
Code Motion of Corntrol Stract~res ia High~Leve~ Laegaages

Ron Cytron
Andy Lowry

Kenneth Zadeck

IBM T. J. Watson Research Center
Yorktown Heights, New York

1,0 Overview and Motiva'tloe

One trend among programmers is the increased use of
abstractions. Through encapsulation techniques, abstractions
extend the repertory of data structures and their concomitant
operations that are processed directly by a compiler. For
example, a compiler might not offer sets or set operations in its
base language, but abstractions allow a programmer to define sets
in terms of constructs already recognized by the compiler. In
particular, abstractions can al]ow new constructs to be defined in
terms of other abstractions. Although significant power is gained
through the use of layered abstractions, object code quality
suffcrs as increasingly less of a program's data structures and
operations are exposed to the optimization phase of a compiler.
Muhiplc references tn abstractions are also inefficient, since the
intcracfion between abstractions is often complex yet hidden
from a compiler. Abstractions are most flexible when they are
cast in gcncrat terms: a spout.fie invocation is then tailored by the
abstraction to obtain the appropriate code. A sequence of
rci'crcncus to such abstractions can be inefficient due to
I'unctkmat redundancy that cannot be detected at compile-time.
By intcgrath~g the references, the offending segments of code can
be moved to a more advantageous position. Although procedure
integration materializes abstracted constructs, the abstractions
can still be ineligible for optimization using current techniques;
in particular, abstractions often involve loops and conditional
branches that can obscure code that would otherwise be eligible
for code motion.

7"(? make abstractions viable as an efficient programming tool,
optimizations such as code motion must overcome the obstacles
presented by abstractions. The problem of code motion has been
addressed by Lowry and Med~ock fLowry69], Wulf [Wu]f69],

Author's currem address is Depar/m~.'nt of CCompu4.er Science,
Cotmnbia Un}vcrsity, New York, New York

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permissior~ of ~he Association for Computing Machinery. To copy
otherw}se, or to republish, requires a fee and/or specific permission.

© 1986 ACM-©-89791-175-Xq/864)tYTO $00/75

Schwartz [Schwartz73], Aho and Ullman [Aho78], Morel and
Renvoise [Morel79] Reif and Lewis [Reif77] [Reif82], and
Ferrante and Ottenstein [Ferrante83]. These approaches fall
short of handling abstractions because they fail to consider the
following issues in a unified manner:

1. Some code cannot be moved unless accompanied by its
surrounding control structures. For example, two definitions
of a variable may reach a use, with surrounding control
structures determining which definition actually reaches the
use. Unless the control structure accompanies the motion
of the definitions, neither the definitions nor the use can be
moved.

2. The motion of stores should be considered as well as the
motion of expressions.

3. It can be profitable to move a computation from an area
where it might never be executed to a~ area where it is
always executed.

4. Second order effects are significant to thorough code motion.
The motion of one piece of code may be dependent on the
motion of some other piece of code.

This paper presents two code motion algorithms that account for
the above issues and are particularly appropriate for abstractions.
One algorithm is conservative with respect to the third issue;
program performance can only be improved by this algorithm.
Another algorithm is more aggressive; the resulting code shouM
execute faster given a widely accepted model of branch behavior.
A common subexpression algorithm is presented that accommo-
dates control structures and enhances the effectiveness of the
code motion algorithms.

2°0 Genera~ Approach
Since abstractions are typically implemented by procedure calls,
a form of procedure integration is useful for incorporating the
code due to abstractions. The technique proposed by Wegman
and Zadeck [Wegman85] couples procedure integration with a
powerful constant propagation algorithm that avoids some of the
intermediate space problems normally associated with this
technique.

In order to accommodate complex control structures, a program
is regarded as a collection of intervals" in the style of Tarjan
{Tarjan74], Graham and Wegman [Graham76], and Schwartz
and Sharir [Schwartz79]. Note that these differ from the maximal
intervals originally suggested by Allen and Cocke fallen70] in
that maximal~ intervals contain some nodes that are not in the

70

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512644.512651&domain=pdf&date_stamp=1986-01-01

strongly connected componen t dominated by the interval header,
Wherever we refer to interval, we mean the former not the later.

Subject to criteria presented in ensuing sections, the s ta tements
and control s tructures that are moved from within the interval are
moved before that interval. Each interval is accordingly
augmented with a lae~ding pad, just before entry, to provide a
repository for moved code. The landing pads ordinarily contain
prologue code and so are guarded by the same conditions that
guard the interval; thus, code moved to a landing pad is never
executed unless it would have been executed inside the interval.
After moving as much code as possible out of an interval, that
interval is summarized in terms of its data flow properties. The
interval can then be considered as an atomic entity, eligible for
motion out of its sur rounding intervals.

3.0 Preliminaries

3.1 Stricmess and Profitability
The goal of any optimization technique is to decrease the
execution time of a program while maintaining the observed
behavior of that program; accordingly, a particular t ransforma-
tion can be characterized with respect to it effectiveness by its
strictness and pro fTlability.

Strictness indicates whether a t ransformat ion is conservative with
respect to decreasing the execut ion time of a program. Under a
strict t ransformat ion, code can be relocated only if the execution
of that code in its new location occurs no more frequently than
in its original location. By relaxing strictness, code can be
relocated to positions where it probably would be executed less
frequently. This paper will pursue both strict and nonstrict
t rausformatk)ns.

Profitability describes the degree that nonstrict t ransformat ions
affect the performance of a given program. The profitability
problem is generally unsolvable at compile-time, since program
branching can depend on run- t ime values; however, compile-time
predictions, based on the structure of a program as viewed in
terms of its control flow graph, altow code to be relocated to areas
of probable profitability. This paper will make two assumptions
about the f requency of execut ion of s ta tements within a program:

1. The frequency of execut ing a s ta tement grows, possibly
exponentially, as the number of intervals that surround that
s ta tement increases.

2. Every s ta tement within an intervat has a high probability of
being executed whenever the interval is executed.

3.2 Correctness and Safety
An optimizat ion technique must be applied in a context in which
its effects on the observed behavior of a program are well
understood. Accordingly, a particular t ransformation can be
characterized with respect to program output by its correctness
and sq/k, ty.

The t rans formatkms presented in this paper are correct in the
sense that the data dependences of a program are respected. The
values used by express ions are always produced by the same
computa t ions as in the original program. The transfOrmations
may move the expressions to locations where the f requency of
execution is reduced (strict t ransformat ions) or where the

f requency of execution is expected to be reduced (nonstriet
t ransformations) .

Al though nonstrict t ransformat ions may cause execution of a
s ta tement that would not have been executed in the original
program, this need not violate correctness. The nonstrict transf-
ormations in this paper can only cause such spurious executions
when it can be guaranteed that the calculated values will not be
used incorrectly. Any s ta tement left in the loop or reachable from
the loop will always get the correct value.

Safety describes the degree to which a t ransformation preserves
the observed behavior of a program. Safety is thus related to the
detail at which the output is scrutinized. For example, if a
program is observed as an instruction trace, then any motion
whatsoever causes a change in the output. If a program is taken
as a sequence of results and exceptional conditions, then code can
be moved so tong as the sequence remains unaltered. The issue
of safety does not influence the actual mechanism of a code
motion algorithm; rather, a given definition of safety dictates
which operat ions are eligible for motion. The compiler writer can
therefore allow any s ta tement to be moved by the algorithms
given here as long as that s ta tement does not directly produce
output. The decisions made by the compiler writer should reflect
whatever view of safety is desired.

Many optimizing compilers allow interrupt producing s ta tements
to be moved under strict code motion. When this occurs, the
f requency and location of interrupts may change from the original
program, but a program produces interrupts after strict code
motion if and only if it produced interrupts before strict code
motion. Note that it is possible and efficient on some machine
architectures to separate the parts of an operation that produce
the calculation from the part of an operation that may produce
an interrupt. When this is the case, the first part of the operation
may be moved.

3,3 Landing Pads
Code can be moved out of intervals in either of two directk)ns:
backward, so that its execution precedes the interval, or./brward,
so that its execution follows the interval. In either case, code
moved out of an interval should not be executed unless the
interval would have been entered in the original program. This
level of profitability is easily maintained by introducing kmding
pads into the interval control structure as shown in Figure 1.

As illustrated in Figure 1. an interval is equipped with one entry
pad and possibly several exit pads. In order to restrict the entry
pad f rom executing unless the interval is entered, the entry pad is
guarded by the same condit ions that guard its associated interval.
In the example of Figure 1, the test T is duplicated to accommo-
date the landing pad. Al though such duplication causes in a slight
increase in program size, the execution time of the program is not
increased, since the test is executed only once per iteration of the
interval.-" A different exit pad is associated with each interval exit:
different code can then be placed in each exit pad. and such code
is executed if its associated exit is taken. By the definition of an
interval used in this paper, all landing pads are outside the interval
with which they are associated. For each exit from an interval,
control is transferred to the landing pad associated with that exit.
After executing the code in the landing pad. control is then
transferred to the original target of the branch.

' T h i s t r a n s f o r m a t i o n can b e t h o u g h t of as t u r n i n g a W H I L E consm~c~ in to a R E P E A T - U N T I L cons t ruc t e m b e d d e d ins ide ins ide an W - T H E N su ' ucmrc ,

71

@

]

/ \

©

Jl \

Figure 1. Landi;~g Pads: Landing pads are inserted into a loop as shown here, The entry pad is shown as a d iamond and exit pads
appear as squares.

3~4 Ordering the Nodes of an ln~terval
The algorithms presented in this paper consider the nodes of an
imerval in their topological order with respect to the control flow
graph DAG of the inmr~al. This D A G is comprised of all control
Ilow arcs except those targeted for the header of the interval (the
back-~,dgeb). A topological order is only a partial order over the
uodcs, yet a deterministic algorithm considers the nodes with
respect to some total order. Al though there is considerable
freedom in choosing that total order, the algorithms presented in
this paper use the following domi~ared topological order, for
reasons that accompany the presenta t ion of the algorithms.

A dominated topological order is any topological ordering of the
contro! flow graph with the following constraint: Of all the nodes
that follow a particular node N, those nodes that N dominates
precede all other nodes. This ordering of nodes is more restrictive
than the interval orders defined by Tarjan or G r a h a m and
Wegn+mm

The actual construct ion of the dominated topological order is
simplified through the fol]owing observat ion: Every edge of the
control flow DAG is either in the domina tor tree or is targeted
or+ the sibling of an ancestor (in the domina tor tree) of the source
o+ the edge. The left column of Figure 10 shows each node of a
DAG labelled with the order as visited by a dominated topological
traversa+ of the DAG+

4 ,0 C{~]e Motion Algorithms
t h e e~suing sections consider five t ransformat ions that can
irnpro~e program performance, The first algorithm, RE?VAM£',

accepts a s tandard intermediate program representat ion
comprised of operat ions on source variable names and produces
an equivalent program expressed in terms of compi le r -managed
temporary names. Where possible, references (uses and
definitions) to the source names are replaced by references to
these temporaries. The purpose of this t ransformat ion is to
remove spurious dependences that arise from a single variable
name that holds multiple expressions. As a result , many more
temporary names can be generated than source names that are
replaced. Al though the R E N A M E algori thm performs a limited
amoun t of code motion, its true purpose is to afford the other
a lgori thms more latitude by el iminat ing unnecessary depend-
ences.

There are two code mot ion algorithms: STRICT and
NONSTR[CT. Although the N O N S T R 1 C T algorithm is more
aggressive with respect to the condit ions that permit code motion,
bo th algori thms have the same general structure, The intervals
of a program are examined, from their innermost to outermost
nesting. Upon visiting an interval, code is moved to the en t ry or
exit landing pads associated with that interval. Upon leaving an
interval, the interval is summar ized in terms of its dataflow
information. Once summar ized , the interval behaves as any other
s ta tement ; the te rm statement will therefore refer to simple
s ta tements as well as summar ized intervals. The landing pads
associated with a summar ized interval are contained in the
sur rounding interval,

Both STRICT and N O N S T R I C T account for the control
s tructure inside an interval, By visiting the s t a t emen t s of an

72

interval in the proper order, control structures can be copied to
landing pads, thus allowing the subsequent motion of statements
guarded by the control structures. Although a copy of the control
structure must remain inside the interval unless all guarded
statements are moved, the guards inside the interval can be
replaced by simple bit tests that are computed in the landing pad.
If all statements are moved, then the control structure can be
deleted from the interval. With the exception of control
structures, code appears in either a landing pad or in. the interval.

The STRICT algorithm performs strict code motion. Unlike
traditional code motion algorithms that only analyze control flow
Mormation to determine profitability, this algorithm utilizes such

information to create a repository for statements moved to the
landing pad. Upon visiting an interval, branches that can be
decided in the landing pad are copied there. Statements are
moved to the Ianding pad, so as to guard them by the same
conditions that determine their execution in the interval. "Ihus, a
statement moved to the landing pad is executed only if it would
have been executed in the interval.

To maintain profitability, the STRICT algorithm cannot move
code that is guarded by branches that cannot be decided in the
landing pad. However, if some code is cmnmon across all paths
from an immovable branch, then that code can be moved above
the branch by an advanced form of common subexpression
elimination that accommodates control structures. The
COMMON algorithm uses a restricted form of pattern matching
over the control flow graph to identify areas that are common
across, yet independent of, all paths from a branch. Like the
STRICT algorithm, control structures are copied above the
branch. Instances of statements that are common across all paths
are replaced by a single copy above the branch, positioned
appropriately within the copied control structure. By removing
such statements from immovable control structures, the
statements become eligible for code motion by the STRICT
algorithm. Although the C O M M O N algorithm should be
performed before the STRICT algorithm, the subjects are
covered in the reverse order because the deficiencies of the
STRICT algorithm motivate the C O M M O N algorithm.

In the NONSTRICT algorithm, the strictness constraint is
relaxed; statements guarded by immovable branches are moved
to the landing pad, even though such motion causes a spurious
execution of the moved statements. Like the STRICT algorithm,
all loop-invariant statements are moved to positions in the landing
pad where they are guarded by the same movable tests that
guarded their execution in the interval. Unlike the STRICT
algorithm, such code may be guarded by immovable branches in
the original program. Thus, the code moved by the NONSTRICT
algorithm is a superset of the code moved by the STRICT
algorithm.

Note that the C O M M O N algorithm also improves the perform-
ance of the NONSTRtCT algorithm by making more code
available for more profitable movement. For code that is
common across some (but not all) paths from a branch, the
NONSTRICT algorithm has the property of moving all copies of
such code above the branch. The COMBINE algorithm
maintains a dictionary of the expressions that are moved to the
landing pad. Any expression for which an entry exists in the
dictionary is removed from the interval but not duplicated in the
landing pad.

4.1 Renaming of Variables
The R E N A M E algorithm consists of a collection of transf-
ox~ations that are applied in succession prior to code motion, in
order to increase the effectiveness of the code motion.
Essentially these transformations will have the effect of
expressing the summary of the dataftow information by utilizing
a large number of program temporary names. 3 The STRICT,
COMMON, NONSTRICT and COMBINE algorithms then use
this information rather than the source names, because source
names do not have the inherent dataflow information. The major
advantage of this approach is that the subsequent algorithms
perform transformations that preserve the consistency of this
representation. Therefore, there is no need to recompute the
dataflow information to get second order effects.

The final result of the transformations is related to the Global
Value Graph described by Rcif and Tarjan [Reif81], in that we
make explicit the birthpoints for all variables, along with the uses
that they reach. The concept of birthpoint is very closely related
lo the dataflow concept of a definition. Whereas a single use of
a variable may be reached by several definitions of that variable,
a use is reached by exactly one birthpoint. The birthpoint is
located in the control flow graph so as to intercept and represent
collectively all those reaching definitions.

The proper placement of birthpoints for a variable depends only
on the control flow graph and the pattern of definitions for that
variable; definitions for other variables are irrelevant. Although
the transformations presented in this section compute birthpoints
for all variables simultaneously, the concept is most easily
understood in terms of an analysis that considers one variable at
a time.

Computing birthpoints for a given variable x consists of
partitioning the control flow graph into a number of disjoint
collections of nodes, called components, of the graph. Each
component must meet all of the following constraints:

1. Every node in a component must be reached by exactly the
same definitions for x as all the other nodes in that
component. Thus, all the nodes in a single component share
a common definition set with respect to x.

2. The component must correspond to a single-entry region of
the control flow graph. That is, with the exception of exactly
one node in the component , no node may have a control flow
predecessor that is not in the component.

3. A component is the maximal collection of nodes that meets
the above constraints.

The single entry node for each component ~s a birthpoint for the
variable x Because of the single-entry nature of the components.
only one birthpoint can reach any node. Each birthpoint repres-
ents the common set of definitions that reach the nodes in the
component.

Birthpoints arise for two distinct reasons. First. any definition for
a variable is also a birthpoint for that variable, as it is the only
definition that meets any use that occurs before the next join
point. Second. birthpoints appear wherever multiple birthpoints
for a variable reach a node along different incoming edges. The
first type of birthpoint is called a definil~on bir@oint, whereas the
second is called a join birthpoim.

The transformations described in this section locate the
birthpoints for all variables in an interval, and replace all source
variables with temporary variables that denote the birthpoints.

This il/formation summarizes the DEF and USE information but requires a worst case assumption with respect to MAY. This assumption is that :.t MAY site
both USEs and DEFs the variable.

73

At a delinition birthpoint, the birthpoint name becomes the target
{~l t]< z>signmeut. Ass ignments are added to t ransmit values
among tilt' temporary variables ;~s required at join bhthpoints .

For m~v ,,catar mnne i~ ti?e source program, tile t ransfoHnat ions
can introduce a number of temporary names for that variable,
lh~' analysis described by Banerjee [Banerjee79], Wolfe
IwoHc,'~21, and A/lull {Alien831 determines independence of
subscripted ~ariab!es. With the appropriate extensions, these
techniques can be applied to treat e lements of arrays as scalars
zmd to rccog~fizu that two subscripted references are always
disdn<'t, intuitively, expressions that are not bound to
user-accessible names have greater freedom with respect to code
/notJon. [ate]? temporary name constrains the ordering of the only
ti~ow dciinition sites that reach its bhthpoint , A reference to a

source name constrains the ordering of all the definit ion sites for
that variable.

Consider the example shown in Figure 2. Only the definitions
at (2) and (3) can reach the ase at (4). If definit ions (2) and (3)
can be removed from the interval in a manner that preserves their
re ta tve order of ass ignment , then the use at (4) can be moved as
well. Note that this can be done irrespective of what happens to
the definition at (I) as long as the results of definitiot~s (2) and
(3) are available after the definition to (1). Renaming captures
the multiple values that were assigned to a single name into
distinct names, making them available throughout a computat ion.
Provided that the dependences for each temporary names are
respected, code may be moved by the STR1C t and N O N S T R f C 1'
algorithms,

if not () g e m exit

~,, b ib t) loop:
{ I) a ~- m)t mo~abb a.I ~ not movable

a,5 ~ a.l
i{ mo~ abletcst i if movabletest l

tl~,~ do then do
(2) ;~ ~ m o ~ l h b a.2 ~ movable

a.4 ~ a.2
ii m{~ abk'test2 if movabletes t2

then do
(3) then ~ ~ m(wabtc a.3 ~ movable

a.4 ~ a.3
end

~:isc : else ;
a.5 ~ a.4

{4) ? ~- .a ? ~- a.4
~.p,d end

(5) ? *- a ? ~-- a.5
if () gore loop

cud exit:
Source Program Renamed Program

Figure 2. Renaming to Break Order Dependencies

if not() got() exit
if m o v a b b t e s t 1

then do
a.2 ~ movable
a.4 ~ a.2
if movable tes t2

then do
a.3 *- mow~ble
a.4 ~ a.3

end
else ;
? ~ a . 4

end
loop:

a.1 ~- not movable
a.5 ~-- a.1
if movabletes t I

then do

a.5 ~ a.4

end
.9 ~ a.5

if 0 gore loop
exit:
After Code Motion

4.t . t ReFraining Transformations
The t ransformat ions are defined in the rest of this section_
Figure 3 and Figure 4 represent the t ransformation process step
by step. Each transformation preserves the correctness of the
program. These t ransformat ions are restricted to scalars where
the pattern of atiasing is understood. No reordering can be done
on variables that are potentially aliased, because the real pat terns
of loads and stores for those variables are unknown. See Myers

[Myers81], Cooper [Cooper831 or Burke {Burke84] for a
discussion of aliasing analysis.

In Figure 3, the left co lumn contains a program f ragment that is
expanded to four basic blocks, as shown in the right colunm.
Note that in the intermediate code, the interval has been equipped
with an entry pad before the loop label and an exit landing pad
after the exitpad label. The test that guards the interval has been
duplicated above the entry pad.

74

if (i > = n) goto exk
while (i < n) loop:

i f n > 3 1: if n > 3
then do 2: then do

k ~ n * 6 k * - n * 6
m - ~ - k * i m ~ - k * i

end end
else do 3: etse do

k s - n * 8 k ~ - n * g
end end

j -~- k ÷ 3 4: j ~ k + 3
i .~- i + l i ~ i ÷ l

if (i < n) goto loop
e x i t p a d :

end exit:

Program Fragment Intermediate Code

Figure 3. A Program is Composed of Basic Blocks

The first t ransformat ion identifies the definition birthpoints in the
interval and assigns each a unique temporary nameA Because this
processing is per formed interval by interval, the birthpoints result
not just from the definition sites within the interval, but also from
those definit ions that en ter the interval, tn order to identify the
variables that may reach the interval, a special form of definition
is placed in the entry landing pad for every variable either used
or defined within the interval. This special definition is called an
identity ass ignment and has the form x ~ x for variable x. leach
identity ass ignment forces the creation of a definition birthpoint
that acts as an interface between this interval and the rest of the
program.

The definition bir thpoints are identified by splitting every
ass ignment s ta tement into two s ta tements . The first s ta tement
computes the r ight-hand side of the original s ta tement and stores
the result into a unique temporary name. The second s ta tement
performs an ass ignment from the temporary name into the
original program variable. In this way, the use and definition
componen ts of each s ta tement are separated: thus, the part of a
s ta tement that computes values can be moved independently of
the definit ions produced by the s ta tement . Note that the identity
ass ignments added to the entry pad are included in this splitting
process. The first t ransformat ion as applied tc the above example
is shown in the left co lumn of Figure 4.

The second t ransformat ion identifies the join birthpoints in the
interval DAG. Reif and Tarjan [Reif8t] describe algorithms for
locating join bir thpoints in arbitrary flow graphs. However, since
interval bodies are single-entry D A G s when they are processed,
a simpler solution suffices for such graphs. The process is
described for a single variable x

The approach begins by adding a birthpoint at the top of the
interval for x if x is defined within the interval This is the

birthpoint for the values carried along the back-edges of the
interval that join with the values entering the interval through the
header.

Next, the nodes in the D A G are visited in topological order.
When a node is visited that is not already a birthpoint for x, its
©AG predecessors are examined. If all the predecessors are
covered by the same birthpoint for x, then this node is marked as
covered by that birthpoint. Otherwise, a new join birthpoint for
x is established at the node.

tn the second column of Figure 4, join birthpoints have been
added for all defined variables at the top of the interval. Within
the interval, join birthpoints have been added for k .5 and m.4.
Two ass ignments are created for each birthpoint added, The first
is of the form x.n ~ x. The second is of the form x ~ x.n.

The third t ransformat ion takes the names created at the definition
and join bir thpoints and forward-subst i tutes these names into the
uses that are covered 5 by these definitions. The result of this
t ransformat ion is shown in the third column of Figure 4.

The four th t ransformat ion removes all remaining assignments to
source variables f rom the interval. Definit ions that are dead in
the interval body may be removed immediately. Any other
definition must have a subsequent birthpoint as its only use. By
back-subst i tu t ing the birthpoint variable for the left-hand side of
the assignment , the source variable ass ignment is removed. Afu:r
this has been accomplished for all source variable definitions, the
ass ignments from source to birthpoint variables that appear at the
join bir thpoints themselves must also be removed. A birthpoh~

marker is created for use by the subsequent algorithms.

Additionally, this t ransformat ion transmits values defined within
the interval to the appropriate external use sites. The targets of
those definitions are birthpoint variables, whereas the uses have
not yet been renamed. The interface is accomplished by adding
ass ignments to source variables at each exit pad. Each assign-
meat assigns whichever birthpoint variable is currently active for
the source variable being defined.

Note that all ass ignments involving source variables that were
added to landing pads by either t ransformat ion one or transfor-
mation four will unde>,o renaming when the next outermost
interval is processed, since the landing pads will be considered as
members of that interval. When the entire program has been
processed in this fashion, no references to source variables will
remain?"

In order for the code motion algorithms to perform correctly, il
is impor tam for the introduction of birthpoints ~o preserve tiw
semantics of uninitialized variables. This may be accomplished
by introducing a definition for each variable at the top to the
program, This definition would assign the special value tminiHal-

ized to each variable. This wilt assure that the temporary variables
wilt not rearrange the order of assignment for uses where an
uninitialized variable may reach. Of course it is not necessary to
actually generate any code for these definitions,

Ill the e x a m p l e s , the t c n l p o r a r y i lunlcs l o t va r i ab le v [law: the Io rm x.n.
s A de l ' in i t ion is said to c o v e r a use il" it is tile ()lily kit: in i t ion r eaches f i lm use.

T h i s is no1 t rue for e x t e r n a l vll l ' iables. ~{ilch lllaFlin[k2gl'a{e~d sil~ll'ou[iiit? call l'llklSI be trC~l{ed as a b i r t h p o i n t for all ext.errml va r i ab les . Sml ' e s l o r these ~art;lbI~'b

arc skill reqLlircd bc l 'o rc ;lily c× te rna l st lbfotl{il le call. A r l e r the Skl~'lfOLItillC call. a r~clefence llltlY.l be Illat.le that r c sc i s tile ;tpproprKl~c !~211lporar) var iable . Th i s

t'CNUll CUll bu s h a r p e n e d in d ie p r e s e n c e ~ff i a t e r , ? roccdura l ana lys i s u.~ m e l m o n c d above

75

if (i > = n) goto exit if (i > = n) goto exit
i ~ - i . 1 ~ i i .~ i.1 -~i
j ,~].l ~j j ~-],I *j

k ~-. k.1 - - k k - - k . t ~-k

n 4 - - ;:'1,1 ~ - n n ~ n o l ~- n

loop: loop:
1: i ~ i . 2 ~ i

j ~-].2 ~ j
k~-- k . 2 ~ k
m * - m . 2 ~ m

t: i f n > 3 ifn.1 > 3
2: then do 2: then do

k,3 -~-- n * 6 k.3 ~ n,1 * 6
k ~ k.3 k ~- k.3
m.3 ~ k * i m,3 ~ k * i
rn ~ m , 3 m ~- 11t,3

end end
3: etse do 3: else do

k.4 ~ t.1' 8 k.4 ~- n * 8
k ~ k.4 k ~ k.4

end end
4: k.5 ~- k

k ~- k,5
r n . 4 ~ m

nl ~- 1.11.4

4:].3 ~ k + 3 j.3 ~ k + 3

i ~ - . i . 3 j ~ j.3
i.3 ~ - i + l io3 + - i + t
i ~- i .3 i ~ i.3
if (i < n) goto loop if (i < n) goto loop

ex i t_pad : exit pad:

N

c x h : e x i t :

Ahcr Separation After Addition
of Birthpoints

Figure 4. The Transformations Involved in Renaming

if (i > = n) goto exit
i .~ Lt + . i
j ~- j,1 ~-]

k ~ k.l ~-. k

i n ~ - I n , 1 4 - n l

n ~ - r l , t ~" n

loop:
I: i .*- i.2 + - i

j ~- j.2 ~ j
k .,~ k.2 ~- k
11. ~ m . 2 "~ 1i"/

if rot > 3
2: then do

k.3 ~ n.] * 6
k ~-- k.3
m.3 ~ k.3 * i.2
m e r e . 3

end
3: else do

k,4 *- n,1 * 8
k ~- k.4

end
4: k.5 ~ k

k ~ k . 5
m.4 *- m
in ~ m.4
j.3 ~ k.5 + 3
] ~ j . 3
i.3 ~ i.2 + j.3
i ~,~ i.3
if (i.3 <7 n.1) goto loop

exit pad:

exit:
After Forward
Substitution

if (i > = n) goto exit
i.2 ~ i.l ~ i

k,2 ~-k~l ~ k
I 1] , ~ ~ i l l 1 ~'- I11.1

[1.1 ~" n

loop;
t: birthpoint i.2

birthpoint j.2
birthpoint k.2
birthpoint m.2
m.4 ~-- Irl. 2
if rot > 3

2: then do
k,3 ~-. n.l * 6
k.5 .~ k.3
rn.3 ~- k.3 * i.2
rn.4 ~- m.3

end
3: else do

k.4 ~- n.! *8
k.5 ~ k.4

end
4: birthpoint k.5

k.2 .*- k.5
birthpoint mA
m.2 ~- m.4
j.3 ~ k.5 + 3
j.2 ~- j.3
i.3 -~ i,2 + j.3
i.2 --~ i.3
i f (i . 3 < n, 1) goto loop

e x i t p a d :
i ~ i . 3
j ~-].3
k ~ k . 5
m ~ m.4

exit:
After Back-
Substitution

N~[c tha{ maiD' temporary xariabtes may be created whose only
other references arc to set other temporaries. After the last
trunsh>rnmtinn described above., it is advisable to perform a pass
ol dcud code ciimination and remove al] of the temporary names
{hat arc never otherwise referenced.

Ahcr aII of code has been moved it is possible to coalesce many
of these temporaries into a much smalter number of compiler
temporaries by a process known as coloring. While this process
is NP complete for an exact solution. Chaiti~.1 [ChaitinS1]
l C/~ai{in82] has developed a heuristic approach that has very good
performance.

4,2 The S~ffic~ AigorRhra
h~ thb, section, a strict algorithm is presented for moving
~httcments from h~sicte a~ im:erva] to the landing pad guarding the
cmrance of that interval. To accomplish strict execution, the
algorithm first copies the control flow that surrounds movable
suacmcms. Consider the example shown in Figure 5.

i ~ - 1
while (i < n)

if] = 3
then k ~ 6
else k ~ 8

i ~ i + t
end

Figure 5. A Simple Example

Neither assignment to k can be moved without violating both
correctness and strictness, unless the test and branch accompany
the motion.

The STRICT algorithm visits the statements of an interval to
determine which statements are eligibte for movement to the
entry pad. "The order of the traversal is the dominated topological
order that was defined in Section 3.4. This ordering guarantees
that when a statement is considered for movement, any other

76

s ta teme~t whose m o v e m e n t might free this s ta tement for
movemen t will already have been visited. T hus a single pass over
the interval is sufficient to determine the movabili ty of the code.

As the traversal progresses, movable tests are copied into the
entry pad, and replaced in the interval body by simple bit tests.
Other code that is found to be movable is moved to the landing
pad without leaving any code behind in the interval. After the
processing is complete, the interval body and the landing pad may
both be subjected to a form of dead code elimination that locates
and discards tests that no longer guard arty code.

The tests for movabili ty involve the concept of control
@em/ee~ce, which is developed by Ferrante, Ottenstein, and
Warren {Ferrante84]. Informally, a s ta tement is control
dependent on those tests that may cause the s ta tement to be
executed. More precisely, a s ta tement Yis control dependent on
a s ta tement X if

I. There exists a path from X to Y such that all nodes in the
path, except X and K are pos t -domina ted 7 by Y, and

2. Xis not pos t -domina ted by K

Consider the program f ragment shown in Figure 6. By the above
definitions, each ass ignment to j is control dependent on the test
of i, but the the test of k and ass ignment to m are not. A larger
example of a program flow graph and its associated control
dependence graph can be found in Figure 10.

while (i < n)
if i t 3

t h e n] ~- 5
else j ~- 7

i f k = O
then m ~-, 6

i s - i + 1
end

Figure 6. Variant and Invariant Branching

The condit ions that allow a s ta tement or a test to be movable are:

1. The s ta tement mus t not be control dependent on any
immovable test.

This condit ion insures that me conditions for executing the
s t a tement are mvar i am of the interval and can be duplicated
in the entry oad It accounts [or control depenaenees that
govern *he correctness and strictness of relocating a
sm~emem. The NONSTR~CT algorithm relaxes this

constrain~

In Figure 6. this condit ion precludes movemen t of either
a s s ignmem to j because they are control dependem on the
loop-variant test on i. However_ the test on k and the
a s s ignmem to m that it guards are unaffec ted by the test and
branch on ~.

2. Definit ions that reach uses within the s ta tement mus~ come
f rom s t a t emems outside the interval. A bir thpoint marker is
t reated as a use of the variable it marks.

This condition accounts for one of two data dependence
constraints that mus t be observed to insure correctness. A
violation of this constraint can reorder s t a tement execution
in such a way that a variable is used prior to its having been
assigned the proper value.

Note tha t if all the definitions for a particular name, can be
moved from the interval to the landing pad, then s ta tements
reached by those definitions may become eligible for
movement ,

Since this condition concerns correctness rather than
strictness, it also appears in the nonstrict algorithms.

3, A definition for a variable may not be moved if the birthpoint
for the variable has already been processed, or if an earlier.
definition for the same variable was found to be immovable.

This data dependence constraint is required to insure the
correctness of the t ransformed code. The birthpoint
constraint depends on the observat ion that the birthpoiut for
a variable either domina tes alt definitions for the variable in
the interval, or it pos t -dominates them. In the former case,
this condit ion will preclude movemen t of any of the
definitions. This is necessary since the birthpoint must result
f rom the merging of a loop-carried definition and a definition
from outside the interval. Moving any definition for such a
variable would result in an incorrect value for the variable
during the first i teration of the interval.

The second part of this condition is motivated by similar
considerat ions, Cons ider the type of join birthpoint that
pos t -domina tes the definitions that reach it. T h e s e
definitions all reference the same variable name and must
therefore be executed in topological order. Since the landing
pad is executed before the interval, definitions that reach this
bir thpoint can be placed in the landing pad, provided that the
ordering of definitions is respected. Thus , in a topological
traversal, i1o definition can be placed in the landing pad
unless all previously encountered definitions are also moved,

The actual construct ion of an appropriate control structure begins
by copying a skeleton of the control structure from the interval
into the landing pad. In the landing pad, loop exits are redirected
to the bo t tom of the landing pad. If such a branch is taken in the
landing pad, then the loop is guaranteed to exit from its first
iteration at the same exit in the interval. The s ta tements and the
conditional tests are then processed in dominated topological
order. A n y code that is found to be movable is simply moved
from its position in the interval body to the corresponding
position in the landing pad skeleton.

A complication arises when an immovable test is encountered.
The test tha t was naively copied to the skeleton must be removed.
along with any additional control structure that is directly or
indirectly control dependen t on the test. Since an immovable test
cannot be decided in the landing pad. control is transferred to its
immediate post -dominator in the landing pad. Code that ~s
subsequent ly found to be control dependent on the test remains
in the interval due to the first condition.

When this traversal is finished, unreachable portions of the
skeleton can be removed f rom the landing pad. Such nodes must
have been situated be tween an immovable test and its
post-dominator and thus its sole means of ent ry was eliminated
when the immovable branch was deleted from the landing pad

" A node kV is Dos t -don~ina ted by z~ n o d e V if all p a t h s f rom W to the p r o g r a m exit inc lude V.

77

if (i > = n) gnto exit
i.2 ~ LI i
].2 j.1 ~- j
k.2 ~ k . t .~-- k
111.~ ~ I11. t ~ - (11

I]. i ~-- n

;<hilt (i < n)

iln > 3

then do

n! ~ k * i

end
clw ,.hi

k ~... n * g

cml

, i t - k + 3

i ~ i + t

end
Original Loop

loop:
l : birthpoint i.2

birthpoint j.2
birthpoint, k.2
birtllpoint m.2
m.4 ~ m.2
i f m l > 3

2: then do
k.3 ~- n.1 " 6
k~5 +- k.3
m.3 ~ k.3 * i.2
m . 4 ~-- m . 3

e ,I d
3: else do

k . 4 ~ - m l " 8
k.5 ~- k.4

e n d
4: birthpoint k.5

k.2 ~- k.5
birthpoint m.4
m.2 ~- m.4
].3 ~- k.5 + 3
].2 *-j .3
i.3 ~ i.2 + j.3
i . 2 ~ i.3
if (i.3 < n. 1) goIo loop

e x i t p a d :
i ~ i . 3
j ~ j . 3
k ~ k . 5
r n ~ m . 4

exit:
Intermediate Form

Figure 7. Full Example of Strict Code Motion

if (i > = n) goto exit
i.2 i.l ~ i
j .2 ~- j . I j
k.2 ~- k.t *- k
[1 t ,2 4"" 131, I ~ - I1'1

n , / 4,-. I1

l: T1 .~- (mi > 3)
if T1

2: then do
k,3 ~ I I . 1 *()
k,5 -~' k.3

end
3 : else do

k.4 ~ u.l " 8
k.5 ~- k.4

end
4: birthpoint t<.5

j.3 .~- k,5 + 3
loop:

1: birthpoint i,2
birthpoint j.2
birthpeint k.2
birthpoint m.2
I n . 4 ~ r n . 2

if T/
then do

2: m,3 ~, k.3 * i.2
m.4 ~- m.3

end

k.2 ~- k.5
4: birthpoint m.4

m.2 ~- m.4

j.2 ~].3
i.3 ~- i.2 + j.3
i.2 ~- i.3
if (i.3 < n.1) gore loop

e x i t p a d :
i .*- i.3
j ~ j , s
k ~- k,5
m ~ m.4

exit:
After Strict Code Motion

In Figure 7. the example shows three forms of a program
fragment. Note that this is the same example used in Section 4.1
The left column i5; the highdevel source. The center column is the
intermediate code after renaming The right column is the code
aher being processed by this algorithm. Processing proceeds
according to the dominated topological ordering of the control
flow graph: {.he block before the if. the then block, the e~se and
finatly the btock artier the test,

The birthpoint of L2 (where the value of i carried around
the loop joins with the value entering from above) is not
moved out of the loop. because it is treated as a use for L2
that is reached by a definition that has not yet been moved
out of the loop. The same is true for the birthpoints of
j.2, k.2, and rn.2. In fact, none of the join birthpoints that
are inserted at the top of a loop will ever be moved ouI of
the loop.

7 8

2:

3~

4:

The assignment to m.2 cannot be moved because its use
of m.2 is reached by a definition remaining in the loop.

The computation of n. 1 > 3 can be moved outside the loop
since neither n, 1 nor 3 are redefined within the loop. The
temporary T] is assigned the value of the test and the
branch within the loop tests this temporary rather than
recalculating the real condition.
The calculation of k.3 may be moved from the loop since
the entire right side is outside the loop or constant.

The assignment to k.5 may be removed since the
birthpoint for k.5 has not been reached yet.

The assigmnent to m.3 is not moved since its use of i.2 is
reached by a definition that is in the loop. This
subsequently holds the assignment to m.4 inside the loop.
All of the code in the else block is movable in the same
manner that the code was movable in the the~ block.
The birthpoint k,5 is movable since both definitions of k.5
have been moved. However, since a definition for m.4
was left in the loop, the birthpoint for m.4 must be left as
well.

The assignments to k.2, m.2 and j .2 must remain in the
loop because their birthpoints have been processed.

The assignment to j .3 is movable since all definitions for
k.5 have been removed from the loop, and there is no
birthpoint for j.3.

The definition for i.3 is not movable because its use of i.2
is reached by a definition of i.2 That very definition is
therefore held in the loop as welt, as is the calculation of
the test condition i.3 < n.1.

4.3 Structural Common Subexpression Elimination
The STRICT algorithm cannot move code out of an interval
unless the control structure that governs the execution of that
code is also moved. The goal of the COMMON algorithm,
described in this section, is to move code out from under the
influence of immovable tests, thereby increasing its likelihood of
being eligible for movement. The algorithms described here may
be performed on a renamed interval, prior to the application of

the STRICT algorithm.

The STRICT and C O M M O N algorithms are similarly motivated.
Algorithms should accommodate secondary effects in a natural
way. The motion of simple statements should be accompanied
by the motion of their relevant control structures, since since
common control structures occur quite often in the context of
high-level data abstractions. Consider the example in Figure 8.

while i
if LV

then b ~- f(d)
else b ~- f(e)

end

Figure 8.

If procedure integration has incorporated the references to.[', then
a reasonable amount of code should be common to both branches
of loop-variant test LV. Even if the procedure integration has
extensively tailored the call sites, as proposed by Wegman and
Zadeck [Wegman85], portions of the incorporated code, due

perhaps to addressing and parameter checking, should be
common to both successors. Consider the following example:

if LV
then if LI

then do
x < - - a

y ~ c + t
end
else do

x * - b
y ~ c + 2

end
else if LI

then do
x ~ . - a

y ~ - - c + 3
end
else do

x ~ b
y ~ c + 4

end
Before Movement

if LI
t h e n x ~ a

else x ~- b
if LV

then if Ll

then y ~- c +

e lsey ~- c + 2

else if L1

t heny ~- c + 3

e tsey ~ - - c + 4

After Movement

Figure 9. A Movable Test That is Control Dependent on
an Immovable Test

The loop-variant test L V ordinarily prevents movement or any
code dependent on that test, In this case, the circumstances that
determine which value is assigned to x are governed only by the
loop-invariant test LI, because it is common to both sides o1 the
L V branch. The assignments to x can thus be removed (rom
control of LV as seen in the right column of Figure 9. As in the
STRICT algorithm, statements such as the assignments to .v must
be accompanied by their associated control structure when

moved.

The COMMON algorithm will initially be presented that cain
move assignment statements above a test. if the assignmcnl
statement occurs along all paths from that test. This alg{~rHhm
will be enhanced to allow commoning of certain classes of controi

structures as well.

The algorithm is composed of two alternating phases thai iterate
over all the tests that occur in an interval Given a test T. the first
phase constructs collections of statements to be analyzed rot
possible movement above T. Each collection represents
statements controlled by one of the possible branehcs rrom T. h7
the second phase, the collections are compared to discover which
statements are common along all paths from T. and cach such
statement is moved to a single instance above T.

The movement is performed so that a particular statcmcnt is
never moved past more than one of its guards at a time. Thus° in
order to insure that a statement will be moved past as many
guarding tests as possible, the tests that control the execution o1
a statement must be considered successively, in an inner-to-outer
fashion with respect to conditional nesting. In the two-phase
analysis, a test must be considered only after all the tests that il
directb or indirectly controls have been considered. This is
accomplished by visiting the tests according to a reverse

79

topological traversal of the control dependence D A G that is
eonslructed for the interval, s

Whenever two or more c o m m o n ass ignment s ta tements are
merged into a single s t a tement and moved above a c o m m o n
guard, the variables on the left sides of those s t a tements mus t be
aliascd throughout the remainder of the compilation. Because the
alias relationship need never be undone, a disjoint union-f ind
structure can be used to mainta in the necessary global dictionary.
Each set mainta ined by the dictionary cor responds to a collection
of aliased names. The name by which a set is known, called the
reprwser~tative ~ame, is re turned by the j%td operat ion on any
member of its associated set. tf two variables are aliased, they
will always have the same representat ive name. Therefore, all
references to variables wilt be made via the aliasing dictionary.

4.3.t Phase One: Identifying Candidates for
Movement
Once a test T has been chosen as a potential target for
commoaing , the control dependence graph is used to cons t ruc t a
number of collections of s ta tements that are considered for
movemen t above ill Each collection cor responds to one of the
conditional branches emana t ing f rom 7; and contains any
s ta tement whose only control dependence is on T by that
branch. ̀) It is easy to show that each included s t a t emen t is also
dominated by 71

Any ass ignment that appears in all the collections constructed for
T must occur on all paths emana t ing from T, and so mus t be
exec~lted regardless of the ou tcome of 71 The second phase
extracts those c o m m o n s t a t emen t s and moves them above iF.

Unless a s ta tement is domina ted by T, some path that excludes T
could leaci to execut ing that s t a t ement in the original program.
Only s ta tements dominated by T are considered for commoning .

4.3,2 Phase Two: Selee~ng and Moving Common
Cede

Assignments are considered c o m m o n if their r ight -hand sides are
identical. Since the C O M M O N algorithm is designed to work on
renamed programs, the le f t -hand sides of any two ass ignments are
necessarily distinct temporary variables in the case of definit ion
birthpoints. W h e n c o m m o n ass ignments are promoted to a single
instance above a test, the temporary variables that were the
targets of the original ass ignments are unioned into the aliasing
dictionary. The representat ive name for the variables remains as
the target of the new ass ignments . The aliasing dictionary is
searched for names occurring in r ight-hand side expressions to
make subsequen t express ions eligible for commoning .

Suppose a target T is considered with s ta tement collections C1
and C2, The second phase proceeds as follows:

I. All r ight -hand sides of C2 are hashed into a dictionary so that
any given expression can be quickly checked for inclusion in
C2.

2. The s ta tements in C7 are examined in topological order
according to the control flow graph, If an ass ignment is

found that is eligible for movement , its r ight-hand side is
looked up in the hash table for C'2.

3. Wheneve r a match is found in step two, each of the assign~
ments is moved f rom its current position, and a new assign-
ment is cons t ruc ted immediately before the test T. The two
variables are entered into the aliasing dictionary, attd the
resulting representat ive name is used as the target uf the new
ass ignment . A Birthpoint can also be moved if those
definit ions are the only ones that reach the birthpoinl.

In order to avoid the rehashing the s t a tements itt C2 after m o v i %
an ass ignment , none of the representat ive nantes of variables used
in C2 must change as a result of the new aliasing. This can be
accomplished easily when performing the tmioz7 operatiot~ by
choosing the C2 name as the result name. "~

Note that to be eligiNe for movement , the r ight -hand side of an
ass igmnent mus t not use any variables for which definit ions exist
that are domina ted by the test 71 This is trivially satisfied by the
above algori thm due to the renaming. If a definit ion did exist, it
would have caused a new n a m e , and the s t a t ements ' r ight-hand
sides would not have matched.

4.3.3 Co:rerunning of Contro~t Sm~ctures

This section presents an extens ion of the above algori thm, that
includes the mot ion of entire regions of control s t ructures as well
as a ss ignment s ta tements . Candidate c o m m o n s t ructures are
identified by the fact that they have c o m m o n tests and are controi
dependen t and domina ted by the same test. This is analogous to
the match ing of ass igmnents in the previous section, except that
conditional express ions ra ther than r ight -hand sides are
compared.

In general, a moved control s tructure is no t copied exactly. Some
of the code conta ined in the s t ructure m a y not be commo n to all
instances, or some portions may be immovable due to data
dependence considerat ions. For this reason, the regions to be
moved mus t be editable, in that they can be copied selectively by
parts wi thout incurring undue costs, tn particular, due to the
difficulty of backing out of aliasing and o ther decisions, si tuations
in which a piece of code is moved and then later pulled back are
avoided.

This policy can be enforced by restricting m o v e m e n t to structures
in which all required editing is in terms of s ingle-entry single-exit
regions of the flow graph. In order to avoid a costly
p re -examina t ion of the s tructure to determine which nodes head
such regions, a simpler test is per formed to decide whether or not
the region under considerat ion is a series-parallel (S-P)
graph-- the type that normally occurs in s t ruct~red programs. ~ In
such a graph, there is a one- to -one correspondence be tween split
nodes and join nodes, such that each split node domina tes its
cor responding join node, and conversely, each join node
pos t -domina tes its corresponding split node. Thus , each split
node (arising from a conditional branch) necessarily heads a
s ingle-entry single-exit region, and thus may be edited from the
overall s t ructure witho~tt dis turbing the other parts of the graph.

The control dependence DAG was introduced in Section 4.2. An example of such a DAG is presented in Figure 10.
" That is, following that branch of T guarantees execution of the statement, whereas some other branch of T may avoid executing the statement.
" Although this works if only two-way branching is encountered, it can be extended to multi-way branching as well. In this case, collections C2 through Cn

wifi be hashed, and collection CI will be traversed as above. In this ease, however, it is not possible to keep ar~ atiasing operation from changing represe)~-.
tathees for all of the collections C2 through Cn. Instead, update of the global alias dictionary rm~st be deferred, and a simple table linking names from C/
with i~s aliases in the other collections is maintained. This suffices throaghoat processing of test Tsince every vaNable in Cll wit/have at most one alias i~
each ol the other collections. After processing T, the information in this simple alias tame is merged with the global dictionary.

" [he decision that o)~ly SaP control structures are eligible for movement somewhat limits the power of the COMMON algorithm. However, the S-P restriction
is a reasonable compromise between power and cost. Moreover, the S-P restriction does)~ot limit the algorithm when applied to scr~act~red programs.

8O

A single pass over the control flow B A G suffices to determine
whether a node heads a S-P region. 12

in phase two of the C O M M O N algorithm, when c o m m o n tests
heading S-P regions are identified along all branches f rom test
node T, a new copy of the c o m m o n test is created above T, and
the c o m m o n port ions of the S-P regions are copied to form a new
region under the promoted test. Any code in the original regions
that is not c o m m o n mus t remain in those regions, along with any
required control structures.

Discovery of c o m m o n code here is roughly the same as in the
simple C O M M O N algorithm. The only difference is that
condit ions guarding a s ta tement in the S-P region must be hashed
along with. the s t a tement itself. In this way only s ta tements in the
same place relative to the entrance of the S-P region will be
considered common.

As in the simple C O M M O N algorithm, an Z ass ignments that are
c o m m o n e d as a result of structure commoning mus t cause updates
to the aliasing dict ionary in order to allow the commoning of later
ass ignments and tests that make use of the aliased variables.

In order to ease the process of copying code from common
control s tructures, traversal of the structure in the C1 collection
is performed according to the dominated topological order
defined in Section 3.4. The dominat ion aspect of this ordering
allows the S-P d iamonds to be copied easily without having to
close up dangling control flow paths.

4.4 A Nonstrict Algorithra
The STRICT algori thm disallows movemen t of any code that is
control dependent on immovable tests. In this algorithm,
str ictness is relaxed, thus increasing the opportunit ies for
movemen t substantially, a l though the profitability of some moves
becomes quest ionable. This algorithm is based on the assumpt ion
that it is generally more profitable to execute every s ta tement in
the interval once if the interval is to be executed, rather than
possibly execute some s ta tement many times by leaving it in the
interval. As in the STRICT algorithm, all motion is from the body
of the interval to the landing pad.

Like the STRICT and C O M M O N algorithms, the mot ion of a
control s tructure precedes the mot ion of its guarded statements .
If that control s tructure is itself dependent on some immovable
test, then motion of the control structure improves profitability
of s ta tements that it guards, but such s ta tements are not executed
strictly. Further , the mot ion of a control structure can free other
code for movement , but at the cost of strictness. Strictness can
only be guaranteed for s ta tements that are control dependent only
on movable tests.

As in the STRICT algorithm, the intervals of a program are
traversed from their innermost to outermost nesting. Upon
visiting an interval, the D A G that corresponds to the body of the
interval is traversed by the dominated topological order described
in Section 3.4. U p o n visiting a node that is control dependent
only on movable tests, that node can be immediately placed in the
landing pad, since its control dependent predecessors have
already been visited by the dominated topological traversal. Thus
far, the mot ion is strict. However . a node that is control

dependent on some immovable test cannot be guarded by that test
in the landing pad. For nonstr ict execution, s ta tements of such
nodes can still reside in the landing pad, and the location chosen
for those s ta tements determines the profitability of the nonstrict
motion. In particular, the node may be control dependent on
some movable test, which, by nature of the traversal, already
appears in the landing pad.

More specifically, the mot ion of control s tructures must account
for the types of branches upon which a node N is control
dependent.~3

1. If N is control dependent on an immovable branch, then its
execution cannot be strict with respect to that branch.
Suppose N is control dependent on branch b of node P. The
nodes along the frontier determined by a traversal f rom P
along its b branch are executed under conditions that require
execution of node N. Reaching any node of that frontier
must guarantee the execution of node N, and so the branches
of all nodes on that frontier must be targeted to node N.
Similarly, suppose node U unconditionally transfers control
to node N. By the above mechanism, the branch from U may
have been redirected to some node other than N. The same
mechan i sm must be applied to the frontier determined by U,
which may consist of only U if no redirection was performed
o n U, 14

2. If N i s control dependent only on movable branches, then N
can be placed as in the original control flow DAG. provided
that the relevant branches are still unresolved. If any branch
relevant to the placement of N is already resolved, then N is
placed as if it were under control of some immovable branch.

This nonstrict motion results in three levels of profitability, each
associated with a set of criteria that determines the correctness
of moving s ta tements .

1. Nodes that are control dependent only upon rnovable
branches can be executed strictly. Thus, the conditions
described in the STRICT algorithm apply to the motion o[
s ta tements from such nodes.

2. Nodes that are control dependent on immovable branches
are unconditionally executed with respect to the immovable
branches. The condit ions that permit motion in this case are
described in Section 4.4.2.

3. Due to the p lacement strategy, some nodes may be control
dependent only on movable branches, yet be placed as if they
were under control of some immovable branch. Such nodes
are executed profitably. The mot ion is in general more
profitable when there are many movable branches between
an immovable branch and N. The conditions that permit
motion in this case are described in Section 4.4.3.

4.4.1 An E×arnl~Je of Control Structure Copying
Consider the control flow D A G shown in the left column ni
Figure t0. The arcs are directed, with the destination of an arc
lower in the figure than its source. Using the techniques oi
[Ferrante841, the control dependence graph is contrueted as
shown in the middle column of Figure I0.

~ Consider a test node '/i Visit the successors of T in topological order. Each node will be labeled with the conditions that guard its execution ' relanve to
conditions on 73. For the graph to be S-P, that labeling may be represented by a conjunctive clause, with negated terms where false branches are taken. A~
each join node, the conditions labeling each of the predecessors must be identical, except me last term: one should be the complement of the other. The list
becomes empty at an exit node. If the labeling cannot be reoresemed in the manner described here. then Tdoes not head a S-P region, other than the trivial
region consisting solely of T itself.

~ For purposes of this discussion, a node that is independent of all tests is considered to be trivially dependent on a movable test that always causes executinll
of that node.

~4 This process can be accomplished efficiently by maintaining frontier pointers in the nodes and adjusting the pointers using path-compressiun technique-

81

[2] immovable

0 Movobie

:+~'£'~." 1 2 / •

/ \ / ' \

\ ,/ R', /

\ , /

Ii~!urc t/).

1

+V+
/ 9

/

~ o

v 3 0
A DAG

21

} 25

8

+

0

Its Control Dependence Graph

11 / 21 /.,/"

25

28

"12
Its Landing Pad Copy

lhu right coMmn shows the results of applying the above
tuNmiqucs t~>thc DACi and its control dependence graph. This
s<'cti{m c×tlnfincs in dctait how code can be copied into the landing
pad. Thus Bar. no issues of safety are addressed. This section
z+<ldrcsscs only where code can be placed in the landing pad, given
that the conditions that determine safety are satisfied. The
Sgoridnn tra+,crscs the DAG in the order shown by the node
!abcK Iiuch node of the DAG corresponds to a straight-line
sequence oi code terminated by a branch. Node t is control
dcpcndcnt only on program entry. +5 The code of node 1, including
the movaNc branch with which it exits, can be moved. Node 2
is control dependent on that movable branch, so its code can be
moved up to its immovable branch. Nodes 3 and 4 are control
dcpcndent on the immmovable branch of node 2, so they are
executed unconditionally with respect to node 2. The branch of
node 3, previouty targeted for node 5, is resolved prematurely to
cause this unconditiona] execution. The branch from node 1,
which is still open, can protect node 6, which is dependent only
on the movable branch from node i. Because the relevant
branches are still open and only movable branches are the source
of control dependences, nodes 7 and 8 are placed under control
of node 6, node 9 is the successor of nodes 7 and g, and nodes
10 and 11 follow the join of nodes 5 and 9, Nodes 12 and t3 are
control dependent on immovable branches and follow node 11 in
the landing pad; there are no relevant branches to close. Node
14 is control dependent on the movable branch of node 13, and
is appropriately guarded in the landing pad.

Node] 5 deserves special attention, tt is control dependent on the
immovable branch of node t2. All unresolved branches between
nodes t2 and 15 must be closed and targeted to node 15. Node
t3 contains such a branch. The branch has two successors; one
successor is already closed and targeted to node 14. The other

~s Like uncorldidonal branches, program entry :is a movable branch.

branch, originally targeted for node 17, must now be targeted for
node 15. Thus, node 15 is executed less profitably than could be
expected. In particular, arriving at node 14 implies that node 15
is not executed. However, node 15 must be placed such that if
node t2 executes (the node upon which it is control dependent),
then node 15 executes. The conditions that determined the
placement of nodes 14 and 15 also apply to the placement of
nodes t6 and 17.

Consider nodes t8, 19, and 20. They are dependent only upon
movable branches, but these branches have already been
resolved. They are therefore placed as if they depended on
immovable branches.

Node 21 is dependent on the immovable branch of node 1 t, and
all branches for nodes l 1 through 2tt are already resolved. Node
21 concludes with a movable branch, which is copied into the
landing pad. Node 22 is then placed under control of that branch.
Similarly, nodes 23 and 24 are placed under control of the
movable branches of node 22 and 21, respectively. Nodes 25 is
dependent on the immovable branch of node 24 so its execution
follows node 24. Node 26 is control dependent on nodes 24 and
22, thus forcing all unresolved branches in nodes 22 through 26
to be targeted to node 26. The branches from nodes 22 and 25
are thus targeted for node 26. Node 27 can be placed as in the
original DAG since the relevant branches are still open. Node 28
is control dependent on the immovable branch at node 24. All
branches from 24 through 28 are targeted for node 28. Nodes
29 and 30 are similarly placed

4°4°2 UncenditienalJy Exeeeuted S~tateraents
Statemer, ts executed unconditionally are more restricted with
respect to code motion. These restrictions are required to assure

82

that the semant ics of the program are preserved in the absence
of normal control s tructures that guard the s tatements . ~('

I. Definit ions that reach uses within the s ta tement mus t come
from s ta tements outside the landing pad or other uncondi-
tionally executed s ta tements already moved to the landing
pad.

This restriction does not allow these unconditionally
executed s ta tements to use values generated by sections of
code are either strictly or profitably executed since these
values may not be available.

2. A variable defined by this s ta tement must cover all of its
uses, i.e. it rnust be the only definition of that name to reach
any use of that name.

Since none of the control s tructure is moved with this code,
multiple definit ions for the same variable cannot be distin-
guished. This restriction will only affect ass ignments
between temporary variables since the renaming guarantees
that all expressions with non-trivial r ight-hand sides generate
unique names.

4 ° 4 . 3 P r o f i t a M y E x e c u t e d S t a t e m e n t s

Sta tements of this type are control dependent on a chain of
branches. The first member of that chain is an immovable branch
and it is followed only by movable branches. Consider a region
of nodes, defined as those nodes dominated by the first movable
branch of that chain. ~7 Sta tements of a region are eligible for
motion, subject to the first criterion of the unconditionally
executed s t a tements and two additional criteria:

I. tf a variable defined by the s ta tement has a birthpoint, then
that birthpoint must be in the region. This condition
guarantees that the sequencing of the definitions that reach
the birthpoint is preserved in the landing pad,

2. Definitions for variables may be moved out if the birthpoint
of the variable has not been processed and no earlier
definitions for that variable remain within the interval.

4.5 The Combine Algorithm
The C O M M O N algorithm given in Section 4.3 is strict in the
sense that it does not move an expression above a branch unless
the expression is c o m m o n along all paths from that branch. If
some path failed to include the expression, then moving the
expression above the branch causes its unconditional execution

with respect to the branch.

Consider a si tuation in which an expression is not quite common
along all paths f rom a branch. For example, from a three-way
branch, some expression could occur along tWO paths but be
absent on the third path. The C O M M O N algorithm is unable to
move the expression since it is not common along all paths from
the branch. Now suppose that the N O N S T R] C T code motion
algorithm is applied to this example, and the test was not movable.
Both instances of the expression could be moved above the
branch, causing redundant execution of the expression.

A solution to this problem is to mainta in a dictionary of available
expressions that are unconditionally executed in the landing pad.
An e×pression contained in the dictionary need not be placed

again in the landing pad. References to expressions that are
deleted in this manne r must be accommodated by aliasing the
lef t-hand side variables, as discussed in the C O M M O N algorithm.

5 ° 0 C o n c l u d i n g R e m a r k s

Al though the algorithms presented in this paper are improve-
merits over existing code motion techniques, the algorithms have
the following shortcomings:

1. The success of the STRICT and N O N S T R I C T algorithms is
greatly affected by the C O M M O N algorithm, since the
C O M M O N algori thm t ransforms nonstrict code into either
strict or profitably movable code. The C O M M O N algorithm
has a heuristic componen t that limits its effectiveness to
obtain a polynomial time bound.

2. Sta tements moved by the algorithms must receive the sap~e
values on all iterations of the loop. Consider the program
shown in Figure 11 :

while 0
t ~ i + 5

i ~ nonmovable

t ~ i + 5
end

Figure 11. Variant but Removable code

3.

The value of i changes for each iteration. As a conscquc~cc,
the techniques presented here fail to move either of the
ass ignments to t f rom the loop. It is correct to move either
the first before the loop or the second after the loop. This
example can be accommodated by unrolling the loop once,
copying all of the r ight-hand sides of s ta tements from the
loop to the entry landing pad where they are unconditionally
executed. The s ta tements of the loop that are redundant are
then eliminated, as are the s ta tements in the landing pad that
never contr ibute to the code within the loop. This case is
easily analyzed for code that is unconditionally executed in
the landing pad. Since the goals of STRICT and
N O N S T R I C T are to execute code as profitably as possible,
control s tructures accompany the mot ion of s tatements .

The success of the algorithms often depends on the order in
which nodes are considered. Since the dominated topological
order is not a unique total order, the solutions can be order
dependent . The dominated topological order can usually
select any successor of a branch as the next node to visit.
The result of this f reedom is that some assignments to join
birthpoint names may not be removed. In Figure 12, if the
then block is evaluated first, neither assignment to t.3 is
removed. If the else block is evaluated first, the assignment
to t.3 in that block is removed. This type of order depend-
ence is not really important since in neither case is the
birthpoint for t.3 movable. Without a movable birthpoint,
no real uses of t.3 can be moved.

~7 The nodes thai comprise tl'lis region are easily determined by the dominated top~k~gkal traversaI.

83

4.

if movabletest
then do

t.1 *- notmovable
t.3 ~- t.I

end
else do

t.2 ~ movable
t.3 *. t.2

end
birthpoin.t t.3

Figure 12. Order Dependence

In the NONSTRICT algorithm, nodes are placed in the order
determined by the dominated topological traversal. Upon
placing a node N that is control dependent on an immovable
branch, certain branches that are unresolved in the landing
pad are targeted on node N. Such branches may be capable
of guarding a subsequently placed node, but the
NONSTRICT algorithm precludes reopening resolved
branches. The work of Ferrante and Mace [Ferrante85] can
place nodes such that they execute more profitably. For
programs that correspond to some correct sequential order,
the control dependences suffice in placing nodes. Since the
hnmovable tests cannot be decided in the landing pad, such
tests imply the concurrent execution of all successors, and
data dependences might exist that preclude a correct
sequential order. The algorithm of Ferrante and Mace can
place the nodes of such programs~ but either the control flow
order is violated or tests have to be duplicated ~o maintain

that order, Since that order is important to the algorithms,
this approach is not used.

Although the above arguments appear to raise do~bts as to the
effectiveness of the algorithms presented in this paper, recall that
one goal of these algorithms is to effectively accomraodate
abstractions. Code moved from intervals retains its relevant
surrounding control st~ucture~ which makes these algorithms
attractive for the stylized code that reslllts from the heavy use of
abstractions or other integrated subroutine rnechanisms.

In the worst case, the algorithms may :swell the code size by 2 '~,
where d is the depth of interval nesting. [n the worst case, all of
the control structure is copied to the landing pad for each interval
and none of that control sm~cture is deleted from within the
interval. This situation, albeit unlikely, can be controlled if
algorithms are restricted to some fixed nesting of inner intervals.
For example, Scarborough has observed that most of the
execution time is spent in inner loops [Scarbo~trghSO] and the
IBM Fortran H compiler therefore performs optimizatio~s only
over the deeply nested intervals.

6.0 Acknowledgements
The authors wish to thank their colleagues who provided assist-.
ance with the formulation and preparation of this paper. Alan
Demers assisted with an early formulation of the NONSTRtCT
algorithm. Ashok Chandra assisted with some of the graph
manipulation algorithms. Fran Allen, Barry Rosen, Peter
Markstein, and Mark Wegman gave many valuable comments
that were useful in the development of this paper. The author also
thank Karl Ottenstein and Mary Mace for their helpful
comments.

84

BiNiegraphy
[AllenT0] Allen, F. E, Control flow analysis. SIGPLAN

Notices', July 1970.
[Allen83] Allen, J. R, Dependence Analysis for Subscripted

Variables and Its Application to Program Transf-
ormations. Published by Computer Science
Department, Rice University, Houston Texas, April
1983.

{Banerjee79] Banerjee, U., Speedup of Ordinary Programs.
Published by University of Illinois at Urbana-
Champaign, Oct. 1979, DCS Report No.
UIUCDCS-R-79-989.

[Burke84] Burke, M., An interval approach toward interpro-
cedural analysis. Published by IBM, July, 1984,
RC 10640 #47724.

[ChaitinSl] Chaitin, G. J., Auslander, M. A., Chandra, A. K.,
Cocke, J., Hopkins, M. E., Markstein, P. W.,
Register allocation via coloring. Computer
Languages, 1981, vot. 6, page 47-57.

[Chaitin82] Chaitin, G. J., Register allocation and spilling via
graph coloring. Conference Record of the
SIGPLAN '82 Symposium on Compiler
Construction, June 1982, page 98-105.

[Cooper83] Cooper, K. D., Interprocedural data flow analysis
in a programming environment. Published by
Mathematical Sciences Department, Rice Univer-
sity, Houston Texas, 1983.

[Ferrante83] Ferrante, J., Ottenstein, K. J., A program form
based on data dependency in predicate regions.
Co@rence Record of the Tenth Annual ACM
Symposium on Principles" of Programming
Languages, Jan. 1983.
Ferrante, J., Warren, J. D., A program dependence
graph and its use in optimization. Published by
Springer-VerlagLecture Notes in Computer Science,
1984, page 125-132.
Ferrante, J., Mace, M., On Linearizing Parallel
Code, Conference Record of the Twelfth Annual
ACM Symposium on Principles of Programming
Languages, Jan. 1985.
Graham, S. L., Wegman, M, A fast and usually
linear algorithm for global flow analysis. Journal
of the ACM, Jan. 1976, vol. 23, no. 1, page
172-202.

[Ferrante84]

[Ferrante85]

[Graham76]

[Lowry69]

[Morel79]

[Myers81]

[Reif77]

[Reif81]

[Reif82]

[Schwartz73]

[Schwartz79]

[Tar jan74]

[Wegman85]

[Wolfe82]

Lowry, E. S., Medlock, C. W., Object Code
Optimization. Communications of the A CM, 1969,
vol. 12, no. 1, page 13-22.
Morel, E., Renviose, C., Global optimizati6n by
supression of partial redundancies. Communi-
cations oftheACM, Feb. 1979, vol. 22, no. 2, page
96-t03.
Myers, E. W,, A precise interprocedural data flow
algorithm. Eighth Annual ACM Symposium on
Principles' of Programming La~Nuages, Jan. 1981,
page 219-230.
Reif, J. H., Lewis, H. R., Symbolic evaluation and
the global value graph. Conference Record of the
Fourth Annual ACM Symposium on Principles of
Programming Languages, Jan. t 977, page 104-118.
Reif, J, H., Tarjan, R. E., Symbolic program
analysis in almost linear time. SlAM Journal of
Computing, Feb. 1981, vot. 11, no. 1, page 8t-93.
Reif, J. H., Lewis, H. R., Efficent symbolic analysis
of programs. Published by Harvard University,
Aiken Computation Laboratory, 1982, no.
TR-37-82.
Schwartz, J. T., On Programming, An Interim
Report on the SETL Project, Installment II: The
SETL Language and Examples of Its Use.
Published by Computer Science Department,
Courant Institute of Mathematical Sciences, New
York University, Oct. 1973.
Schwartz, J. T., Sharir, M., A design for opthniza-
tions of the bitvectoring class. Published by
Courant Institute of Mathemtatical Sciences,
Computer Science Department, New York Univer-
sity,, Sept. 1979, no. 17.
Tarjan, R. E., Testing flow graph reducibility.
Journal of Computer and Systems Sciences, Dec.
1974, vol. 9, page 355-365.
Wegman, M., Zadeck, F. K., Constant propagation
with conditional branches. Conference Record qf
the Twelfth Annual ACM Symposium on Principles
of Programming Languages, Jan. 1985. page
291-299.
Wolfe, M. J., Optimizing Supercompiters for
Supereomputers. Published by Computer Science
Department, University of Illinois at Urbana-
Champaign, 1982.

8 5

