whatever  view of safety is desired. 

Many optimizing compilers allow interrupt producing s ta tements  
to be moved under  strict code motion. When  this occurs, the 
f requency and location of interrupts may change from the original 
program, but a program produces interrupts after strict code 
motion if and only if it produced interrupts before strict code 
motion. Note that it is possible and efficient on some machine 
architectures to separate the parts of  an operation that produce 
the calculation from the part of  an operation that may produce 
an interrupt. When  this is the case, the first part of  the operation 
may be moved.  

3,3 Landing Pads 
Code can be moved out of  intervals in either of two directk)ns: 
backward, so that its execution precedes the interval, or./brward, 
so that its execution follows the interval. In either case, code 
moved out of an interval should not be executed unless the 
interval would have been entered in the original program. This 
level of  profitability is easily maintained by introducing kmding 
pads into the interval control  structure as shown in Figure 1. 

As illustrated in Figure 1. an interval is equipped with one entry 
pad and  possibly several exit pads. In order to restrict the entry 
pad f rom executing unless the interval is entered, the entry pad is 
guarded by the same condit ions that guard its associated interval. 
In the example of Figure 1, the test T is duplicated to accommo-  
date the landing pad. Al though such duplication causes in a slight 
increase in program size, the execution time of the program is not 
increased, since the test is executed only once per iteration of the 
interval.-" A different exit pad is associated with each interval exit: 
different code can then be placed in each exit pad. and such code 
is executed if its associated exit is taken. By the definition of an 
interval used in this paper, all landing pads are outside the interval 
with which they are associated. For  each exit from an interval, 
control is transferred to the landing pad associated with that exit. 
After  executing the code in the landing pad. control is then 
transferred to the original target of the branch.  

' T h i s  t r a n s f o r m a t i o n  can  b e  t h o u g h t  of  as  t u r n i n g  a W H I L E  consm~c~ in to  a R E P E A T - U N T I L  cons t ruc t  e m b e d d e d  ins ide  ins ide  an W - T H E N  su ' ucmrc ,  
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Figure 1. Landi;~g Pads: Landing  pads are inserted into a loop as shown here, The entry  pad is shown as a d iamond and exit pads 
appear as squares.  

3~4 Ordering the Nodes of an ln~terval 
The algorithms presented in this paper  consider the nodes of an 
imerval in their topological order with respect to the control flow 
graph DAG of the inmr~al. This D A G  is comprised of all control 
Ilow arcs except those targeted for the header of  the interval (the 
back-~,dgeb). A topological order is only a partial order over the 
uodcs, yet a deterministic algorithm considers the nodes  with 
respect to some total order. Al though there is considerable 
freedom in choosing that total order, the algorithms presented in 
this paper use the following domi~ared topological order, for 
reasons that accompany the presenta t ion of the algorithms. 

A dominated topological order  is any topological ordering of the 
contro! flow graph with the following constraint:  Of all the nodes 
that follow a particular node N, those nodes that N dominates  
precede all other nodes. This ordering of nodes is more restrictive 
than the interval orders defined by Tarjan or G r a h a m  and 
Wegn+mm 

The actual construct ion of the dominated  topological order is 
simplified through the fol]owing observat ion:  Every edge of the 
control flow DAG is either in the domina tor  tree or is targeted 
or+ the sibling of an ancestor  (in the domina tor  tree) of the source 
o+ the edge. The left column of Figure 10 shows each node of a 
DAG labelled with the order as visited by a dominated topological 
traversa+ of the DAG+ 

4 ,0  C{~]e Motion Algorithms 
t h e  e~suing sections consider five t ransformat ions  that can 
irnpro~e program performance,  The first algorithm, RE?VAM£', 

accepts a s tandard intermediate program representat ion 
comprised  of operat ions  on source variable names  and produces 
an equivalent  program expressed in terms of compi le r -managed  
temporary  names.  Where possible, references (uses and 
definitions) to the source names  are replaced by references  to 
these temporaries.  The  purpose of this t ransformat ion  is to 
remove spurious dependences  that arise from a single variable 
name  that holds multiple expressions.  As a result ,  many  more 
temporary  names  can be generated than  source names  that  are 
replaced. Al though  the R E N A M E  algori thm performs a limited 
amoun t  of  code motion,  its true purpose is to afford the other  
a lgori thms more latitude by el iminat ing unnecessary  depend-  
ences.  

There  are two code mot ion  algorithms: STRICT and 
NONSTR[CT. Although  the N O N S T R 1 C T  algorithm is more 
aggressive with respect  to the condit ions that  permit  code motion,  
bo th  algori thms have the same general  structure,  The intervals 
of  a program are examined,  from their innermost  to outermost  
nesting. Upon visiting an interval, code is moved to the en t ry  or 
exit landing pads associated with that interval. Upon  leaving an 
interval, the interval is summar ized  in terms of its dataflow 
information.  Once summar ized ,  the interval behaves  as any other 
s ta tement ;  the te rm statement will therefore  refer to simple 
s ta tements  as well as summar ized  intervals. The  landing pads 
associated with a summar ized  interval are contained in the 
sur rounding  interval, 

Both STRICT and N O N S T R I C T  account  for the control 
s tructure inside an interval, By visiting the s t a t emen t s  of  an 
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interval in the proper order, control structures can be copied to 
landing pads, thus allowing the subsequent motion of statements 
guarded by the control structures. Although a copy of the control 
structure must remain inside the interval unless all guarded 
statements are moved, the guards inside the interval can be 
replaced by simple bit tests that are computed in the landing pad. 
If all statements are moved, then the control structure can be 
deleted from the interval. With the exception of control 
structures, code appears in either a landing pad or in. the interval. 

The STRICT algorithm performs strict code motion. Unlike 
traditional code motion algorithms that only analyze control flow 
Mormation to determine profitability, this algorithm utilizes such 

information to create a repository for statements moved to the 
landing pad. Upon visiting an interval, branches that can be 
decided in the landing pad are copied there. Statements are 
moved to the Ianding pad, so as to guard them by the same 
conditions that determine their execution in the interval. "Ihus, a 
statement moved to the landing pad is executed only if it would 
have been executed in the interval. 

To maintain profitability, the STRICT algorithm cannot move 
code that is guarded by branches that cannot be decided in the 
landing pad. However,  if some code is cmnmon across all paths 
from an immovable branch, then that code can be moved above 
the branch by an advanced form of common subexpression 
elimination that accommodates  control structures. The 
COMMON algorithm uses a restricted form of pattern matching 
over the control flow graph to identify areas that are common 
across, yet independent  of, all paths from a branch. Like the 
STRICT algorithm, control structures are copied above the 
branch. Instances of statements that are common across all paths 
are replaced by a single copy above the branch, positioned 
appropriately within the copied control structure. By removing 
such statements from immovable control structures, the 
statements become eligible for code motion by the STRICT 
algorithm. Although the C O M M O N  algorithm should be 
performed before the STRICT algorithm, the subjects are 
covered in the reverse order because the deficiencies of the 
STRICT algorithm motivate the C O M M O N  algorithm. 

In the NONSTRICT algorithm, the strictness constraint is 
relaxed; statements guarded by immovable branches are moved 
to the landing pad, even though such motion causes a spurious 
execution of the moved statements. Like the STRICT algorithm, 
all loop-invariant statements are moved to positions in the landing 
pad where they are guarded by the same movable tests that 
guarded their execution in the interval. Unlike the STRICT 
algorithm, such code may be guarded by immovable branches in 
the original program. Thus, the code moved by the NONSTRICT 
algorithm is a superset  of the code moved by the STRICT 
algorithm. 

Note that the C O M M O N  algorithm also improves the perform- 
ance of the NONSTRtCT algorithm by making more code 
available for more profitable movement.  For  code that is 
common across some (but not all) paths from a branch, the 
NONSTRICT algorithm has the property of moving all copies of 
such code above the branch. The COMBINE algorithm 
maintains a dictionary of the expressions that are moved to the 
landing pad. Any expression for which an entry exists in the 
dictionary is removed from the interval but not duplicated in the 
landing pad. 

4.1 Renaming of Variables 
The R E N A M E  algorithm consists of a collection of transf- 
ox~ations that are applied in succession prior to code motion, in 
order to increase the effectiveness of the code motion. 
Essentially these transformations will have the effect of  
expressing the summary of the dataftow information by utilizing 
a large number of program temporary names. 3 The STRICT, 
COMMON,  NONSTRICT and COMBINE algorithms then use 
this information rather than the source names, because source 
names do not have the inherent dataflow information. The major 
advantage of this approach is that the subsequent algorithms 
perform transformations that preserve the consistency of this 
representation. Therefore, there is no need to recompute the 
dataflow information to get second order effects. 

The final result of the transformations is related to the Global 
Value Graph described by Rcif and Tarjan [Reif81], in that we 
make explicit the birthpoints for all variables, along with the uses 
that they reach. The concept  of birthpoint is very closely related 
lo the dataflow concept of a definition. Whereas a single use of 
a variable may be reached by several definitions of that variable, 
a use is reached by exactly one birthpoint. The birthpoint is 
located in the control flow graph so as to intercept and represent 
collectively all those reaching definitions. 

The proper placement of birthpoints for a variable depends only 
on the control flow graph and the pattern of definitions for that 
variable; definitions for other variables are irrelevant. Although 
the transformations presented in this section compute birthpoints 
for all variables simultaneously, the concept  is most easily 
understood in terms of an analysis that considers one variable at 
a time. 

Computing birthpoints for a given variable x consists of 
partitioning the control flow graph into a number of disjoint 
collections of nodes, called components, of  the graph. Each 
component  must meet all of the following constraints: 

1. Every node in a component  must be reached by exactly the 
same definitions for x as all the other nodes in that 
component.  Thus, all the nodes in a single component share 
a common definition set with respect to x. 

2. The component  must correspond to a single-entry region of 
the control flow graph. That is, with the exception of exactly 
one node in the component ,  no node may have a control flow 
predecessor that is not in the component.  

3. A component  is the maximal collection of nodes that meets 
the above constraints. 

The single entry node for each component  ~s a birthpoint for the 
variable x Because of the single-entry nature of the components.  
only one birthpoint can reach any node. Each birthpoint repres- 
ents the common set of definitions that reach the nodes in the 
component.  

Birthpoints arise for two distinct reasons. First. any definition for 
a variable is also a birthpoint for that variable, as it is the only 
definition that meets any use that occurs before the next join 
point. Second. birthpoints appear wherever multiple birthpoints 
for a variable reach a node along different incoming edges. The 
first type of birthpoint is called a definil~on bir@oint, whereas the 
second is called a join birthpoim. 

The transformations described in this section locate the 
birthpoints for all variables in an interval, and replace all source 
variables with temporary variables that denote the birthpoints. 

This il/formation summarizes the DEF and USE information but requires a worst case assumption with respect to MAY. This assumption is that :.t MAY site 
both USEs and DEFs the variable. 
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At a delinition birthpoint, the birthpoint name  becomes  the target 
{~l t]< z>signmeut. Ass ignments  are added to t ransmit  values 
among tilt' temporary variables ;~s required at join bhthpoints .  

For m~v ,,catar mnne i~ ti?e source program, tile t ransfoHnat ions  
can introduce a number  of temporary names  for that variable, 
lh~' analysis described by Banerjee [Banerjee79],  Wolfe 
IwoHc,'~21, and A/lull {Alien831 determines independence of 
subscripted ~ariab!es. With the appropriate extensions,  these 
techniques can be applied to treat e lements  of arrays as scalars 
zmd to rccog~fizu that two subscripted references are always 
disdn<'t, intuitively, expressions that are not bound to 
user-accessible names have greater freedom with respect to code 
/notJon. [ate]? temporary name constrains the ordering of the only 
ti~ow dciinition sites that reach its bhthpoint ,  A reference to a 

source name constrains  the ordering of all the definit ion sites for 
that variable. 

Consider  the example  shown in Figure 2. Only the definitions 
at (2) and (3) can reach the ase at (4). If definit ions (2) and (3) 
can be removed from the interval in a manner  that  preserves their 
re ta tve  order of ass ignment ,  then the  use at (4) can be moved as 
well. Note that this can be done irrespective of what happens  to 
the definition at ( I )  as long as the results of definitiot~s (2) and 
(3) are available after the definition to (1). Renaming  captures 
the multiple values that were assigned to a single name into 
distinct names,  making them available throughout  a computat ion.  
Provided that the dependences  for each temporary names  are 
respected,  code may be moved  by the STR1C t and N O N S T R f C  1' 
algorithms, 

if not  () g e m  exit 

~,, b ib  t ) loop: 
{ I) a ~- m)t mo~abb  a.I ~ not movable 

a,5 ~ a.l 
i{ mo~ abletcst i if movabletest  l 

tl~,~ do then do 
(2) ;~ ~ m o ~ l h b  a.2 ~ movable 

a.4 ~ a.2 
ii m{~ abk'test2 if movabletes t2  

then do 
(3) then ~ ~ m(wabtc a.3 ~ movable  

a.4 ~ a.3 
end 

~:isc : else ; 
a.5 ~ a.4 

{4) ? ~- .a ? ~- a.4 
~.p,d end 

(5) ? *- a ? ~-- a.5 
if () gore  loop 

cud exit: 
Source Program Renamed  Program 

Figure 2. Renaming  to Break Order Dependencies  

if not()  got() exit 
if m o v a b b t e s t  1 

then do 
a.2 ~ movable  
a.4 ~ a.2 
if movable tes t2  

then do 
a.3 *- mow~ble 
a.4 ~ a.3 

end  
else ; 
? ~ a . 4  

end 
loop: 

a.1 ~- not movable  
a.5 ~-- a.1 
if movabletes t  I 

then do 

a.5 ~ a.4 

end 
.9 ~ a.5 

if 0 gore loop 
exit: 
After  Code  Motion 

4.t .  t ReFraining Transformations 
The t ransformat ions  are defined in the rest of this section_ 
Figure 3 and Figure 4 represent  the t ransformation process step 
by step. Each transformation preserves the correctness of  the 
program. These  t ransformat ions  are restricted to scalars where  
the pattern of atiasing is understood.  No reordering can be done 
on variables that are potentially aliased, because the real pat terns  
of loads and stores for those variables are unknown.  See Myers  

[Myers81],  Cooper  [Cooper831 or Burke {Burke84] for a 
discussion of aliasing analysis. 

In Figure 3, the left co lumn contains  a program f ragment  that is 
expanded  to four  basic blocks, as shown in the right colunm. 
Note that  in the intermediate  code, the interval has  been equipped 
with an entry pad before the loop label and an exit landing pad 
after the exitpad label. The test that  guards  the interval has been 
duplicated above the entry pad. 
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if (i > =  n) goto exk 
while (i < n) loop: 

i f n  > 3  1: if n > 3  
then do 2: then do 

k ~ n * 6  k * - n * 6  
m - ~ - k * i  m ~ -  k * i  

end end 
else do 3: etse do 

k s - n * 8  k ~ - n * g  
end end 

j -~- k ÷ 3  4: j ~ k + 3  
i .~- i + l  i ~ i ÷ l  

if (i < n) goto loop 
e x i t p a d :  

end exit: 

Program Fragment  Intermediate Code 

Figure 3. A Program is Composed  of Basic Blocks 

The first t ransformat ion identifies the definition birthpoints in the 
interval and assigns each a unique temporary  nameA Because this 
processing is per formed interval by interval, the birthpoints result 
not just from the definition sites within the interval, but  also from 
those definit ions that en ter  the interval, tn order to identify the 
variables that may reach the interval, a special form of definition 
is placed in the entry landing pad for every variable either used 
or defined within the interval. This special definition is called an 
identity ass ignment  and has  the form x ~ x for variable x. leach 
identity ass ignment  forces the creation of a definition birthpoint 
that acts as an interface between this interval and the rest of  the 
program. 

The definition bir thpoints  are identified by splitting every 
ass ignment  s ta tement  into two s ta tements .  The first s ta tement  
computes  the r ight-hand side of the original s ta tement  and stores 
the result into a unique temporary  name. The second s ta tement  
performs an ass ignment  from the temporary name into the 
original program variable. In this way, the use and definition 
componen ts  of  each s ta tement  are separated:  thus, the part of a 
s ta tement  that computes  values can be moved independently of 
the definit ions produced by the s ta tement .  Note that the identity 
ass ignments  added to the  entry pad are included in this splitting 
process.  The first t ransformat ion  as applied tc the above example 
is shown in the left co lumn of Figure 4. 

The second t ransformat ion  identifies the join birthpoints in the 
interval DAG.  Reif and Tarjan [Reif8t]  describe algorithms for 
locating join bir thpoints  in arbitrary flow graphs.  However,  since 
interval bodies are single-entry D A G s  when  they are processed, 
a simpler solution suffices for such graphs.  The process is 
described for a single variable x 

The approach begins by adding a birthpoint at the top of the 
interval for x if x is defined within the interval This is the 

birthpoint for the values carried along the back-edges of the 
interval that join with the values entering the interval through the 
header. 

Next, the nodes in the D A G  are visited in topological order. 
When a node is visited that  is not already a birthpoint for x, its 
©AG predecessors  are examined.  If all the predecessors are 
covered by the same birthpoint for x, then this node is marked as 
covered by that birthpoint. Otherwise,  a new join birthpoint for 
x is established at the node. 

tn the second column of Figure 4, join birthpoints have been 
added for all defined variables at the top of the interval. Within 
the interval, join birthpoints have been added for k .5  and m.4. 
Two ass ignments  are created for each birthpoint added, The first 
is of the form x.n ~ x. The second is of the form x ~ x.n. 

The third t ransformat ion takes the names  created at the definition 
and join bir thpoints  and forward-subst i tutes  these names into the 
uses that  are covered 5 by these definitions. The  result of this 
t ransformat ion is shown in the third column of Figure 4. 

The four th  t ransformat ion removes  all remaining assignments  to 
source variables f rom the interval. Definit ions that are dead in 
the interval body may be removed immediately.  Any other 
definition must  have a subsequent  birthpoint as its only use. By 
back-subst i tu t ing the birthpoint variable for the left-hand side of 
the assignment ,  the source variable ass ignment  is removed. Afu:r 
this has been accomplished for all source variable definitions, the 
ass ignments  from source to birthpoint variables that appear at the 
join bir thpoints  themselves must  also be removed. A birthpoh~ 

marker  is created for use by the subsequent  algorithms. 

Additionally, this t ransformat ion transmits  values defined within 
the interval to the appropriate external use sites. The targets of 
those definitions are birthpoint variables, whereas  the uses have 
not yet been renamed.  The interface is accomplished by adding 
ass ignments  to source variables at each exit pad. Each assign- 
meat  assigns whichever birthpoint variable is currently active for 
the source variable being defined. 

Note that all ass ignments  involving source variables that were 
added to landing pads by either t ransformat ion one or transfor- 
mation four  will unde>,o renaming when the next outermost  
interval is processed,  since the landing pads will be considered as 
members  of  that interval. When the entire program has been 
processed in this fashion, no references to source variables will 
remain?" 

In order for the code motion algorithms to perform correctly, il 
is impor tam for the introduction of birthpoints ~o preserve tiw 
semantics  of uninitialized variables. This may be accomplished 
by introducing a definition for each variable at the top to the 
program, This definition would assign the special value tminiHal- 

ized to each variable. This  wilt assure that the temporary variables 
wilt not rearrange the order of assignment  for uses where an 
uninitialized variable may  reach. Of course it is not necessary to 
actually generate any code for these definitions, 

Ill the e x a m p l e s ,  the t c n l p o r a r y  i lunlcs  l o t  va r i ab le  v [law: the  Io rm  x.n.  
s A de l ' in i t ion  is said  to c o v e r  a use il" it is tile ()lily kit: in i t ion  r eaches  f i lm use.  

T h i s  is no1 t rue for  e x t e r n a l  vll l ' iables.  ~{ilch lllaFlin[k2gl'a{e~d sil~ll'ou[iiit? call l'llklSI be  trC~l{ed as  a b i r t h p o i n t  for  all  ext.errml va r i ab les .  Sml ' e s  l o r  these  ~art;lbI~'b 

arc  skill reqLlircd bc l 'o rc  ;lily c× te rna l  st lbfotl{il le call.  A r l e r  the  Skl~'lfOLItillC call. a r~clefence llltlY.l be Illat.le that  r c sc i s  tile ;tpproprKl~c !~211lporar) var iable .  Th i s  

t'CNUll CUll bu s h a r p e n e d  in d ie  p r e s e n c e  ~ff i a t e r , ? roccdura l  ana lys i s  u.~ m e l m o n c d  above  
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if (i > =  n) goto exit if (i > =  n) goto exit 
i ~ - i . 1 ~  i i .~ i.1 -~i  
j ,~ ].l ~j j ~- ],I *j 

k ~-. k.1 - - k  k - - k . t  ~-k  

n 4 - -  ;:'1,1 ~ -  n n ~ n o l  ~- n 

loop: loop: 
1: i ~ i . 2 ~ i  

j ~- ].2 ~ j  
k~-- k . 2 ~ k  
m * - m . 2 ~  m 

t: i f n > 3  ifn.1 > 3 
2: then do 2: then do 

k,3 -~-- n * 6  k.3 ~ n,1 * 6  
k ~ k.3 k ~- k.3 
m.3 ~ k * i  m,3 ~ k * i  
rn ~ m , 3  m ~- 11t,3 

end end 
3: etse do 3: else do 

k.4 ~ t.1' 8 k.4 ~- n * 8  
k ~ k.4 k ~ k.4 

end end 
4: k.5 ~- k 

k ~- k,5 
r n . 4  ~ m 

nl ~- 1.11.4 

4: ].3 ~ k + 3 j.3 ~ k + 3  

i ~ - . i . 3  j ~ j.3 
i.3 ~ - i + l  io3 + - i + t  
i ~- i .3 i ~ i.3 
if (i < n) goto loop if (i < n) goto loop 

ex i t_pad :  exit pad: 

N 

c x h :  e x i t :  

Ahcr  Separation After Addition 
of Birthpoints 

Figure 4. The Transformations Involved in Renaming 

if (i > = n) goto exit 
i .~ Lt + . i  
j ~- j,1 ~-] 

k ~ k.l ~-. k 

i n  ~ -  I n ,  1 4 -  n l  

n ~ -  r l ,  t ~"  n 

loop: 
I:  i .*- i.2 + - i  

j ~- j.2 ~ j  
k .,~ k.2 ~- k 
11. ~ m . 2  "~  1i"/ 

if rot > 3  
2: then do 

k.3 ~ n.] * 6 
k ~-- k.3 
m.3 ~ k.3 * i.2 
m e r e . 3  

end 
3: else do 

k,4 *- n,1 * 8 
k ~- k.4 

end 
4: k.5 ~ k 

k ~ k . 5  
m.4 *- m 
in ~ m.4 
j.3 ~ k.5 + 3 
] ~ j . 3  
i.3 ~ i.2 + j.3 
i ~,~ i.3 
if (i.3 <7 n.1) goto loop 

exit pad: 

exit: 
After Forward 
Substitution 

if (i > =  n) goto exit 
i.2 ~ i.l ~ i 

k,2 ~-k~l ~ k 
I 1 ] , ~  ~ i l l  1 ~'- I11.1 

[1.1 ~"  n 

loop; 
t: birthpoint i.2 

birthpoint j.2 
birthpoint k.2 
birthpoint m.2 
m.4 ~-- Irl. 2 
if rot > 3 

2: then do 
k,3 ~-. n.l * 6  
k.5 .~ k.3 
rn.3 ~- k.3 * i.2 
rn.4 ~- m.3 

end 
3: else do 

k.4 ~- n.! *8  
k.5 ~ k.4 

end 
4: birthpoint k.5 

k.2 .*- k.5 
birthpoint mA 
m.2 ~- m.4 
j.3 ~ k.5 + 3 
j.2 ~- j.3 
i.3 -~ i,2 + j.3 
i.2 --~ i.3 
i f  ( i . 3  < n,  1 ) goto loop 

e x i t p a d :  
i ~ i . 3  
j ~-].3 
k ~ k . 5  
m ~ m.4 

exit: 
After Back- 
Substitution 

N~[c tha{ maiD' temporary xariabtes may be created whose only 
other references arc to set other temporaries. After the last 
trunsh>rnmtinn described above., it is advisable to perform a pass 
ol dcud code ciimination and remove al] of the temporary names 
{hat arc never otherwise referenced. 

Ahcr  aII of code has been moved it is possible to coalesce many 
of these temporaries into a much smalter number of compiler 
temporaries by a process known as coloring. While this process 
is NP complete for an exact solution. Chaiti~.1 [ChaitinS1] 
l C/~ai{in82] has developed a heuristic approach that has very good 
performance. 

4,2 The S~ffic~ AigorRhra 
h~ thb, section, a strict algorithm is presented for moving 
~httcments from h~sicte a~ im:erva] to the landing pad guarding the 
cmrance of that interval. To accomplish strict execution, the 
algorithm first copies the control flow that surrounds movable 
suacmcms.  Consider the example shown in Figure 5. 

i ~ - 1  
while (i < n) 

if]  = 3 
then k ~ 6 
else k ~ 8 

i ~ i + t  
end 

Figure 5. A Simple Example 

Neither assignment to k can be moved without violating both 
correctness and strictness, unless the test and branch accompany 
the motion. 

The STRICT algorithm visits the statements of an interval to 
determine which statements are eligibte for movement to the 
entry pad. "The order of the traversal is the dominated topological 
order that was defined in Section 3.4. This ordering guarantees 
that when a statement is considered for movement,  any other 
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s ta teme~t  whose m o v e m e n t  might  free this s ta tement  for 
movemen t  will already have  been visited. T hus  a single pass over 
the interval is sufficient to determine the movabili ty of  the  code. 

As the traversal progresses,  movable  tests are copied into the 
entry pad, and replaced in the interval body by simple bit tests. 
Other code that  is found to be movable  is moved  to the landing 
pad without  leaving any code behind in the  interval. After  the 
processing is complete,  the interval body and the landing pad may 
both be subjected to a form of dead code elimination that  locates 
and discards tests  that no longer guard arty code. 

The tests  for movabili ty involve the concept of  control 
@em/ee~ce, which is developed by Ferrante,  Ottenstein,  and 
Warren {Ferrante84]. Informally, a s ta tement  is control 
dependent  on those tests  that may cause the s ta tement  to be 
executed. More precisely, a s ta tement  Yis control dependent  on 
a s ta tement  X if 

I. There  exists a path from X to Y such that  all nodes  in the 
path, except  X and K are pos t -domina ted  7 by Y, and 

2. Xis  not pos t -domina ted  by K 

Consider  the program f ragment  shown in Figure 6. By the above 
definitions, each ass ignment  to j is control dependent  on the test  
of i, but  the the test of k and ass ignment  to m are not. A larger 
example of a program flow graph and its associated control 
dependence graph can be found in Figure 10. 

while (i < n) 
if i t 3  

t h e n ]  ~- 5 
else j ~- 7 

i f k = O  
then  m ~-, 6 

i s - i + 1  
end 

Figure 6. Variant and  Invariant  Branching 

The condit ions that allow a s ta tement  or a test  to be movable are: 

1. The  s ta tement  mus t  not  be control dependent  on any 
immovable  test. 

This  condit ion insures that me  conditions for executing the 
s t a tement  are mvar i am of the interval and can be duplicated 
in the entry oad It accounts  [or control depenaenees  that 
govern *he correctness  and strictness of relocating a 
sm~emem.  The NONSTR~CT algorithm relaxes this 

constrain~ 

In Figure 6. this condit ion precludes movemen t  of either 
a s s ignmem to j because they are control  dependem on the 
loop-variant  test on  i. However_ the  test on k and the 
a s s ignmem to m that  it guards are unaffec ted  by the test and 
branch on ~. 

2. Definit ions that  reach  uses within the s ta tement  mus~ come 
f rom s t a t emems  outside the interval. A bir thpoint  marker  is 
t reated as a use of the variable it marks.  

This condition accounts  for one of two data  dependence 
constraints  that  mus t  be observed to insure correctness.  A 
violation of this constraint  can reorder s t a tement  execution 
in such a way that  a variable is used prior to its having been 
assigned the proper value. 

Note  tha t  if all the definitions for a particular name, can be 
moved from the interval to the landing pad, then  s ta tements  
reached by those definitions may  become eligible for 
movement ,  

Since this condition concerns  correctness  rather than 
strictness, it also appears  in the nonstrict  algorithms. 

3, A definition for a variable may  not  be moved if the birthpoint 
for the  variable has  already been processed,  or if an earlier. 
definition for the same variable was found to be immovable.  

This data  dependence constraint  is required to insure the 
correctness of the t ransformed code. The birthpoint 
constraint  depends  on the  observat ion that  the birthpoiut for 
a variable either domina tes  alt definitions for the variable in 
the interval, or it pos t -dominates  them. In the former case, 
this condit ion will preclude movemen t  of any of the 
definitions. This  is necessary since the birthpoint must  result 
f rom the merging of a loop-carried definition and a definition 
from outside the interval. Moving any definition for such a 
variable would result in an incorrect value for the variable 
during the first i teration of the interval. 

The  second part of this condition is motivated by similar 
considerat ions,  Cons ider  the type of join birthpoint that 
pos t -domina tes  the definitions that reach it. T h e s e  
definitions all reference the same variable name and must  
therefore be executed in topological order. Since the landing 
pad is executed before the interval, definitions that reach this 
bir thpoint  can be placed in the landing pad, provided that the 
ordering of definitions is respected. Thus ,  in a topological 
traversal,  i1o definition can be placed in the landing pad 
unless all previously encountered  definitions are also moved, 

The actual construct ion of an  appropriate control structure begins 
by copying a skeleton of the control structure from the interval 
into the landing pad. In the landing pad, loop exits are redirected 
to the bo t tom of the landing pad. If such a branch is taken in the 
landing pad, then the loop is guaranteed to exit from its first 
iteration at the same exit in the interval. The s ta tements  and the 
conditional tests are then processed in dominated topological 
order. A n y  code that is found  to be movable is simply moved 
from its position in the interval body to the corresponding 
position in the landing pad skeleton. 

A complication arises when an immovable test is encountered.  
The test  tha t  was naively copied to the skeleton must  be removed. 
along with any additional control structure that is directly or 
indirectly control dependen t  on the test. Since an immovable test 
cannot  be decided in the landing pad. control is transferred to its 
immediate post -dominator  in the landing pad. Code that ~s 
subsequent ly  found to be control dependent  on  the test remains 
in the interval due to the first condition. 

When  this traversal is finished, unreachable portions of the 
skeleton can  be removed f rom the landing pad. Such nodes  must  
have been  situated be tween an immovable  test and its 
post-dominator  and thus its sole means  of ent ry  was eliminated 
when the immovable  branch  was deleted from the landing pad 

" A node  kV is Dos t -don~ina ted  by z~ n o d e  V if all p a t h s  f rom W to  the p r o g r a m  exit  inc lude  V. 
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if (i > =  n) gnto exit 
i.2 ~ LI .... i 
].2 .... j.1 ~- j  
k.2 ~ k . t  .~-- k 
111.~ ~ I11. t ~ -  (11 

I]. i ~-- n 

;<hilt (i < n) 

iln > 3 

then do 

n! ~ k * i 

end 
clw ,.hi 

k ~... n *  g 

cml 

, i t - k +  3 

i ~ i + t  

end 
Original Loop 

loop: 
l : birthpoint i.2 

birthpoint j.2 
birthpoint, k.2 
birtllpoint m.2 
m.4 ~ m.2 
i f m l  > 3 

2: then do 
k.3 ~- n.1 " 6  
k~5 +- k.3 
m.3 ~ k.3 * i.2 
m . 4  ~-- m . 3  

e ,I d 
3: else do 

k . 4 ~ - m l  " 8  
k.5 ~- k.4 

e n d 
4: birthpoint k.5 

k.2 ~- k.5 
birthpoint m.4 
m.2 ~- m.4 
].3 ~- k.5 + 3 
].2 *-j .3  
i.3 ~ i.2 + j.3 
i . 2  ~ i.3 
if (i.3 < n. 1 ) goIo loop 

e x i t p a d :  
i ~ i . 3  
j ~ j . 3  
k ~ k . 5  
r n  ~ m . 4  

exit: 
Intermediate Form 

Figure 7. Full Example of Strict Code Motion 

if (i > =  n) goto exit 
i.2 .... i.l ~ i  
j .2 ~- j . I  .... j 
k.2 ~- k.t *- k 
[1 t ,2  4"" 131, I ~ -  I1'1 

n ,  / 4,-. I1 

l: T1 .~- (mi > 3) 
if T1 

2: then do 
k,3 ~ I I . 1  *() 
k,5 -~' k.3 

end 
3 : else do 

k.4 ~ u.l " 8  
k.5 ~- k.4 

end 
4: birthpoint t<.5 

j.3 .~- k,5 + 3 
loop: 

1: birthpoint i,2 
birthpoint j.2 
birthpeint k.2 
birthpoint m.2 
I n . 4  ~ r n . 2  

if T/  
then do 

2: m,3 ~, k.3 * i.2 
m.4 ~- m.3 

end 

k.2 ~- k.5 
4: birthpoint m.4 

m.2 ~- m.4 

j.2 ~ ].3 
i.3 ~- i.2 + j.3 
i.2 ~- i.3 
if (i.3 < n.1) gore loop 

e x i t p a d :  
i .*- i.3 
j ~ j , s  
k ~- k,5 
m ~ m.4 

exit: 
After Strict Code Motion 

In Figure 7. the example shows three forms of a program 
fragment. Note that this is the same example used in Section 4.1 
The left column i5; the highdevel source. The center column is the 
intermediate code after renaming The right column is the code 
aher  being processed by this algorithm. Processing proceeds 
according to the dominated topological ordering of the control 
flow graph: {.he block before the if. the then block, the e~se and 
finatly the btock artier the test, 

The birthpoint of L2 (where the value of i carried around 
the loop joins with the value entering from above) is not 
moved out of the loop. because it is treated as a use for L2 
that is reached by a definition that has not yet been moved 
out of the loop. The same is true for the birthpoints of 
j.2, k.2, and rn.2. In fact, none of the join birthpoints that 
are inserted at the top of a loop will ever be moved ouI of 
the loop. 
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2: 

3~ 

4: 

The assignment to m.2 cannot be moved because its use 
of m.2 is reached by a definition remaining in the loop. 

The computation of n. 1 > 3 can be moved outside the loop 
since neither n, 1 nor 3 are redefined within the loop. The 
temporary T] is assigned the value of the test and the 
branch within the loop tests this temporary rather than 
recalculating the real condition. 
The calculation of k.3 may be moved from the loop since 
the entire right side is outside the loop or constant. 

The assignment to k.5 may be removed since the 
birthpoint for k.5 has not been reached yet. 

The assigmnent to m.3 is not moved since its use of i.2 is 
reached by a definition that is in the loop. This 
subsequently holds the assignment to m.4 inside the loop. 
All of the code in the else block is movable in the same 
manner that the code was movable in the the~ block. 
The birthpoint k,5 is movable since both definitions of k.5 
have been moved. However, since a definition for m.4 
was left in the loop, the birthpoint for m.4 must be left as 
well. 

The assignments to k.2, m.2 and j .2 must remain in the 
loop because their birthpoints have been processed. 

The assignment to j .3  is movable since all definitions for 
k.5 have been removed from the loop, and there is no 
birthpoint for j.3. 

The definition for i.3 is not movable because its use of i.2 
is reached by a definition of i.2 That very definition is 
therefore held in the loop as welt, as is the calculation of 
the test condition i.3 < n.1. 

4.3 Structural Common Subexpression Elimination 
The STRICT algorithm cannot move code out of an interval 
unless the control structure that governs the execution of that 
code is also moved. The goal of the COMMON algorithm, 
described in this section, is to move code out from under the 
influence of immovable tests, thereby increasing its likelihood of 
being eligible for movement. The algorithms described here may 
be performed on a renamed interval, prior to the application of 

the STRICT algorithm. 

The STRICT and C O M M O N  algorithms are similarly motivated. 
Algorithms should accommodate secondary effects in a natural 
way. The motion of simple statements should be accompanied 
by the motion of their relevant control structures, since since 
common control structures occur quite often in the context of 
high-level data abstractions. Consider the example in Figure 8. 

while i 
if LV 

then b ~- f(d) 
else b ~- f(e) 

end 

Figure 8. 

If procedure integration has incorporated the references to.[', then 
a reasonable amount  of code should be common to both  branches 
of loop-variant test LV. Even if the procedure integration has 
extensively tailored the call sites, as proposed by Wegman and 
Zadeck [Wegman85], portions of the incorporated code, due 

perhaps to addressing and parameter checking, should be 
common to both successors. Consider the following example: 

if LV 
then if LI 

then do 
x < - - a  

y ~ c + t  
end 
else do 

x * - b  
y ~ c + 2  

end 
else if LI 

then do 
x ~ . - a  

y ~ - - c + 3  
end 
else do 

x ~ b  
y ~ c + 4  

end 
Before Movement 

if LI 
t h e n  x ~ a 

else x ~- b 
if LV 

then if Ll 

then y ~- c + 

e lsey ~- c + 2  

else if L1 

t heny  ~- c +  3 

e tsey ~ - - c + 4  

After Movement 

Figure 9. A Movable Test That is Control Dependent on 
an Immovable Test 

The loop-variant test L V  ordinarily prevents movement or any 
code dependent on that test, In this case, the circumstances that 
determine which value is assigned to x are governed only by the 
loop-invariant test LI,  because it is common to both sides o1 the 
L V  branch. The assignments to x can thus be removed (rom 
control of LV as seen in the right column of Figure 9. As in the 
STRICT algorithm, statements such as the assignments to .v must 
be accompanied by their associated control structure when 

moved. 

The COMMON algorithm will initially be presented that cain 
move assignment statements above a test. if the assignmcnl 
statement occurs along all paths from that test. This alg{~rHhm 
will be enhanced to allow commoning of certain classes of controi 

structures as well. 

The algorithm is composed of two alternating phases thai iterate 
over all the tests that occur in an interval Given a test T. the first 
phase constructs collections of statements to be analyzed rot 
possible movement above T. Each collection represents 
statements controlled by one of the possible branehcs rrom T. h7 
the second phase, the collections are compared to discover which 
statements are common along all paths from T. and cach such 
statement is moved to a single instance above T. 

The movement is performed so that a particular statcmcnt is 
never moved past more than one of  its guards at a time. Thus° in 
order to insure that a statement will be moved past as many 
guarding tests as possible, the tests that control the execution o1 
a statement must be considered successively, in an inner-to-outer 
fashion with respect to conditional nesting. In the two-phase 
analysis, a test must be considered only after all the tests that il 
directb or indirectly controls have been considered. This is 
accomplished by visiting the tests according to a reverse 
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topological traversal of the control  dependence  D A G  that  is 
eonslructed for the interval, s 

Whenever  two or more c o m m o n  ass ignment  s ta tements  are 
merged into a single s t a tement  and moved above a c o m m o n  
guard, the variables on the left sides of  those s t a tements  mus t  be 
aliascd throughout  the remainder  of the compilation. Because the 
alias relationship need never  be undone,  a disjoint union-f ind 
structure can be used to mainta in  the necessary  global dictionary. 
Each set mainta ined by the dictionary cor responds  to a collection 
of aliased names.  The  name  by which a set is known,  called the 
reprwser~tative ~ame, is re turned  by the j%td operat ion on any 
member  of its associated set. tf  two variables are aliased, they 
will always have the same representat ive  name.  Therefore,  all 
references to variables wilt be made via the aliasing dictionary. 

4.3.t Phase One: Identifying Candidates for 
Movement 
Once a test T has  been chosen as a potential  target for 
commoaing ,  the control dependence  graph is used  to cons t ruc t  a 
number  of  collections of s ta tements  that are considered for 
movemen t  above ill Each collection cor responds  to one of the 
conditional branches  emana t ing  f rom 7; and  contains any 
s ta tement  whose only control  dependence  is on T by that  
branch.  ̀ ) It is easy to show that  each included s t a t emen t  is also 
dominated  by 71 

Any  ass ignment  that  appears  in all the collections constructed for 
T must  occur on all paths emana t ing  from T, and so mus t  be 
exec~lted regardless of  the ou tcome of 71 The  second phase 
extracts those  c o m m o n  s t a t emen t s  and moves  them above iF. 

Unless a s ta tement  is domina ted  by T, some path that excludes T 
could leaci to execut ing that  s t a t ement  in the original program. 
Only s ta tements  dominated  by T are considered for commoning .  

4.3,2 Phase Two: Selee~ng and Moving Common 
Cede 

Assignments  are considered c o m m o n  if their r ight -hand sides are 
identical. Since the C O M M O N  algorithm is designed to work on 
renamed programs,  the le f t -hand sides of  any two ass ignments  are 
necessarily distinct temporary  variables in the case of definit ion 
birthpoints.  W h e n  c o m m o n  ass ignments  are promoted  to a single 
instance above a test,  the temporary  variables that  were the 
targets of  the  original ass ignments  are unioned into the aliasing 
dictionary. The  representat ive  name  for the variables remains  as 
the target of the new ass ignments .  The  aliasing dictionary is 
searched for names  occurring in r ight-hand side expressions to 
make subsequen t  express ions  eligible for  commoning .  

Suppose a target T is considered with s ta tement  collections C1 
and C2, The second phase proceeds as follows: 

I. All r ight -hand sides of  C2 are hashed  into a dictionary so that  
any given expression can  be quickly checked for inclusion in 
C2. 

2. The s ta tements  in C7 are examined  in topological order 
according to the control flow graph,  If an ass ignment  is 

found that  is eligible for movement ,  its r ight-hand side is 
looked up in the hash  table for C'2. 

3. Wheneve r  a match  is found in step two, each of the assign~ 
ments  is moved  f rom its current  position, and a new assign- 
ment  is cons t ruc ted  immediately before the test  T. The  two 
variables are entered  into the aliasing dictionary, attd the 
resulting representat ive name  is used as the target uf the new 
ass ignment .  A Birthpoint  can also be moved  if those 
definit ions are the only ones  that reach the birthpoinl.  

In order to avoid the rehashing the s t a tements  itt C2 after m o v i %  
an ass ignment ,  none of the representat ive nantes  of  variables used 
in C2 must  change as a result of  the new aliasing. This can be 
accomplished easily when  performing the tmioz7 operatiot~ by 
choosing the C2 name as the result name. "~ 

Note that  to be eligiNe for movement ,  the r ight -hand side of an 
ass igmnent  mus t  not  use any variables for which definit ions exist 
that  are domina ted  by the test 71 This  is trivially satisfied by the 
above algori thm due to the renaming.  If a definit ion did exist, it 
would have caused a new n a m e ,  and the s t a t ements '  r ight-hand 
sides would not  have matched.  

4.3.3 Co:rerunning of Contro~t Sm~ctures 

This  section presents  an extens ion of the  above algori thm, that 
includes the mot ion  of entire regions of control  s t ructures  as well 
as a ss ignment  s ta tements .  Candidate  c o m m o n  s t ructures  are 
identified by the fact that  they have c o m m o n  tests and are controi 
dependen t  and  domina ted  by the  same test. This  is analogous to 
the match ing  of ass igmnents  in the previous section, except  that 
conditional express ions  ra ther  than r ight -hand sides are 
compared.  

In general, a moved  control s tructure is no t  copied exactly. Some 
of the code conta ined in the s t ructure  m a y  not be commo n  to all 
instances,  or  some portions may be immovable  due to data 
dependence  considerat ions.  For  this reason,  the regions to be 
moved  mus t  be editable, in that  they can be copied selectively by 
parts wi thout  incurring undue  costs,  tn  particular, due to the 
difficulty of  backing out  of  aliasing and o ther  decisions,  si tuations 
in which a piece of code is moved  and then  later pulled back are 
avoided. 

This  policy can be enforced by restricting m o v e m e n t  to structures 
in which all required editing is in terms of s ingle-entry single-exit 
regions of the  flow graph. In order  to avoid a costly 
p re -examina t ion  of the s tructure to determine which nodes  head 
such regions, a simpler test is per formed to decide whether  or  not 
the  region under  considerat ion is a series-parallel (S-P) 
graph-- the  type that normally occurs  in s t ruct~red programs.  ~ In 
such  a graph,  there is a one- to -one  correspondence  be tween split 
nodes  and join nodes,  such that  each split node domina tes  its 
cor responding  join node, and  conversely,  each join node 
pos t -domina tes  its corresponding split node. Thus ,  each split 
node  (arising from a conditional branch)  necessarily heads a 
s ingle-entry single-exit  region, and thus may  be edited from the 
overall  s t ructure  witho~tt dis turbing the other  parts  of  the graph. 

The control dependence DAG was introduced in Section 4.2. An example of such a DAG is presented in Figure 10. 
" That is, following that branch of T guarantees execution of the statement, whereas some other branch of T may avoid executing the statement. 
" Although this works if only two-way branching is encountered, it can be extended to multi-way branching as well. In this case, collections C2 through Cn 

wifi be hashed, and collection CI will be traversed as above. In this ease, however, it is not possible to keep ar~ atiasing operation from changing represe)~-. 
tathees for all of the collections C2 through Cn. Instead, update of the global alias dictionary rm~st be deferred, and a simple table linking names from C/ 
with i~s aliases in the other collections is maintained. This suffices throaghoat processing of test Tsince every vaNable in Cll wit/have at most one alias i~ 
each ol the other collections. After processing T, the information in this simple alias tame is merged with the global dictionary. 

" [he decision that o)~ly SaP control structures are eligible for movement somewhat limits the power of the COMMON algorithm. However, the S-P restriction 
is a reasonable compromise between power and cost. Moreover, the S-P restriction does )~ot limit the algorithm when applied to scr~act~red programs. 
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A single pass over  the  control flow B A G  suffices to determine 
whether  a node heads  a S-P region. 12 

in phase two of the C O M M O N  algorithm, when  c o m m o n  tests 
heading S-P regions are identified along all branches f rom test 
node T, a new copy of the c o m m o n  test  is created above T, and 
the c o m m o n  port ions of the S-P regions are copied to form a new 
region under  the promoted  test. Any  code in the original regions 
that  is not  c o m m o n  mus t  remain in those  regions, along with any 
required control structures.  

Discovery of c o m m o n  code here is roughly the same as in the 
simple C O M M O N  algorithm. The only difference is that 
condit ions guarding a s ta tement  in the S-P region must  be  hashed 
along with. the s t a tement  itself. In this way only s ta tements  in the 
same place relative to the entrance of the S-P region will be 
considered common.  

As in the simple C O M M O N  algorithm, an Z ass ignments  that  are 
c o m m o n e d  as a result of  structure commoning  mus t  cause updates  
to the aliasing dict ionary in order to allow the commoning  of later 
ass ignments  and tests  that make use of the aliased variables. 

In order to ease the process of copying code from common  
control s tructures,  traversal of the structure in the C1 collection 
is performed according to the dominated  topological order 
defined in Section 3.4. The  dominat ion aspect of this ordering 
allows the S-P d iamonds  to be copied easily without having to 
close up dangling control flow paths. 

4.4 A Nonstrict Algorithra 
The STRICT algori thm disallows movemen t  of any code that is 
control dependent  on immovable  tests. In this algorithm, 
str ictness is relaxed, thus increasing the opportunit ies  for 
movemen t  substantially,  a l though the profitability of some moves 
becomes quest ionable.  This algorithm is based on the assumpt ion 
that it is generally more  profitable to execute every s ta tement  in 
the interval once if the interval is to be executed,  rather than 
possibly execute some  s ta tement  many  times by leaving it in the 
interval. As in the STRICT algorithm, all motion is from the body 
of the interval to the landing pad. 

Like the STRICT and C O M M O N  algorithms, the mot ion  of a 
control s tructure precedes the mot ion of its guarded statements .  
If that control s tructure is itself dependent  on some immovable  
test, then motion of the control structure improves profitability 
of s ta tements  that  it guards, but  such s ta tements  are not executed 
strictly. Further ,  the mot ion of a control structure can free other 
code for movement ,  but  at the cost of  strictness. Strictness can 
only be guaranteed  for s ta tements  that  are control dependent  only 
on movable  tests. 

As  in the STRICT algorithm, the intervals of  a program are 
traversed from their innermost  to outermost  nesting. Upon 
visiting an interval, the D A G  that corresponds  to the body of the 
interval is traversed by the dominated  topological order described 
in Section 3.4. U p o n  visiting a node that is control dependent  
only on movable  tests,  that node can be immediately placed in the 
landing pad, since its control dependent  predecessors  have 
already been visited by the dominated  topological traversal. Thus  
far, the mot ion is strict. However .  a node that is control 

dependent  on some immovable  test  cannot  be guarded by that  test 
in the landing pad. For  nonstr ict  execution,  s ta tements  of such 
nodes  can still reside in the landing pad, and  the location chosen 
for those s ta tements  determines  the profitability of  the nonstrict  
motion.  In particular, the node may  be control dependent  on 
some  movable test, which, by nature  of  the traversal, already 
appears  in the landing pad. 

More  specifically, the mot ion of  control s tructures must  account  
for the types of branches  upon  which a node N is control 
dependent.~3 

1. If N is control dependent  on an immovable  branch,  then  its 
execution cannot  be strict with respect to that branch.  
Suppose N is control dependent  on branch b of node P. The 
nodes along the frontier determined by a traversal f rom P 
along its b branch are executed under  conditions that require 
execution of node N. Reaching any  node of that frontier 
must  guarantee  the execution of node N, and so the branches  
of all nodes on that frontier must  be targeted to node N. 
Similarly, suppose node U unconditionally transfers control 
to node N. By the above mechanism,  the branch from U may 
have been redirected to some node other  than N. The same 
mechan i sm must  be applied to the frontier determined by U, 
which may  consist  of  only U if no redirection was performed 
o n  U, 14 

2. If N i s  control dependent  only on movable branches,  then N 
can be placed as in the original control flow DAG.  provided 
that the relevant branches  are still unresolved. If any branch 
relevant to the placement  of  N is already resolved, then N is 
placed as if it were under  control of some immovable branch. 

This  nonstrict  motion results in three levels of profitability, each 
associated with a set of criteria that determines the correctness 
of  moving s ta tements .  

1. Nodes  that are control dependent  only upon rnovable 
branches  can be executed strictly. Thus,  the conditions 
described in the STRICT algorithm apply to the motion o[ 
s ta tements  from such nodes. 

2. Nodes that are control dependent  on immovable branches 
are unconditionally executed with respect to the immovable 
branches.  The condit ions that permit motion in this case are 
described in Section 4.4.2. 

3. Due to the p lacement  strategy, some nodes may be control 
dependent  only on movable  branches,  yet be placed as if they 
were under  control of some immovable  branch. Such nodes 
are executed profitably. The mot ion is in general more 
profitable when there are many movable branches between 
an immovable  branch and N. The conditions that permit 
motion in this case are described in Section 4.4.3. 

4.4.1 An E×arnl~Je of Control Structure Copying 
Consider  the control flow D A G  shown in the left column ni 
Figure t0.  The arcs are directed, with the destination of an arc 
lower in the figure than  its source. Using the techniques oi 
[Ferrante841, the control  dependence graph is contrueted as 
shown  in the middle column of Figure I0. 

~ Consider a test node '/i Visit the successors of T in topological order. Each node will be labeled with the conditions that guard its execution ' relanve to 
conditions on 73. For the graph to be S-P, that labeling may be represented by a conjunctive clause, with negated terms where false branches are taken. A~ 
each join node, the conditions labeling each of the predecessors must be identical, except me last term: one should be the complement of the other. The list 
becomes empty at an exit node. If the labeling cannot be reoresemed in the manner described here. then Tdoes not head a S-P region, other than the trivial 
region consisting solely of T itself. 

~ For purposes of this discussion, a node that is independent of all tests is considered to be trivially dependent on a movable test that always causes executinll 
of that node. 

~4 This process can be accomplished efficiently by maintaining frontier pointers in the nodes and adjusting the pointers using path-compressiun technique- 
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lhu right coMmn shows the results of applying the above 
tuNmiqucs t~>thc DACi and its control dependence graph. This 
s<'cti{m c×tlnfincs in dctait how code can be copied into the landing 
pad. Thus Bar. no issues of safety are addressed. This section 
z+<ldrcsscs only where code can be placed in the landing pad, given 
that the conditions that determine safety are satisfied. The 
Sgoridnn tra+,crscs the DAG in the order shown by the node 
!abcK Iiuch node of the DAG corresponds to a straight-line 
sequence oi  code terminated by a branch. Node t is control 
dcpcndcnt  only on program entry. +5 The code of node 1, including 
the movaNc branch with which it exits, can be moved. Node 2 
is control dependent  on that movable branch, so its code can be 
moved up to its immovable branch. Nodes 3 and 4 are control 
dcpcndent  on the immmovable branch of node 2, so they are 
executed unconditionally with respect to node 2. The branch of 
node 3, previouty  targeted for node 5, is resolved prematurely to 
cause this unconditiona] execution. The branch from node 1, 
which is still open, can protect  node 6, which is dependent  only 
on the movable branch from node i. Because the relevant 
branches are still open and only movable branches are the source 
of control dependences,  nodes 7 and 8 are placed under control 
of  node 6, node 9 is the successor of nodes 7 and g, and nodes 
10 and 11 follow the join of nodes 5 and 9, Nodes 12 and t3  are 
control dependent  on immovable branches and follow node 11 in 
the landing pad; there are no relevant branches to close. Node 
14 is control dependent  on the movable branch of node 13, and 
is appropriately guarded in the landing pad. 

Node ] 5 deserves special attention, tt is control dependent  on the 
immovable branch of  node t2. All unresolved branches between 
nodes t2  and 15 must be closed and targeted to node 15. Node 
t3  contains such a branch. The branch has two successors; one 
successor is already closed and targeted to node 14. The other 

~s Like uncorldidonal branches, program entry :is a movable branch. 

branch, originally targeted for node 17, must now be targeted for 
node 15. Thus, node 15 is executed less profitably than could be 
expected. In particular, arriving at node 14 implies that node 15 
is not executed. However,  node 15 must be placed such that if 
node t2 executes (the node upon which it is control dependent),  
then node 15 executes. The conditions that determined the 
placement of nodes 14 and 15 also apply to the placement of 
nodes t6 and 17. 

Consider  nodes t8, 19, and 20. They are dependent  only upon 
movable branches,  but these branches have already been 
resolved. They are therefore placed as if they depended on 
immovable branches. 

Node 21 is dependent  on the immovable branch of node 1 t,  and 
all branches for nodes l 1 through 2tt are already resolved. Node 
21 concludes with a movable branch, which is copied into the 
landing pad. Node 22 is then placed under control of that branch. 
Similarly, nodes 23 and 24 are placed under control of the 
movable branches of node 22 and 21, respectively. Nodes 25 is 
dependent  on the immovable branch of node 24 so its execution 
follows node 24. Node 26 is control dependent  on nodes 24 and 
22, thus forcing all unresolved branches in nodes 22 through 26 
to be targeted to node 26. The branches from nodes 22 and 25 
are thus targeted for node 26. Node 27 can be placed as in the 
original DAG since the relevant branches are still open. Node 28 
is control dependent  on the immovable branch at node 24. All 
branches from 24 through 28 are targeted for node 28. Nodes 
29 and 30 are similarly placed 

4°4°2 UncenditienalJy Exeeeuted S~tateraents 
Statemer, ts executed unconditionally are more restricted with 
respect  to code motion. These restrictions are required to assure 
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that the semant ics  of  the program are preserved in the absence 
of normal control s tructures that guard the s tatements .  ~(' 

I. Definit ions that  reach uses within the s ta tement  mus t  come 
from s ta tements  outside the landing pad or other uncondi-  
tionally executed s ta tements  already moved to the landing 
pad. 

This restriction does not allow these unconditionally 
executed s ta tements  to use values generated by sections of 
code are either strictly or profitably executed since these 
values may not  be available. 

2. A variable defined by this s ta tement  must  cover all of its 
uses, i.e. it rnust be the only definition of that  name to reach 
any use of that name. 

Since none of the control s tructure is moved with this code, 
multiple definit ions for the same variable cannot  be distin- 
guished. This  restriction will only affect ass ignments  
between temporary  variables since the renaming guarantees  
that all expressions with non-trivial r ight-hand sides generate 
unique names.  

4 ° 4 . 3  P r o f i t a M y  E x e c u t e d  S t a t e m e n t s  

Sta tements  of this type are control dependent  on a chain of 
branches.  The first member  of that chain is an immovable  branch 
and it is followed only by movable branches.  Consider  a region 
of nodes,  defined as those nodes dominated by the first movable 
branch of that chain. ~7 Sta tements  of  a region are eligible for 
motion, subject  to the first criterion of the unconditionally 
executed s t a tements  and two additional criteria: 

I. tf a variable defined by the s ta tement  has a birthpoint,  then 
that birthpoint must  be in the region. This condition 
guarantees  that  the sequencing of the definitions that  reach 
the birthpoint is preserved in the landing pad, 

2. Definitions for variables may be moved out if the birthpoint 
of the variable has not  been processed and no earlier 
definitions for that variable remain within the interval. 

4.5 The  Combine Algorithm 
The C O M M O N  algorithm given in Section 4.3 is strict in the 
sense that  it does not  move an expression above a branch unless 
the expression is c o m m o n  along all paths from that branch.  If 
some path failed to include the expression,  then moving the 
expression above the  branch causes its unconditional execution 

with respect to the branch. 

Consider  a si tuation in which an expression is not  quite common 
along all paths f rom a branch. For example,  from a three-way 
branch,  some expression could occur  along tWO paths but be 
absent  on the third path. The C O M M O N  algorithm is unable to 
move the expression since it is not  common  along all paths  from 
the branch. Now suppose that the N O N S T R ] C T  code motion 
algorithm is applied to this example,  and the test was not  movable. 
Both instances of  the expression could be moved above the 
branch,  causing redundant  execution of  the expression. 

A solution to this problem is to mainta in  a dictionary of available 
expressions that are unconditionally executed in the landing pad. 
An e×pression contained in the dictionary need not be placed 

again in the landing pad. References  to expressions that are 
deleted in this manne r  must  be accommodated  by aliasing the 
lef t-hand side variables, as discussed in the C O M M O N  algorithm. 

5 ° 0  C o n c l u d i n g  R e m a r k s  

Al though the algorithms presented in this paper are improve- 
merits over existing code motion techniques,  the algorithms have 
the following shortcomings:  

1. The success of the STRICT and N O N S T R I C T  algorithms is 
greatly affected by the C O M M O N  algorithm, since the 
C O M M O N  algori thm t ransforms nonstrict  code into either 
strict or profitably movable code. The  C O M M O N  algorithm 
has a heuristic componen t  that limits its effectiveness to 
obtain a polynomial time bound. 

2. Sta tements  moved by the algorithms must receive the sap~e 
values on all iterations of the loop. Consider  the program 
shown in Figure 11 : 

while 0 
t ~ i + 5  

i ~ nonmovable  

t ~ i + 5  
end 

Figure 11. Variant  but Removable  code 

3. 

The value of i changes  for each iteration. As a conscquc~cc,  
the techniques presented here fail to move either of  the 
ass ignments  to t f rom the loop. It is correct to move either 
the first before the loop or the second after the loop. This 
example can be accommodated  by unrolling the loop once, 
copying all of the r ight-hand sides of s ta tements  from the 
loop to the entry landing pad where they are unconditionally 
executed. The s ta tements  of the loop that are redundant  are 
then eliminated, as are the s ta tements  in the landing pad that 
never contr ibute to the code within the loop. This case is 
easily analyzed for code that  is unconditionally executed in 
the landing pad. Since the goals of STRICT and 
N O N S T R I C T  are to execute code as profitably as possible, 
control s tructures accompany the mot ion of s tatements .  

The success of  the algorithms often depends  on the order in 
which nodes  are considered. Since the dominated topological 
order is not a unique total order, the solutions can be order 
dependent .  The  dominated  topological order can usually 
select any  successor  of a branch as the next node to visit. 
The result of this f reedom is that some assignments  to join 
birthpoint names  may not  be removed.  In Figure 12, if the 
then block is evaluated first, neither assignment to t.3 is 
removed.  If the else block is evaluated first, the assignment  
to t.3 in that block is removed. This  type of order depend-  
ence is not really important  since in neither case is the 
birthpoint for t.3 movable.  Without  a movable birthpoint,  
no real uses  of  t.3 can  be moved.  

~7 The nodes thai comprise tl'lis region are easily determined by the dominated top~k~gkal traversaI. 
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4. 

if movabletest 
then do 

t.1 *- notmovable 
t.3 ~- t.I 

end 
else do 

t.2 ~ movable 
t.3 *. t.2 

end 
birthpoin.t t.3 

Figure 12. Order Dependence 

In the NONSTRICT algorithm, nodes are placed in the order 
determined by the dominated topological traversal. Upon 
placing a node N that is control dependent on an immovable 
branch, certain branches that are unresolved in the landing 
pad are targeted on node N. Such branches may be capable 
of guarding a subsequently placed node, but the 
NONSTRICT algorithm precludes reopening resolved 
branches. The work of Ferrante and Mace [Ferrante85] can 
place nodes such that they execute more profitably. For 
programs that correspond to some correct sequential order, 
the control dependences suffice in placing nodes. Since the 
hnmovable tests cannot be decided in the landing pad, such 
tests imply the concurrent execution of all successors, and 
data dependences might exist that preclude a correct 
sequential order. The algorithm of Ferrante and Mace can 
place the nodes of such programs~ but either the control flow 
order is violated or tests have to be duplicated ~o maintain 

that order, Since that order is important to the algorithms, 
this approach is not used. 

Although the above arguments appear to raise do~bts as to the 
effectiveness of the algorithms presented in this paper, recall that 
one goal of these algorithms is to effectively accomraodate 
abstractions. Code moved from intervals retains its relevant 
surrounding control st~ucture~ which makes these algorithms 
attractive for the stylized code that reslllts from the heavy use of 
abstractions or other integrated subroutine rnechanisms. 

In the worst case, the algorithms may :swell the code size by 2 '~, 
where d is the depth of interval nesting. [n the worst case, all of 
the control structure is copied to the landing pad for each interval 
and none of that control sm~cture is deleted from within the 
interval. This situation, albeit unlikely, can be controlled if 
algorithms are restricted to some fixed nesting of inner intervals. 
For example, Scarborough has observed that most of the 
execution time is spent in inner loops [Scarbo~trghSO] and the 
IBM Fortran H compiler therefore performs optimizatio~s only 
over the deeply nested intervals. 
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