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Abstract 

Register allocation is the task of assigning local variables and temporary values to physical 
registers of a processor. It is crucial for the efficiency of compiled code. The most common-
ly used algorithm treats the task of register allocation as a graph coloring problem. It gener-
ates code of good quality, but is too slow for just-in-time compilers because of its quadratic 
runtime complexity. For such compilers, the linear scan algorithm is an efficient alternative: 
It generates code of nearly the same quality, but is much faster than the graph coloring 
algorithm because it needs only a single pass over the lifetime intervals. 

The Java HotSpot Virtual Machine by Sun Microsystems uses a just-in-time compiler to 
generate native code for frequently executed methods. To achieve a high compilation speed 
and a low startup time, the HotSpot client compiler avoids time-consuming optimizations. 
The current product version assigns registers using a local heuristic. In the context of this 
master thesis, a research version of the compiler was extended with the linear scan algo-
rithm for register allocation. The implemented variant improves the basic algorithm with 
more advanced optimizations: It makes use of lifetime holes, splits intervals if necessary 
and models register constraints of the target architecture with fixed intervals. 

Benchmark results prove that the linear scan algorithm is a good tradeoff if both compila-
tion time and runtime of a program matter: The compilation time is only slightly higher in 
comparison with the old local heuristic for register allocation, but the resulting code 
executes about 30% faster. The benchmarks also indicate the high impact of the Intel SSE2 
extensions on the speed of numeric Java applications. 

Kurzfassung 

Eine der wichtigsten Compileroptimierungen ist die Registerallokation, die lokale Variab-
len und temporäre Werte auf die Register des Prozessors abbildet. Das am häufigsten ver-
wendete Verfahren basiert auf Graphfärbung. Es erzeugt hochqualitativen Code, ist aber 
wegen seiner quadratischen Laufzeitkomplexität zu langsam für Just-in-Time-Compiler. 
Für solche Anwendungen ist das Linear-Scan-Verfahren eine effiziente Alternative. Es 
erzeugt zwar nicht ganz so guten Code, ist aber in der Laufzeit im Wesentlichen linear. 

Die Java HotSpot Virtual Machine von Sun Microsystems verwendet einen Just-in-Time-
Compiler, um Maschinencode für häufig ausgeführte Methoden zu erzeugen. Um eine 
hohe Übersetzungsgeschwindigkeit zu erreichen, führt der HotSpot Client Compiler dabei 
keine zeitaufwendigen Optimierungen durch. Die aktuelle Produkt-Version verwendet 
derzeit eine einfache Heuristik für die Registerallokation. Diese Diplomarbeit beschreibt 
die Registerallokation nach dem Linear-Scan-Verfahren für eine Forschungs-Version des 
Compilers. Optimierungen wie die Ausnutzung von Löchern in Live-Intervallen, die Mög-
lichkeit zur Teilung von Intervallen und die Verwendung von vorgefärbten Intervallen 
führen zu einer Verbesserung der Code-Qualität. 

Benchmarks zeigen, dass das Linear-Scan-Verfahren einen guten Kompromiss zwischen 
Übersetzungszeit und Laufzeit eines Programms darstellt: Die Übersetzungszeit steigt im 
Vergleich mit dem alten, heuristischen Registerallokations-Verfahren nicht wesentlich an, 
die Geschwindigkeit des erzeugen Codes ist jedoch um etwa 30% höher. Zusätzlich zeigen 
die Benchmarks den großen Einfluss der Intel SSE2-Erweiterungen auf die Geschwindig-
keit von numerischen Java-Anwendungen. 
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Chapter 1 

1. Introduction 

 

This chapter introduces the problem of register allocation in the context of a fast 
just-in-time compiler. Then, the history of the research collaboration between 
Sun Microsystems and the Institute for System Software at the Johannes Kepler 
University Linz is presented. The linear scan algorithm for register allocation is 
implemented in a research version of the Java HotSpot client compiler of Sun 
Microsystems. 

Two opposing goals influence the design decisions for a just-in-time (JIT) compiler: On the 
one hand, the compilation time should be low because it is part of the total runtime of the 
application. On the other hand, the generated code should run as fast as possible, which 
requires extensive and time-consuming optimizations. One of these optimizations is the 
register allocation. 

The Java HotSpot Virtual Machine by Sun Microsystems reduces the compilation time by 
executing all methods in interpreted mode first. When a method was interpreted several 
times, it is considered “hot” and scheduled for compilation. Therefore only few but impor-
tant methods are compiled. The virtual machine comes with two different JIT compilers: 
the fast client compiler providing a low startup time and a low response time, and the 
server compiler providing the best possible peak performance. 

The client compiler serves as the basis for the work of this master thesis. It was designed as 
a straightforward and fast compiler that omits all time-consuming optimizations. Regard-
ing register allocation, only the innermost loops are optimized by a simple, yet effective 
heuristic. 

However, global register allocation is known as a profitable optimization that should be 
utilized also by the client compiler. The standard algorithm for register allocation used in 
most modern compilers is based on graph coloring. It generates good code, but is too slow 
for JIT compilers because even the best heuristic implementations have a quadratic runtime 
complexity. 

The linear scan algorithm for register allocation was developed for time-critical compilers. 
It generates code that is nearly as good as the code generated by a graph coloring register 
allocator, but is much faster because of its linear runtime complexity. The goal of this 
master thesis is the implementation of the linear scan algorithm for the Java HotSpot client 
compiler. The implementation is evaluated by comparisons with the old heuristic for 
register allocation in the Sun JDK 1.4.2. 
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1.1 Project History 

The first version of the Java HotSpot client compiler was developed by Robert Griesemer 
and Srdjan Mitrovic [Griesemer00]. This compiler is part of the Sun JDK since version 1.3. 
Originally, it used only a graph-based high-level intermediate representation (HIR) for 
optimizations. For the release of the JDK 1.4 in 2002, the compiler was extended with a 
second low-level intermediate representation (LIR). 

The research collaboration between Sun Microsystems and the Institute for System 
Software (named Institute for Practical Computer Science before 2004) at the Johannes 
Kepler University Linz started in 2000, when Hanspeter Mössenböck spent a sabbatical at 
Sun Microsystems. He extended the client compiler to generate the intermediate repre-
sentation in static single assignment (SSA) form and added a graph coloring register 
allocator [Mössenböck00]. 

The research was continued from 2001 to 2003 by Michael Pfeiffer at the University of Linz. 
One major step was the replacement of the graph coloring register allocator by the linear 
scan algorithm because the graph coloring algorithm was too slow for the overall fast client 
compiler [Mössenböck02]. The register allocator first operated on the HIR. When the LIR 
was added to the compiler, the algorithm was adapted to work on the LIR. 

The work for this master thesis started in 2003. The first implementation of the linear scan 
algorithm worked well, but had certain drawbacks: Since intervals were allocated always 
as a whole, only whole intervals could be spilled. This required a complicated handling of 
scratch registers when a spilled interval was required in a register by an instruction. The 
result of this master thesis is a more flexible version of the linear scan algorithm that can 
split intervals. This increases the complexity of the algorithm, but makes the later handling 
of scratch registers unnecessary. 

The second important optimization is the generation of code for the Intel SSE2 extensions. 
Originally, all floating point computations were performed in the processor’s floating point 
unit (FPU), but the complicated structure of the FPU prevents an efficient register allo-
cation. The SSE2 extensions of modern processors allow a much faster execution of floating 
point operations and are regular enough to be handled with the linear scan algorithm. 

Another successful output of the cooperation with Sun Microsystems is a port of the client 
compiler to Java by Thomas Kotzmann. Originally, the whole virtual machine is written in 
C++. This is a necessity for the low level functionality of the runtime system, but higher 
level subsystems like the just-in-time compiler could also be written in Java itself. One of 
the goals of this project was the comparison of the compilation speed between the C++ and 
the Java version of the compiler [Kotzmann02]. 

1.2 Structure of this Master Thesis 

Chapter 2 presents the basic principles for register allocation. After a short overview of 
local methods, the standard algorithm for register allocation used in many modern 
compilers is presented. This algorithm treats register allocation as a graph coloring 
problem. It produces high quality code, but is rather slow. Then, the linear scan algorithm 
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is presented as a good tradeoff between compilation speed and quality of the resulting 
native code. 

Chapter 3 first presents the abstract specification of a Java virtual machine. Afterwards, the 
HotSpot virtual machine of Sun Microsystems is described in detail. The client compiler of 
the HotSpot VM serves as the basis for the research compiler that was extended with the 
linear scan algorithm. Chapter 4 presents all compilation steps of this compiler, together 
with the intermediate representations used. 

Chapter 5 explains the implementation of the linear scan algorithm for register allocation in 
all details. The algorithm is presented in pseudo-code and illustrated with examples. The 
special handling necessary for the Intel floating point unit is then explained in Chapter 6. 
The implementation is evaluated in Chapter 7 using two different benchmarks. Both the 
compile time and the run time of the generated code are considered. 

Chapter 8 summarizes the result of this master thesis and gives a short outlook of planned 
future work. Appendix A completes the thesis with a larger compilation example, where 
all used intermediate representations and data structures are visualized. 
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Chapter 2 

2. Algorithms for Register Allocation 

 

This chapter presents some widely used algorithms for register allocation. First, 
a short description of local methods, which are fast but do not generate optimal 
code, is given. Then, today’s standard algorithm, based on graph coloring, is 
explained and visualized with a short example. After reasoning why graph 
coloring is too slow for just-in-time compilers, the linear scan algorithm is 
presented as a good tradeoff between compilation speed and runtime of the 
compiled program. References to other projects implementing this algorithm 
emphasize this. 

Register allocation, the task of assigning variables and temporary values to physical 
registers of a processor, is commonly known as one of the most important optimizations 
for compilers. The main goal is the minimization of the traffic between the main memory 
and the processor. Memory bandwidth is often a bottleneck of today’s computer systems 
because a modern processor is much faster than its attached main memory. Even with a 
hierarchy of caches providing a faster access to frequently used areas of the main memory, 
accessing a register is several times faster than loading a value from memory. 

In most processor architectures, registers are a limited resource. For example, the Intel IA-
32 architecture [Intel1] described in this thesis offers only eight general-purpose registers of 
which only six can be used in normal computations. Therefore, only the most frequently 
accessed values can be kept in registers. The proper register usage is crucial for the overall 
performance of a program. All values that cannot be kept in a register must be stored on 
the stack before the register is overwritten with another value. This process is called 
spilling. When the spilled value is used later on, it must be reloaded to a register again. 

The importance of register allocation is observable by the large number of algorithms that 
are available today. A coarse classification distinguishes two kinds of algorithms: 

• Local methods limit the view of the algorithm to a small part of the currently 
compiled method. Especially the innermost loops are identified and optimized. 

• Global methods try to optimize whole methods or even groups of methods. They 
can achieve the best possible result, but are considerably slower. 

With sufficient knowledge about the target architecture, it would be possible to compute an 
optimal register allocation, where the execution time is as low as possible. But it is proven 
that optimal global and even local register allocation is an NP-complete problem that is not 
feasible for practical usage [Sethi73] [Farach98]. As a result, every algorithm must find a 
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tradeoff between compile time during allocation and runtime of the resulting code. The 
more time is invested for allocation, the faster is the generated code. This tradeoff is 
especially important for just-in-time (JIT) compilers where the time required for compi-
lation is part of the total runtime of the application. Therefore, many JIT compilers use local 
methods, although global methods are available that generate better code but require too 
much compilation time. 

2.1 Local Methods 

The straightforward method for register allocation is to allocate a register when it is needed 
for a computation, and free all registers after the statement was processed. This implies that 
registers are used only for short-living temporary values within a single statement and not 
for local variables. This allocation can be done on the fly while emitting machine code and 
is very fast, but leads to repeated accesses of the same values in memory, while some 
registers remain completely unused. 

These unused registers can be utilized to cache frequently used local variables during the 
whole method or an often executed loop. Especially the identification and special treatment 
of loops is worthwhile: Most of the execution time of a program is spent inside loops. Even 
conservative static estimations state that a nested loop of depth d is executed 10d times, so 
moving a memory access out of a loop is always beneficial. This simple and fast heuristic 
leads to surprisingly good results and is therefore still used in compilers. 

Loads and stores of local variables can be further optimized: When a register is stored to a 
local variable and reloaded immediately afterwards to another register, then the load from 
memory can be replaced by a register move, provided that the original register was not 
overwritten in between. If it is known that the local variable is never used later on, the store 
operation can also be eliminated. 

2.2 Graph Coloring Algorithm 

Global methods for register allocation generate better code than local methods. They have a 
precise overview of all values that could be stored in registers, which allows the selection 
of the best ones. The most commonly used algorithm treats the task of register allocation as 
a graph coloring problem. The first implementation was presented by G.J. Chaitin in 
[Chaitin81] and [Chaitin82]. An improved design was proposed by P. Briggs in [Briggs89]. 
This chapter briefly describes a general standard algorithm as presented in [Muchnick97]. 

2.2.1 Building the Interference Graph 

The graph coloring algorithm works on an intermediate representation of the code where 
all values that can be assigned a register get a unique virtual register number. Each virtual 
register has a live range that starts at its first definition and ends at its last use, i.e. a virtual 
register is live when it contains a valid value that must be preserved. A live range needs 
not be continuous, but can have holes resulting from multiple definitions and uses. 
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The N virtual registers must then be mapped to the available R physical registers, where N 
is usually much larger than R. The physical registers are treated as “colors” that are used to 
color an undirected graph—called the register interference graph—whose nodes are virtual 
registers. Two nodes are connected by an edge if and only if the two corresponding virtual 
registers must not get the same physical register because they are live at the same time. 

The simple example code shown in Figure 2.1 contains five virtual registers v1, v2, v3, v4 
and v5. Assume that registers should be allocated for a target architecture with only two 
physical registers r1 and r2 available. The instructions are numbered from (1) to (7). The 
right side of Figure 2.1 shows resulting live ranges for the virtual registers. The live range 
of v1 starts at the definition in instruction (1) and ends at the last use in (7). Because of the 
second definition in (5), there is a hole between (3) and (5). All other live ranges are 
continuous from their definition to their last use. 

(1) v1 = 10
(2) v2 = 20
(3) v3 = v1 + v2
(4) v4 = v2 + v3
(5) v1 = v3 + v4
(6) v5 = v4 + v1
(7) return v1 + v5

v1 v2 v3 v4 v5

 
Figure 2.1: Graph coloring example—code with live ranges 

It is easy to construct the register interference graph using the live ranges. For example, the 
nodes v1 and v2 are connected by an edge because the virtual register v2 is defined by 
instruction (2), between the definition of v1 in (1) and its use in (3). Also, v1 interferes with 
v4 because of instruction (5), and v1 interferes with v5 because of instruction (6). All other 
interferences can be obtained likewise. The complete interference graph is shown in 
Figure 2.2. 

v1

v2v3

v4 v5

 
Figure 2.2: Complete register interference graph 

2.2.2 Pruning the Graph 

The register interference graph must now be colored with R colors (called R-coloring) so 
that any two adjacent nodes get different colors, where each color represents a physical 
register. Finding an R-coloring exhaustively is not feasible because the problem is known to 
be NP-complete. Instead, an iterative approach is used to simplify the graph. If no R-color-
ing can be found, it is not possible to allocate a physical register to each virtual register and 
some virtual registers must be spilled to memory. A cost function is used to find the values 
that have the least negative impact on the total performance when they are spilled. 
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To color the graph, it is iteratively pruned. In each iteration, one node with all its edges is 
removed from the graph and pushed on a stack. For the selection of this node, two rules 
described below are applied. When the graph is empty, the removed nodes are popped 
from the stack and re-added in reverse order. Each added node is assigned a color that is 
not used by any adjacent node yet. If no color is available, then the node is marked for 
spilling. 

The first rule for removing nodes is called degree < R rule: If the graph contains a node with 
a degree less than R, i.e. a node with less than R adjacent nodes, then it is R-colorable if and 
only if the graph without this node is R-colorable. So it is enough to search for a coloring of 
the reduced graph. If the reduced graph was successfully colored, there is always a color 
available for the removed node: Because there are less than R adjacent nodes, these nodes 
cannot occupy all R colors and so there must be a free color. 

This rule is very effective for reducing a graph, but it is not sufficient. In the previous 
example, the node v5 can be removed by the degree < R rule: It has only one adjacent node, 
so it is removed from the graph and pushed on the stack. The remaining graph and the 
current state of the stack are shown in Figure 2.3 a). Now all remaining nodes have a 
degree of two, so the first rule cannot be applied and the second rule is needed.  

The second rule selects the least important node using the cost-function, removes it from 
the graph and pushes it on the stack. This rule is called optimistic heuristic: Even if all nodes 
have a degree higher than R, it might be possible to find an R-coloring of the graph. When 
some adjacent nodes are not connected among themselves, then they can have the same 
color and an unused color can be found for the current node. But it is also possible that all 
colors are occupied by adjacent nodes. In this case, the node must be spilled. 

v1

v2v3

v4 v5a)

v1 v2

v3

v4 v5b)

v1 v2 v3v4 v5c)

v1v2 v3v4 v5d)

v1v2 v3 v4v5e)

Register interference graph Stack of removed nodes  
Figure 2.3: Pruning of the register interference graph 
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In the example, assume that the cost function selected v2 to be removed from the graph. 
The resulting graph is shown in Figure 2.3 b). The remaining nodes can be processed by the 
degree < R rule because there is always a node with only one edge available now. Figure 2.3 
c) - e) shows the graph where the nodes v3, v1 and v4 are removed. Afterwards, the graph 
is empty and all nodes are present on the stack. 

2.2.3 Reconstruction of the Graph 

In the next step of the algorithm, the graph is reconstructed by popping nodes from the 
stack and restoring the edges to the originally adjacent nodes. The re-added node is 
assigned a color that is not used yet by any adjacent node. If no such color is available, the 
corresponding virtual register is marked for spilling. When all nodes were processed and 
no spilling was necessary, then the graph is completely colored and each virtual register 
can be replaced with its assigned physical register. If spilling was necessary, the appro-
priate spill code is inserted into the intermediate representation. Because this code also 
needs registers, the complete algorithm is repeated, i.e. a new graph is constructed and 
colored. This is repeated until no further spilling is necessary. 

v1r2

v2r1v3r2

v4r1 v5r1

v1r2

v2r1v3r2

v4r1 v5e)

v1r2 v2

v3r2

v4r1 v5d)

v1r2 v2 v3v4r1 v5c)

v1v2 v3v4r1 v5b)

v1v2 v3 v4v5a)

f)

Register interference graph Stack of removed nodes  
Figure 2.4: Reconstruction of the register interference graph 
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In the example, the graph is reconstructed in the following order: First v4 is added and gets 
the first physical register r1 assigned (Figure 2.4 b). Then v1 is added, and because of the 
edge between v1 and v4 the physical register r2 is assigned (Figure 2.4 c). Similarly v3 is 
added and gets the register r2 (Figure 2.4 d). The node v2 was removed by the optimistic 
heuristic rule. Now it is obvious that the optimism was justified because both adjacent 
nodes v1 and v3 have the same physical register r2 assigned. So r1 can be assigned to v2 
(Figure 2.4 e). Finally, v5 is added and gets the register r1 (Figure 2.4 f). 

Now the graph is completely restored, and each node has a physical register assigned. No 
spilling was necessary, so the algorithm completed successfully. Figure 2.5 shows the resul-
ting code where the virtual registers are replaced by their allocated physical registers. 

(1) v1 = 10
(2) v2 = 20
(3) v3 = v1 + v2
(4) v4 = v2 + v3
(5) v1 = v3 + v4
(6) v5 = v4 + v1
(7) return v1 + v5

r2 = 10
r1 = 20
r2 = r2 + r1
r1 = r1 + r2
r2 = r2 + r1
r1 = r1 + r2
return r2 + r1  

Figure 2.5: Example code before and after register allocation 

To reduce the number of nodes that must be colored, most implementations try to coalesce 
nodes before allocation. When the intermediate representation contains a move from one 
node to another and the live ranges of the nodes do not overlap, then both nodes can be 
coalesced to a single node with the union live range. The lower number of nodes increases 
the compilation speed, but longer live ranges also tend to need more spilling. Exaggerated 
coalescing can degrade the quality of the resulting code. The decision whether two nodes 
are coalesced is therefore determined by heuristics. 

The graph coloring algorithm is frequently used in state-of-the-art compilers. Several opti-
mizations for compilation speed and code quality were developed, so the time needed for 
creating and coloring the register interference graph is acceptable for most compilers. But 
the asymptotic time complexity of the algorithm always remains O(n2), where n is the 
number of virtual registers, because each node could be connected with each other. Also, 
the repetition of the whole algorithm until no more spilling is necessary consumes much 
time. Therefore, the algorithm is not suitable for compilers where compilation speed is 
important, such as JIT compilers. 

2.3 Linear Scan Algorithm 

The linear scan algorithm was described first by M. Poletto et al. in [Poletto97] when they 
implemented a system for dynamic code generation. The algorithm, described in more 
detail in [Poletto99], is very fast because the allocation is done in one linear pass over the 
lifetime intervals. The basic idea of this algorithm is presented in Chapter 2.3.1. An 
improved version, called second chance binpacking, was described by O. Traub et al. in 
[Traub98]. This algorithm, presented in Chapter 2.3.2, spends more time to get a better 
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allocation, e.g. it considers holes in lifetime intervals and allows the splitting of lifetime 
intervals during allocation.  

The linear scan algorithm is also implemented in other production quality compilers, 
especially inside virtual machines for several programming languages: The Jalapeño 
Dynamic Optimizing Compiler is part of the Jalapeño Java virtual machine built at IBM 
Research. It uses a compile-only approach for executing Java applications, implementing 
different levels of compilation depending on how frequently methods are executed. The 
optimizing compiler, presented in [Burke99], uses the linear scan algorithm for register 
allocation. 

Another successful implementation is presented in [Jonasson02]. E. Johansson and 
K. Sagonas adapted the algorithm for HiPE, their high-performance native code compiler 
for the concurrent functional programming language Erlang, and compared it with a graph 
coloring register allocator. They concluded that the linear scan algorithm should be used 
when compilation time is a concern. Consequently, they use it as the default register allo-
cation algorithm when the compiler is run by the interactive development environment. 

2.3.1 Basic Linear Scan Algorithm 

The linear scan algorithm first arranges all instructions of a method in a linear order where 
all control flow structures like conditions and loops are hidden. Then, the lifetime intervals 
for all virtual registers are computed. Each interval starts at the first definition of the 
register and ends at its last use. A dataflow analysis is needed to take the effect of loops 
and conditions into account. The calculation of lifetime intervals is very conservative: 
Because holes are not allowed, registers are considered continuously live from the first 
definition to their last use. 

Figure 2.6 shows the same example as presented for graph coloring in Chapter 2.2. It 
should be processed again with two physical registers r1 and r2. Because of the 
conservative approach, the lifetime interval of register v1 is continuous from instruction (1) 
to instruction (7). 

(1) v1 = 10
(2) v2 = 20
(3) v3 = v1 + v2
(4) v4 = v2 + v3
(5) v1 = v3 + v4
(6) v5 = v4 + v1
(7) return v1 + v5

v1 v2 v3 v4 v5

 
Figure 2.6: Linear Scan example—code with live ranges 

The linear scan algorithm operates directly on the list of intervals, sorted by their start 
positions. The compiler iterates over the list and assigns a physical register to the interval 
immediately. If no physical register is available for the whole lifetime, then some intervals 
must be spilled to memory. Two lifetime intervals interfere if their ranges intersect. So two 
intervals that do not intersect can get the same physical register assigned. 
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The allocation is done by iterating over the sorted list of intervals. At each step, the 
algorithm maintains a list, called active list, which contains all intervals that overlap with 
the current position and have registers assigned. Intervals that ended already before the 
current position are removed from the active list because they are no longer relevant. The 
interval starting at the current position gets a physical register assigned that is not used by 
any interval in the active list. If all registers are already in use, one interval must be 
spilled—either an interval of the active list or the currently processed interval. It has turned 
out to be a good heuristic to spill the interval with the highest end position. 

In the example, the intervals are processed in the order v1, v2, v3, v4, v5. The algorithm 
starts with an empty active list. At the first step, the interval v1 is processed. Since the 
active list is empty, the first physical register r1 is assigned to v1, and v1 is added to the 
active list. When v2 is processed at the next step, v1 is still active and so r2 is assigned to 
v2. Then v2 is added to the active list. 

Next, the interval v3 is processed. Because the active list already contains v1 and v2 with 
the physical registers r1 and r2 assigned, no physical register is available for v3 and one 
interval must be spilled. The algorithm selects v1 for spilling because it has the highest end 
position and removes it from the active list. The memory location that is assigned to v1 is 
called mem1. The register r1 is no longer blocked and can be assigned to v3, which is added 
to the active list. Figure 2.7 shows the state of the intervals and the active list before and 
after processing of v3. 

(1)
(2)
(3)
(4)
(5)
(6)
(7)

v1
r1

v2
r2 v3 v4 v5

current
position

a) Before processing of v3

active list: v1, v2

v1
mem1

v2
r2

v3
r1 v4 v5

b) After processing of v3

active list: v2, v3
spilled to memory: v1

 
Figure 2.7: Interval state before and after allocation of v3 

When v4 is processed, the end of v2 has been reached and so v2 is removed from the active 
list. Now r2 is unused and can be assigned to v4. When v5 is allocated, no other intervals 
are active, so r1 can be assigned. Now all intervals have a register or a memory location 
assigned and the algorithm stops. Figure 2.8 shows the code where the virtual registers are 
replaced with their allocated physical registers. 
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(1) v1 = 10
(2) v2 = 20
(3) v3 = v1 + v2
(4) v4 = v2 + v3
(5) v1 = v3 + v4
(6) v5 = v4 + v1
(7) return v1 + v5

mem1 = 10
r2 = 20
r1 = mem1 + r2
r2 = r2 + r1
mem1 = r1 + r2
r1 = r2 + mem1
return mem1 + r1  

Figure 2.8: Example code before and after register allocation 

The resulting allocation is not as good as the result obtained by graph coloring in 
Chapter 2.2 because one virtual register must be spilled to memory. This is a consequence 
of the conservative construction of lifetime intervals without holes. This slightly worse 
allocation is compensated by a much faster allocation. Since only one linear pass over the 
lifetime intervals is required, the linear scan algorithm has an asymptotic time complexity 
of O(n), where n is the number of virtual registers. 

2.3.2 Second Chance Binpacking 

Second chance binpacking is an extension of the basic linear scan algorithm which 
produces better code, but basically preserves the linear time complexity. One major 
shortcoming of the basic linear scan algorithm is the fact that it does not allow holes in live 
ranges. Especially complex control flow graphs tend to produce holes because of 
conditions and loops. Even in the simple example presented in the last chapter, the interval 
v1 has a hole from instruction (3) to (5). Because this hole is neglected by the basic linear 
scan algorithm, the interval v1 must be spilled to memory. Second chance binpacking is 
capable of handling holes in lifetime intervals. 

Another extension of second chance binpacking is the possibility for splitting intervals: 
When an interval starts in an area with low register pressure, but then enters an area with 
high register pressure where no registers are available, the basic linear scan algorithm spills 
the entire interval to memory. So the interval is spilled, even if a register is available for a 
part of the interval. Second chance binpacking solves this problem by splitting intervals: 
The interval starts in a register, but is then split and spilled if the register is no longer 
available. It is also possible that a spilled interval gets reloaded into a different register later 
in its life—it gets a second chance to reside in a register. 

Splitting intervals leads to a much better utilization of registers, but also has some 
drawbacks. Because the linear ordering of blocks does not take the real control flow into 
account, a second pass called resolution is needed. Move-instructions are inserted at 
control flow edges when an interval has multiple locations assigned. If, for example, an 
interval is in a register at the end of a basic block, but spilled to memory at the beginning of 
a successor block, a move must be inserted to save the register to memory when this 
control flow edge is processed. Second chance binpacking performs a data flow analysis to 
minimize the number of inserted moves. 

If the example code of the last chapter is processed with second chance binpacking, the 
result is equal to graph coloring. Because lifetime holes are allowed, the live ranges shown 
in Figure 2.9 are identical to the ones presented for graph coloring in Figure 2.1 on page 7. 
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The first two intervals v1 and v2 get the physical registers r1 and r2 assigned, respec-
tively. When v3 is reached in the linear pass over all intervals, the interval of v1 has just 
reached a lifetime hole. So v1 is not contained in the active list, but in a new list called 
inactive list. This list contains all intervals that start before and end after the current 
position, but are currently in a lifetime hole. The physical registers of inactive intervals can 
partly be assigned to other intervals. In the example, the interval v3 gets the physical 
register r1 without any spilling. 

Figure 2.9 shows the example code before allocation, the state of the intervals after 
allocation and the resulting code after assigning the physical registers. The resulting code is 
nearly the same as in the graph coloring result shown in Figure 2.5 on page 10, only some 
physical register numbers are swapped. 

(1) v1 = 10
(2) v2 = 20
(3) v3 = v1 + v2
(4) v4 = v2 + v3
(5) v1 = v3 + v4
(6) v5 = v4 + v1
(7) return v1 + v5

v1
r1

v2
r2

v3
r1

v4
r2

v5
r2

r1 = 10
r2 = 20
r1 = r1 + r2
r2 = r2 + r1
r1 = r1 + r2
r2 = r2 + r1
return r1 + r2  

Figure 2.9: Second chance binpacking example 

Analyzing the asymptotic time complexity of second chance binpacking is more 
complicated. While the actual pass over all intervals runs in linear time as in the basic 
algorithm, other parts like the data flow analysis cannot be performed in linear time. In 
summary, the overall asymptotic time complexity is higher than O(n). However, measure-
ments show that only some percents of the total allocation time is spent in non-linear parts, 
so sacrificing linearity does not have a major impact. Second chance binpacking is nearly as 
fast as the basic linear scan algorithm and produces nearly as good code as graph coloring. 
It is a good tradeoff if both compilation time and runtime of a program matter. 



15 

Chapter 3 

3. The Java Virtual Machine 

 

This chapter starts with a description of the design goals of both the Java pro-
gramming language and the Java virtual machine (JVM). The Java HotSpot VM 
is presented as the current JVM of Sun Microsystems. It is available in two 
variants, the server and the client version. Both share the same code base, but 
have different just-in-time compilers. The HotSpot Client Virtual Machine 
serves as the foundation for the register allocator presented in the next chapters. 

The Java programming language [Gosling00] was developed by Sun Microsystems as a 
general-purpose, object-oriented and concurrent language. Although the syntax is similar 
to C++, the complex and unsafe features of C++ were omitted. Instead, many sophisticated 
concepts were added to simplify development and increase security. Java was designed as 
a portable language that runs on multiple host architectures and allows a secure delivery of 
software components. 

The emerging of the World Wide Web contributed much to the success of Java. While the 
interactivity of plain HTML pages is limited, the integration of small Java programs into 
web pages enables the designers to use a full-blown programming language and to 
develop interactive applications that are seamlessly integrated in the web browser. Trans-
ferring executable code over an untrusted network like the Internet requires careful checks 
before execution to guarantee that no virulent code is executed on the client, as enforced by 
the Java specification. 

Today, Java is used on a wide variety of systems: Small embedded systems like mobile 
phones and PDAs can be programmed easily without having to know much about the 
target architecture using Java 2 Platform Micro Edition (J2ME). Midway in the spectrum, 
Java 2 Platform Standard Edition (J2SE) provides a complete environment for desktop 
applications, supporting the developer with an extensive library for graphical user 
interfaces, network programming, XML processing, and multimedia applications. Most 
integrated development environments for Java are also written in Java itself. 

The development of component-based multi-tier enterprise applications is facilitated by 
Java 2 Platform Enterprise Edition (J2EE), providing a large framework that significantly 
simplifies the development of secure and transaction-oriented server applications. Using 
one programming language for all types and sizes of systems is an advantage over 
specialized languages and can reduce the time and costs of software development. 
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To guarantee the portability and platform independence, Java applications are not 
distributed in native code for a specific hardware platform. Instead, the concept of a Java 
virtual machine (JVM) is used for abstraction. Java source code is compiled to a compact 
binary representation called Java bytecodes which is interpreted by the JVM. The application 
is stored in a well defined binary format, the class file format, containing the bytecodes 
together with a symbol table and other ancillary information. The Java virtual machine is 
defined independently from the Java programming language; only the class file format 
connects these parts. 

3.1 Abstract Specification of a JVM 

Virtual machines are a widely known concept to obtain platform independence and to 
conceal limitations of specific hardware architectures. In general, a virtual machine 
emulates an abstract computing architecture on a physically available hardware. Because 
virtual machines are just a piece of software, the restrictions of hardware development are 
not relevant. It is possible to extend the core execution unit with high-level components, 
e.g. for memory management, thread handling and program verification. The instruction 
set of a virtual machine can therefore be on a higher level than the instruction set of a 
physical processor. This leads to a small size of the compiled code, where a single-byte 
instruction can perform a quite complex action. 

3.1.1 Structure of a JVM 

The Java virtual machine, as specified in [Lindholm99], is a stack machine that executes 
bytecodes. It defines various runtime data areas that are used for the execution of a 
program. While some data areas exist only once per virtual machine, others are created for 
each executed thread. Figure 3.1 shows the basic structure of a Java virtual machine. 

When a Java virtual machine is started, the global data structures are allocated and 
initialized. The heap models the main memory of a JVM. All Java objects are allocated on 
the heap. While the allocation of an object is invoked by the executed program, the 
deallocation is never performed explicitly. Instead, objects that are no longer reachable by 
the program are automatically reclaimed by a garbage collector. As an advantage, a Java 
program cannot cause memory errors such as memory leaks or accesses to already freed 
objects. 

Before a method of a class can be executed, the class must be loaded into the JVM. The 
main parts of a class are the bytecodes that are later executed, the constant pool that acts as 
an extended symbol table, and some other data structures. The bytecodes of the class are 
loaded to the method area that is shared among all threads. The constants are loaded to the 
constant pool. 

The starting of a new thread implies the creation of the per-thread data structures. Because 
threads are part of the Java specification, each JVM must be capable of executing multiple 
threads simultaneously. Basic means for the synchronization of threads are also part of the 
specification. Each thread has its own stack and a register for the program counter. 



Abstract Specification of a JVM 

17 

Heap with Objects

Stack with Frames

Execution Environment
Local Variables

Operand Stack

Current
Frame

Parent
Frame

Program Counter

Object 1

Object 2

Method Area

Constant Pool

Created once per thread Shared among all threads  
Figure 3.1: Structure of a Java virtual machine 

When a method is called, a new frame is allocated on the stack. This frame is then referred 
to as the current frame. The program counter points to the bytecode in the method area that 
is currently executed. A frame contains the following data structures: 

• The execution environment is used for bookkeeping of stack frames. It contains at 
least a dynamic link to the frame of the caller method (the parent frame) where the 
control flow returns to on exit of the current method. 

• The local variables section contains all local variables of the current method invo-
cation. Local variables are loaded and stored explicitly with dedicated bytecodes. 

• The operand stack is used as a temporary workspace for the execution of bytecodes. 
Most bytecodes take their parameters from the operand stack and put their result 
back on it. Because bytecodes always operate implicitly on the top of the stack—
arguments are popped from, results are pushed onto the stack—it is not necessary 
to specify the arguments explicitly for most bytecodes. 

3.1.2 Implementation 

The actual implementation of a Java virtual machine must adhere to the JVM specification 
to guarantee portability, but implementation details are not part of the specification. This 
allows the vendor of a JVM to implement sophisticated optimizations. Especially, it is not 
specified how bytecodes are executed. The JVM can interpret them, compile them to native 
code before execution or mix both kinds. Similarly, the specification does not mandate any 
particular internal structure for the representation of objects or a concrete algorithm for 
garbage collection. So the abstract specification of a JVM is on the one hand detailed 
enough to guarantee portability and compatibility, and on the other hand abstract enough 
to cede implementation details to the actual vendor of a JVM. 
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3.2 The Java HotSpot Virtual Machine 

The Java HotSpot Virtual Machine is the current JVM by Sun Microsystems that provides the 
foundation of their Java Development Kit. It covers the whole lifecycle of a Java appli-
cation—from development and debugging in integrated development environments up to 
the execution on enterprise servers. This chapter presents a brief overview of the HotSpot 
virtual machine, described in more detail in [Sun02]. 

The HotSpot VM is available on a wide variety of platforms and operating systems: Sun 
supports the Sparc architecture of Sun, the IA-32 and IA-64 architectures of Intel and the 
64-bit extensions of AMD, running with different operating systems like Sun Solaris, 
Microsoft Windows and Linux. Editions for other platforms and operating systems, such as 
Apple’s Mac OS X, are also available through Java technology licensees. This guarantees 
the platform-independent execution of Java applications on all major architectures 
available today. 

3.2.1 Subystems 

The core runtime system of the Java HotSpot VM is responsible for initializing the internal 
data structures and starting the Java application. This includes all steps that are necessary 
for loading and verifying class files. Then the execution of an application starts in the 
interpreter. 

Java programming language threads are mapped one-to-one to operating systems threads. 
Therefore, all thread scheduling strategies of the host operating system are available 
automatically. The synchronization of threads is implemented very efficiently to support 
the fine-grained locking of the Java programming language [Agesen99]. 

Because the Java programming language is highly object-oriented and encourages the 
creation of objects even for small intermediate data structures, the memory model of the 
JVM must support fast access to objects. To prevent negative impacts due to subtype 
checks and calls to virtual methods, they are highly optimized: Subtype checks are 
implemented with caches covering nearly all checks [Click02], and virtual calls are 
optimized with polymorphic inline caches [Hölzle91]. 

The Java HotSpot VM uses a uniform and handleless memory model for all sorts of objects, 
including arrays and internal data structures. Implementing object references as direct 
pointers without using handles provides a very fast access to instance variables, but 
requires additional effort during garbage collection. Each object has a small header of only 
two machine-words for internal status information and a reference to the class of the object. 

The VM uses a fully accurate garbage collector to free memory of objects that are no longer 
reachable. This means that the garbage collector can decide exactly for each object if it is 
still reachable from other objects or can be freed. Also, objects can be relocated by moving 
them to another location and updating all references to them. Because of the handleless 
memory model, the garbage collector must know all positions where an object is 
referenced, including references from other objects, the stack and even registers. 
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To make garbage collection efficient, it is necessary to employ different algorithms for 
different kinds of systems and applications. For example, on a single processor system it is 
possible to stop the entire application during garbage collection. This would lead to a 
significant decrease of performance on multiprocessor systems, where it is desired that 
garbage collection runs concurrently with the normal application threads. Therefore, the 
HotSpot VM implements different garbage collection algorithms [Sun03]. 

Debugging a Java application, e.g. by using the debugger of an integrated development 
environment, needs support from the underlying virtual machine. Because the internal 
data structures such as the stack and heap layout are not exposed to the running Java 
application, the VM must provide a special interface for debuggers to retrieve this 
information. For these purposes, the Java HotSpot VM implements the Java Virtual Machine 
Debugger Interface. 

3.2.2 Just-in-Time Compilation 

When the execution of an application starts, all methods are interpreted first. Execution can 
start immediately after a class is loaded without any further delay. The interpreter is 
generated once at startup [Griesemer99]. It consists of a dispatch loop that executes a fixed 
code template for each bytecode. The interpreter is a simple simulation of a processor that 
executes bytecodes: Each bytecode is loaded, the corresponding code template is searched 
and then executed. 

Interpreting a method is rather slow because the template for each bytecode consists of 
several machine instructions, so the achievable performance is limited. Therefore, it is 
necessary to compile the bytecodes of the most frequently executed methods to machine 
code that can be executed directly without the interpreter. Because the compilation takes 
place while the program is executed, it is called just-in-time compilation. 

The strategy for selecting the methods that are compiled is based on runtime information 
collected during interpretation. Each method has a method-entry and a backward-branch 
counter that are incremented at each start of the method and when a backward branch is 
executed, respectively. If these counters exceed a certain threshold, the method is 
scheduled for compilation. This strategy is based on the observation that virtually all 
programs spend most of their time in a small range of code. Therefore, the counters of 
frequently executed methods, called the “hot spots” of a program, soon reach the threshold 
and the methods are compiled without wasting much time interpreting them. 

Methods that are executed infrequently, e.g. only once at the startup of the application, 
never reach the threshold and are never compiled. This greatly reduces the number of 
methods that are compiled, and the compiler can spend more time optimizing the machine 
code of the remaining methods. Using a mixture of interpreted and compiled code 
guarantees an optimal overall performance. 

Additionally, this approach guarantees that each method is interpreted before it is 
compiled. So all classes that are used by the method are already loaded and methods that 
are called are known. Additionally, the interpreter collects runtime information such as the 
common runtime type of local variables. This information can be used by the compiler for 
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sophisticated optimizations that would not be possible if the methods were compiled 
before their first execution. 

Some highly effective compiler optimizations are complicated by the semantics of the Java 
programming language. For example, most methods cannot be inlined because most 
method invocations are virtual. The actually called target is not known statically because 
the semantics of a call can change later on when classes are loaded dynamically into the 
running program. 

Nevertheless, the compiler performs inlining of such methods optimistically. Hence, it is 
possible that a compiled method is later invalidated when a new class is loaded. In such a 
rare case, the method is compiled again without this optimization. But things are much 
more complicated if the invalidated method is currently executed and therefore stack 
frames of this method are active. In such situations, it must be possible to switch back from 
the compiled code to the interpreter. This transition is called deoptimization [Hölzle92]. The 
compiler must create meta data that allows the reconstruction of the interpreter state at 
certain points of the compiled code. 

Deoptimization allows the compiler to perform aggressive optimizations that speed up the 
normal execution, but may seldom lead to situations where the optimization was too opti-
mistic and must therefore be undone. There are some additional cases where a compiled 
method is deoptimized, e.g. when an asynchronous exception is thrown. The compiled 
code does not need to handle such complicated, uncommon cases. 

A method is compiled when the counters of the method exceed a certain threshold. 
Typically, the decision is made before the execution of the method starts because no special 
handling is needed in this case to switch from the interpreted to compiled code: Instead of 
the interpreter, the compiled code is called. But this solution is not always sufficient. When 
an interpreted method executes a long running loop, i.e. when many backward branches 
are executed in the interpreter, then it is necessary to switch to compiled code while a 
method is running. This is called on stack replacement (OSR) of a method. In this case, a 
special version of the method is compiled with an OSR entry point that jumps directly into 
the loop. 

Although the Java programming language is a structured language that does not allow 
arbitrary goto-operations, the bytecodes are not required to be structured. Therefore, the 
compiler can encounter situations that occur rarely, but are difficult to handle. Instead of 
inflating the compiler with code for handling all special cases that are probably never 
needed, these situations are handled with a compilation bailout. The compilation of the 
method is stopped and the execution is continued in the interpreter. Because compilers for 
the Java programming language do not create such complicated structures of bytecodes, 
this is not a real limitation and does not degrade the performance. 

Figure 3.2 summarizes the possible transitions between interpreted and compiled methods: 
Normally methods are compiled on method-entry counter overflows, but methods with 
long running loops can be OSR-compiled. When the compilation is not possible because the 
method is too complicated, then the compiler stops with a bailout, otherwise the compiled 
code is executed until a deoptimization is necessary. It should be noted again that bailouts 
and deoptimizations occur very rarely. 
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Figure 3.2: Transitions between interpreted and compiled methods 

The just-in-time compiler is separated from the runtime of the HotSpot VM by a well-
defined compiler interface. It initiates the compilation of a method and provides all 
necessary data such as access to the bytecodes, to the type information of variables and 
fields and to methods that are called. The compiler interface supports parallel compilation 
and execution of code, parallel compilation and garbage collection, and parallel 
compilation of different methods. 

Currently, the HotSpot VM is available in two versions: the client and the server VM. The 
Java HotSpot Client VM is best for running interactive applications and is tuned for fast 
application start-up and low memory footprint. The Java HotSpot Server VM is designed for 
maximum execution speed of long running server applications. Both share the same 
runtime, but include different just-in-time compilers (the client compiler and the server 
compiler). The client compiler is internally named C1, the server compiler C2. The next 
chapters describe both compilers and present their differences. 

3.2.3 Server Compiler 

The Java HotSpot Server Compiler (described in [Paleczny01]) is a fully optimizing compiler 
that performs all classic optimizations of traditional compilers, like common subexpression 
elimination, loop unrolling and graph coloring register allocation. It also features Java 
specific optimizations, such as inlining of virtual methods, null-check elimination and 
range-check elimination. These optimizations reduce the overhead necessary for guaran-
teeing safe execution of Java code to a minimum. The compiler is highly portable and 
available for many platforms. All machine specific parts are factored out in a machine 
description file specifying all aspects of the target hardware. 

The extensive optimizations lead to a high code quality and therefore to a short execution 
time of the generated code. But the optimizations are very time-consuming during 
compilation, so the compilation speed is low compared with other just-in-time compilers. 
Therefore, the server compiler is the best choice for long running applications where the 
initial time needed for compilation can be neglected and only the execution time of the 
generated code is relevant. 

The server compiler uses an intermediate representation (IR) based on a static single 
assignment (SSA) graph [Click95]. Operations are represented by nodes, the input 
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operands are represented by edges to the nodes that produce the desired input values 
(data-flow edges). The control flow is also represented by explicit edges that need not 
necessarily match the data-flow edges. This allows optimizations of the data flow by 
exchanging the order of nodes without destroying the correct control flow. 

The server compiler proceeds through the following steps when it compiles a method: 
Parsing of the bytecodes, machine-independent optimizations, instruction selection, global 
code motion and scheduling, register allocation, peephole optimization and at last code 
generation. 

The parser needs two iterations over the bytecodes. The first iteration identifies the 
boundaries of basic blocks. A basic block is a straight-line sequence of bytecodes without 
any jumps or jump targets in the middle. The second iteration visits all basic blocks and 
translates the bytecodes of the block to nodes of the IR. The state of the operand stack and 
local variables that would be maintained by the interpreter is simulated in the parser by 
pushing and popping nodes from and to a state array. Because the instruction nodes are 
also connected by control flow edges, the explicit structure of basic blocks is revealed. This 
allows a later reordering of instruction nodes. 

Optimizations like constant folding and global value numbering for sequential code 
sequences are performed immediately during parsing. Loops cannot be optimized 
completely during parsing because the loop end is not yet known when the loop header is 
parsed. Therefore, the above optimizations, extended with global optimizations like loop 
unrolling and branch elimination, are re-executed after parsing until a fixed point is 
reached where no further optimizations are possible. This can require several passes over 
all blocks and is therefore time-consuming. 

The translation of machine-independent instructions to the machine instructions of the 
target architecture is done by a bottom-up rewrite system (BURS, [Pelegri88]). This system 
uses the architecture description file that must be written for each platform. When the 
accurate costs of machine instructions are known, it is possible to select the optimal 
machine instructions. 

Before register allocation takes place, the final order of the instructions must be computed. 
Instructions linked with control flow edges are grouped to basic blocks again. Each block 
has an associated execution frequency that is estimated by the loop depth and branch 
prediction. When the exact basic block of an instruction is not fixed by data and control 
flow dependencies, then it is placed in the block with the lowest execution frequency. 
Inside a basic block, the instructions are ordered by a local scheduler. 

Global register allocation is performed by a graph coloring register allocator as presented 
in Chapter 2.2 on page 6. First, the live ranges are gathered and conservatively coalesced, 
afterwards the nodes are colored. If the coloring fails, spill code is inserted and the 
algorithm is repeated. After a final peephole optimization, which optimizes processor-
specific code sequences, the executable machine code is generated. This step also creates 
additional meta data necessary for deoptimization, garbage collection and exception 
handling. Finally, the executable code is installed in the runtime system and is ready for 
execution. 
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3.2.4 Client Compiler 

The server compiler provides an excellent peak performance for long running server 
application. However, it is not suitable for interactive client applications because the slow 
compilation leads to noticeable delays in the program execution. The peak performance is 
not apparent to the user because client applications spend most of their time waiting for 
user input. 

The client compiler has a directly opposing goal to the server compiler: It achieves a 
significantly higher compilation speed because it omits time-consuming optimizations. As 
a positive side effect, the internal structure of the client compiler is much simpler than the 
server compiler. It is separated into a machine-independent front end and a partly 
machine-dependent back end. 

First, the front end builds a high-level intermediate representation (HIR) by iterating the 
bytecodes twice (similar to the parsing of the server compiler). Only simple optimizations 
like constant folding are applied. Then, the innermost loops are detected to facilitate the 
register allocation of the backend. 

The back end converts the HIR to a low-level intermediate representation (LIR) similar to 
the final machine code. A simple heuristic—similar to the local method described in 
Chapter 2.1 on page 6—is used for register allocation: At the beginning it assumes that all 
local variables are located on the stack. Registers are allocated when they are needed for a 
computation and freed when the value is stored back to a local variable. If a register 
remains completely unused inside a loop or even in the entire method, then this register is 
used to cache the most frequently used local variable. This reduces the number of loads 
and stores to memory especially on architectures with many registers. 

To determine the unused registers, the same code generator is run twice: In the first pass, 
the code emission is disabled and only the allocation of registers is tracked. After any 
unused registers are assigned to local variables, the code generator is run again with code 
emission enabled to create the final machine code. 

The first implementation of the client compiler (described in [Griesemer00]) used the HIR 
only; the back end generated native code without a prior generation of the LIR. This 
version was shipped with the Sun JDK 1.3. The LIR was implemented for the client 
compiler of the JDK 1.4 to enable peephole optimizations after register allocation. 

3.2.5 Research Client Compiler 

The linear scan register allocator developed for this master thesis is implemented in a 
research version of the client compiler. It mainly uses the same structure as the product 
compiler shipped with the current Sun JDK 1.4.2 and the upcoming version 1.5. It uses the 
same intermediate representations, i.e. HIR and LIR. The front end was modified to 
generate the HIR in static single assignment (SSA) form that helps to implement other 
optimizations like common subexpression elimination. The back end now uses the linear 
scan algorithm for register allocation instead of the old heuristic. The detailed structure of 
this new compiler is presented in Chapter 4. 





25 

Chapter 4 

4. Compiler Architecture 

 

This chapter presents all steps necessary to compile the bytecodes of a method to 
native code that is directly executable by the processor. It describes the structure 
and instruction set of the bytecodes, the native code and the two intermediate 
representations that are used by the compiler. When a method is compiled, the 
bytecodes are first transformed to the graph-based high-level intermediate 
representation (HIR). Several optimizations are applied before the HIR is 
converted to the low-level intermediate representation (LIR). After register 
allocation, the native code is created from the LIR, together with additional meta 
data that are required by the virtual machine, e.g. for garbage collection. 

The linear scan register allocator presented in this thesis is integrated in the research 
version of the Java HotSpot client virtual machine. Compared with the product version 
shipped with the current Sun JDK 1.4.2, the just-in-time compiler was extended in a 
research project to support more general optimizations. The history of this research work 
was already presented in Chapter 1.1. 

This chapter explains the architecture of the research compiler. Whereas the overall 
structure is equal to the product version, many details are different. Consequently, the 
following explanations cannot be used as a reference for the product compiler. The term 
“compiler”, when used without prefix, will henceforth refer to the research version of the 
Java HotSpot client compiler. Because the research compiler is work in progress, concepts 
and algorithms might be replaced by better ones. This thesis is based on the snapshot from 
August 2004. 

4.1 Overall Structure 

The compiler is responsible for translating the bytecodes of a method to native machine 
code while the VM is already executing the application. Although a direct compilation 
without an intermediate representation would be possible (and is implemented in other 
projects, for example in [AdlTabatabai98]), the options for optimizations would be very 
limited. Intermediate representations simplify the implementation of optimizations be-
cause they represent methods in a regular and easy to manipulate form, independent from 
the target architecture. 
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Two intermediate representations are used during compilation: The high-level intermediate 
representation (HIR) and the low-level intermediate representation (LIR). They separate the 
compiler into a front end that constructs the HIR from the bytecodes, and a back end that 
generates the LIR from the HIR and finally the machine code from the LIR. Figure 4.1 
shows the overall structure of the compiler.  

Front End

Bytecodes

HIR Generation

HIR

Optimizations

HIR

LIR Generation

LIR

Register Allocation

LIR

Code Generation

Native Code Meta Data

Back End

Loaded Class

Native Method
 

Figure 4.1: Overall compiler architecture 

In the following chapters, details and descriptions for each item mentioned in Figure 4.1 
are presented. The order does not strictly follow the actual data and control flow; instead a 
logical order is used. 

4.2 Bytecodes 

Before a Java class can be executed in the JVM, the Java source code must be compiled to 
Java bytecodes. This frees the JVM from the time-consuming task of parsing and analyzing 
plain-text source code. Instead, the bytecodes provide a compact binary representation of 
the class that can be executed directly by an interpreter. It also simplifies the validity 
checks of bytecodes because strict rules are defined in the specification [Lindholm99]. 

4.2.1 Example 

The example in Figure 4.2 presents the Java source code of a short method that calculates 
and returns the factorial of an integer number. This example will be used throughout this 
chapter to illustrate the different intermediate representations and algorithms. 
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public static int factorial(int n) { 
  int p = 1; 
  while (n > 0) { 
    p = p * n; 
    n = n - 1; 
  } 
  return p; 
} 
Figure 4.2: Compilation example—Java source code 

This source code is compiled to the bytecodes in Figure 4.3. Note that the bytecodes are 
stored in a compact binary representation; the example method needs only 19 bytes. The 
number to the left of each bytecode refers to its index relative from the beginning of the 
method. It is commonly called bytecode index (bci). The comments on the right side show the 
corresponding source code instructions. 

0:  iconst_1 
1:  istore_1    // p = 1 
2:  iload_0 
3:  ifle 17     // while (n > 0) 
6:  iload_1 
7:  iload_0 
8:  imul 
9:  istore_1    // p = p * n 
10: iload_0 
11: iconst_1 
12: isub 
13: istore_0    // n = n - 1 
14: goto 2      // end of while-loop 
17: iload_1     // return p 
18: ireturn 
Figure 4.3: Compilation example—Java bytecodes 

4.2.2 Instruction Set 

The instruction set of the bytecodes consists of over 200 different instruction codes. This 
chapter gives a coarse classification; a detailed description of each instruction is contained 
in the specification [Lindholm99]. Each instruction code is stored in a single byte. Some 
instructions take additional parameters, but many consist of the instruction code only. As 
described in Chapter 3.1.1, the instructions are executed using an operand stack. The 
current top of the operand stack is available as an implicit parameter for all instructions. 
The instruction codes can be grouped into the following categories: 

• Local variables are accessed with instructions that push a single local variable on 
the operand stack or store the stack top back into a local variable. Each local vari-
able has a unique number that is supplied as a parameter to these instructions. 
There are also instructions that push a constant on the operand stack. 

• Access to objects is provided by instructions that load an object field or an array 
element to the operand stack. Similar instructions are available for storing. These 
instructions throw a runtime exception if the referenced object is null of if the array 
index is out of bounds. 
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• Arithmetic and logical instructions usually pop two parameters from the operand 
stack, perform the specified operation, and push the result back on the stack. All 
common instructions like addition, subtraction, multiplication and division are 
available, together with instructions that perform logical operations or compare 
two values. 

• Instructions for type conversion are used to convert between the different integer 
and floating point types of the Java programming language. Explicit conversion 
instructions are necessary because all instructions are strictly typed and operate 
only on operands of a single type. 

• Conditional and unconditional jumps are available for branches and loops inside a 
single method. The target of the jump is the bytecode index, supplied as an explicit 
parameter. 

• Call instructions are used to call other methods. The receiver of the method and the 
parameters must be present on the operand stack, whereas the name of the method 
is supplied as an explicit parameter. A method is ended normally with one of the 
return instructions. 

• Special instructions are available for direct manipulations of the operand stack, e.g. 
the duplication of the current stack top. These are the only instructions that are not 
strictly typed. 

• Some high-level instructions are available for performing type checks, synchroniza-
tion of threads, exception handling and allocation of objects and arrays. 

In addition to the bytecodes, a class file contains meta information for each method, such as 
the number of local variables, the maximum size of the operand stack and exception 
handler tables. These tables are used to find the appropriate exception handler if an 
exception is thrown at a certain bytecode index. 

4.3 Native Code 

The main result of the compilation is native code that can be executed directly by the 
processor. The compiler can be built for two platforms: The Intel IA-32 architecture and the 
Sparc architecture. This thesis deals only with the IA-32 architecture because all implemen-
tation and testing was done on it. The porting to Sparc is periodically done by Sun 
Microsystems. 

Most algorithms are implemented in a platform-independent way. Only special character-
istics of a certain platform that are not available on other architectures require platform-
dependent code. Focusing on the Intel IA-32 architecture does not restrict the generality 
because it needs most of the special handling: While Sparc is a regular RISC architecture, 
IA-32 is a CISC architecture with a highly irregular instruction set. 

The floating point unit (FPU) is one of the most irregular parts of the IA-32 architecture. 
Chapter 6 starting on page 79 describes the structure of the FPU in detail, so it is not 
discussed further here. The following parts of this section present the basic principles of the 
IA-32 architecture [Intel1], together with the stack layout used by the compiler. 
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4.3.1 Intel IA-32 Architecture 

The roots of the Intel IA-32 architecture date back to the Intel 8086 processor presented in 
1978 and even earlier processors. Although the 8086 processor used only a 16-bit archi-
tecture and implemented a small subset of today’s processors, binary code for it still 
executes on the newest Pentium 4 processors. This absolute compatibility is the main 
reason for the irregular instruction set. 

The basic execution environment consists of the main memory accessible through the 
address space, general-purpose data registers, segment registers, the flags register and the 
instruction pointer register. 

4.3.2 Address Space 

Any program running on an IA-32 processor can address its own virtual address space of 
up to 4 GBytes that is mapped to a physical address space of up to 64 GBytes. Normally the 
memory is accessed using the memory management facilities of the processor. Two major 
addressing modes are available: 

• When the flat memory model is used, the memory appears as a single, continuous 
address space. All information of the program like code, data and procedure stacks 
are located in this address space. 

• In the segmented memory model, the memory is separated into independent address 
spaces called segments. Six segment registers are available for the fast access to 
segments.  

The HotSpot VM uses the flat memory model, only some special functions use segments. 
For example, the current thread can be accessed fast because the pointer to the thread 
object is stored on a fixed address of a special segment. 

4.3.3 Register Set 

The IA-32 architecture provides eight general-purpose registers, called eax, ebx, ecx, edx, 
esi, edi, ebp and esp. They are used for operands of arithmetic and logical instructions, 
for operands of address calculations and for memory pointers. Although all registers could 
be used freely, two registers have a special meaning: 

• The esp register holds the stack pointer (the current top of the procedure stack) and 
should not be used for any other purpose. All instructions supporting the stack 
management implicitly use this register. 

• The ebp register is often used as the base pointer of the current method on the stack, 
i.e. the two registers ebp and esp span the range of the stack frame for the current 
method. 

Although it is possible to generate machine code that does not use ebp for stack handling, 
many systems—including the HotSpot client compiler—always use ebp for this purpose 
because it simplifies the handling of method calls. Therefore, only six general-purpose 
registers are available for free use. In general, the compiler can decide freely which 
operands and memory pointers are stored in which registers, because most instructions can 
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operate on all registers. But there are also instructions that require their operands in fixed 
registers, e.g. the instructions for divisions and shifts. Fixed registers complicate the work 
of a compiler, as it is described in Chapter 4.8.3. 

The flags register (called eflags) is used as a bit map for status flags, control flags and 
system flags. Some flags can be modified by special instructions, other flags are set 
implicitly by arithmetic operations. But it is not possible to modify or examine the whole 
register directly. In normal methods, the flags register is mostly used for conditional 
branches: arithmetic operations set or clear flags depending on the result value, e.g. flags 
are set if the result is zero or the operation generated a carry. Succeeding conditional 
branches use these flags to decide if the branch must be taken. 

The instruction pointer register (called eip) holds the address of the next instruction to be 
executed. It cannot be accessed directly, but is modified implicitly by control flow 
instructions like jumps, calls and returns. In a normal sequential control flow, it is 
increased automatically by the length of the current instruction. 

Floating point instructions operate on eight floating point registers (called the x87 FPU 
registers) that are organized as a stack. The MMX extensions use eight MMX registers that 
are mapped to the x87 FPU registers. The SSE and SSE2 extensions operate on their own 
sets of eight XMM registers. 

4.3.4 Operands 

IA-32 instructions operate on zero or more operands. Some operands are specified 
implicitly by the instructions, but most operands are specified explicitly. The IA-32 
architecture uses immediate operands, register operands and memory operands. 

• Immediate operands are encoded in the instruction itself. They are mainly used for 
constants in arithmetic and logical operations and for targets of jumps. Only integer 
values are allowed as immediate operands, so they cannot be used in floating point 
operations. 

• Register operands can be used as the source and result of all instructions. Depending 
on the instruction being executed, the general-purpose registers, the x87 FPU 
registers, the MMX registers or the XMM registers are used. 

• Memory operands are also allowed as the input and result of many instructions. The 
address is calculated in its most general form by adding up a base register, an index 
register multiplied by a scale factor and a constant displacement. The address is 
calculated as base + (index * scale) + displacement. The base register and the 
index register are general-purpose registers. The scale factors is limited to 1, 2, 4 or 
8, whereas the displacement can be an arbitrary integer number. 

The general instruction format of the IA-32 architecture allows the specification of two 
operands only, whereof one operand must be a register operand. This enforces the two-
operand form for arithmetic and logical instructions: The result is always stored in the left 
input operand, e.g. it is not possible to add two registers and store the result in a third 
register. 
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4.3.5 Instruction Set 

The instructions of the IA-32 instruction set can be classified into the following coarse 
groups. In general, each new processor generation introduced a new group of instructions 
to the existing instruction set. 

• General-purpose instructions are used for basic data movement, for arithmetic and 
logical computations of integer values and for controlling the program flow. They 
operate on data and addresses stored in the general-purpose registers. The core 
instructions were already available in the Intel 8086 processor. 

• Floating point instructions are executed in the floating point unit (FPU) of the 
processor. Because of the historic separation of the FPU in a coprocessor for the 
Intel 386 processor, the floating point operations do not use the general instruction 
format of all other IA-32 instructions. Since the Intel486 processor, the FPU is inte-
grated in all processors and therefore generally available. 

• The MMX extensions introduced the single-instruction multiple-data (SIMD) 
concept to the IA-32 architecture: One 64-bit MMX register contains up to 8 inde-
pendent integer values, so one MMX operation executes up to 8 calculations at 
once. 

• The SSE and SSE2 extensions expanded the SIMD concept to floating point values. 
SSE instructions operate on four single-precision floating point values, SSE2 
instructions on two double-precision floating point values. All SSE and SSE2 
instructions are also available in a scalar form operating only on one value, 
therefore the SSE and SSE2 extensions can be used as a complete replacement of the 
FPU. The compiler uses this approach, as described in Chapter 6.4 on page 87. 

4.3.6 Stack Layout 

The IA-32 architecture provides basic instructions for manipulating a procedure stack. The 
stack is a continuous array of memory locations, where items are placed on the stack via 
push instructions and removed from the stack via pop instructions. The esp register 
always contains the address of the current stack top. The stack always grows downwards, 
so a push decrements esp and a pop increments it. 

The stack is used to store local data of a method and to pass parameters between methods. 
While the basic layout is fixed by the IA-32 architecture, the details of the stack frame for a 
method can be chosen freely. The stack layout used by the compiler is shown in Figure 4.4 
on the next page. 

The base pointer (ebp) always points to the beginning of the stack frame for the current 
method. The stack pointer (esp) points to the end of the stack frame, which is also the 
current stack top. Each stack frame contains the following three parts: 

• The monitor area is used for synchronization. When an object is locked by the 
current method, internal parts of the object are moved to the stack, ensuring a fast 
synchronization of objects. The size of this area depends on the maximum number 
of objects that are locked simultaneously by the method. 
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Figure 4.4: Stack layout 

• The spill area contains spill slots where values used by the method are stored if no 
registers are available for them. Conceptually, a spill slot of a compiled method is 
similar to a local variable used by the Java bytecodes. But there is no direct relation-
ship between certain spill slots and local variables. Spill slots are assigned by the 
register allocator where local variables are no longer explicitly visible. 

• The parameter area is used for passing method parameters when a method is 
called. The size depends on the maximum number of arguments of all methods that 
may be called by the current method. 

When a method calls another method, the calling method stores the parameters into its 
own parameter area on the stack. The parameter area belongs to the stack frame of the 
calling method, although the called method can access it. The instruction pointer (eip) and 
the base pointer (ebp) of the calling method are pushed onto the stack to allow a later 
return to the caller. The stack frame of the called method is completed by setting the new 
values for ebp and esp. Stack slots are not initialized because it is guaranteed that each slot 
is written before it is read. 

Most stack slots are addressed via ebp: The parameters of the current method are accessed 
with a positive offset added to ebp, the spill slots with a negative offset. Only the 
parameters of called methods are accessed with a positive offset to esp. In contrast to the 
usual calling convention of most programming languages, the register esp is not changed 
itself when the parameters are stored because the parameter area is initialized with a 
sufficient size when the stack frame is created. This simplifies the handling of method 
parameters by the garbage collector. 



High-Level Intermediate Representation 

33 

4.4 High-Level Intermediate Representation 

The high-level intermediate representation (HIR) is a graph-based representation of the 
method using static single assignment (SSA) form [Cytron91]. In the compiler, the HIR is 
mostly referred to as IR for historic reasons, so the classes that represent the HIR start with 
the prefix IR. The HIR is completely platform-independent and represents the method at a 
high level where global optimizations are easy to apply. 

4.4.1 Instruction Set 

All nodes of the HIR are subclasses of the base class Instruction. The class hierarchy consists 
of about 50 classes that store additional data about each instruction. Figure 4.5 shows a 
small subset of all classes together with their most important fields. The class diagram is 
incomplete and simplified to abstract from implementation details, but shows the coarse 
structure of the HIR. 

id : int
bci : int
next : Instruction
type : ValueType

Instruction

block : BlockBegin
index : int

PhiFun

index : int
Local

value
Constant

x : Instruction
y : Instruction
op : Code

Op2
block_id : int
predecessors : BlockList
end : BlockEnd

BlockBegin
successors : BlockList
begin : BlockBegin

BlockEnd

Goto
x : Instruction
y : Instruction
cond : Condition

If
result : Instruction

ReturnArithmeticOp

object : Instruction
offset : int

AccessField
array : Instruction
index : Instruction

AccessIndexed
receiver : Instruction
arguments : Instructions

Invoke

LogicOp

 
Figure 4.5: Class hierarchy for HIR instructions 

4.4.2 Representation of Control Flow 

The control flow of basic blocks is represented by BlockBegin and BlockEnd nodes: The first 
instruction of a basic block is always a BlockBegin, the last instruction always a concrete 
subclass of BlockEnd. The control flow is represented by the fields predecessors and 
successors of the two classes, containing a list of BlockBegin nodes of the preceding or 
succeeding blocks, respectively. The BlockBegin and BlockEnd nodes of a basic block are 
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linked together by the fields begin and end. This allows the fast traversal of the control flow 
graph without the need to traverse every single instruction. 

While the start of a basic block is represented by the single concrete class BlockBegin, 
different subclasses of the abstract class BlockEnd are available for the end of a basic block. 
They differ in the number of successors and the code generated to jump to successors. Goto 
always has exactly one successor and represents an unconditional jump, If represents a 
conditional branch to one of its two successors and Return has no successors at all because 
it ends the current method. Additional classes derived from BlockEnd are available for 
switch statements with multiple successors. 

The body of a basic block is formed by a sequential list of instructions, where the 
instructions are linked via the field next of the base class Instruction. Using a linked list for 
the instructions allows fast manipulations of the graph. When the HIR is generated, the 
instructions are added in the original order of the bytecodes. Instructions can be inserted 
into and removed from the graph when the HIR is optimized later. The left side of Figure 
4.6 shows a simple control flow graph consisting of three basic blocks. The right side shows 
the details for the middle basic block with two predecessors, two successors and some 
instructions between the BlockBegin and the BlockEnd. 

BlockBegin

BlockEnd

predecessors

next

successors

next

end begin

 
Figure 4.6: Control flow graph with details for one basic block 

4.4.3 Representation of Data Flow 

The data flow is also embodied in the HIR: Instructions refer to their arguments via 
pointers, and the arguments are instructions themselves. An instruction represents the 
computation of a result and the result itself. For example, the class ArithmeticOp represents 
an arithmetic operation with two input parameters x and y, which are instructions defined 
before. But it also represents the result of the operation, so it can be used as the input 
parameter of subsequent instructions. Because of this equivalence, an instruction is often 
referred to as a value. 

The class diagram of Figure 4.5 contains only a small subset of all implemented instruction 
classes. Classes are available for elementary arithmetic and logical operations, loading and 
storing of fields and arrays, converting between data types and invoking other methods. 
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Special high-level instructions are used for type checks, synchronization, allocation of new 
objects and exception handling. 

However, no instructions for accessing local variables are necessary. When a local variable 
is stored, the instruction creating the value is put in a state array. For every local variable, 
the state array stores its current value, i.e. the instruction where this value was computed. 
The array is indexed by the variable’s number. When a local variable is referenced by 
another instruction, its value is taken directly from the state array, eliminating the need for 
an explicit load instruction. Only method parameters are explicitly represented by the class 
Local. An instruction can also reference instructions defined in another basic block. 

4.4.4 Static Single Assignment Form 

The static single assignment (SSA) form [Cytron91] is a special form of intermediate 
representations used by many compilers. The basic idea is that for every variable there is 
only a single location where it is assigned. If there are multiple assignments to the same 
variable, the program is transformed such that each assignment uses a new variable. This 
guarantees that two references with the same name always represent the same value. 

As described in the previous section, a local variable is represented in the HIR by the 
instruction that calculated the value, and the instruction is registered in the state array. The 
state array at the start of a basic block is initialized with the state at the end of its 
predecessor. When a block has only one predecessor, the state of this block can be copied. 
When a block has more than one predecessor, the states of the predecessors must be 
merged. For this purpose, so-called phi functions are used. A phi function belongs to a 
block and has as many operands as the block has predecessors. 

Figure 4.7 shows a simple example of a phi function: The local variable n is assigned twice, 
so the transformation to static single assignment form renames the variable to n1 and n2. 
At the beginning of the succeeding block, the states of the predecessors must be merged 
and a phi function, called n3, is created. The syntax n3 = [n1, n2] means that the current 
value of n3 is n1 if the first (left) predecessor was executed, and n2 if the second (right) 
predecessor was executed. As a result, the variable n3 has a single point of definition, 
although it gets different values depending on the control flow. 

n = 10 n = 20 n1 = 10 n2 = 20

return n
return n3

n3 = [n1, n2]

a) without SSA form b) with SSA form  
Figure 4.7: Example of SSA form and phi functions 

The compiler creates phi functions conservatively for all local variables if a block has more 
than one predecessor. This can lead to phi functions where all operands are equal. Such phi 
functions can be simplified after the HIR is constructed. More details about the concept of 
phi functions used by the compiler are presented in [Mössenböck00]. 
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4.4.5 Example 

This chapter shows the HIR for the example presented in Chapter 4.2.1 that calculates the 
factorial of a number. Figure 4.8 shows the detailed HIR instructions of all basic blocks. The 
first line of each block represents the BlockBegin instruction. Each block has a unique 
number for identification, which is followed by the range of bytecode indices that are 
covered by this block. Finally the predecessors (pred) and successors (sux) of the block are 
printed. 

Each following line prints one HIR instruction of the block. An instruction has a bytecode 
index (column bci), a use count (use), a type and a unique id (tid). The use count 
specifies how often the instruction is referenced by other instructions. Instructions that 
must be executed in the original order of the bytecodes are marked as pinned, printed out 
as “.” at the beginning of the instruction line. Examples for pinned instructions are loads 
and stores of fields, because they might have data dependencies. Additionally, instructions 
that do not compute a result or that are used across block boundaries are pinned for 
technical reasons. 

Because the HIR is typed, each instruction that computes a result also stores the type of the 
result. The example contains only integer operations, represented by the flag “i”. Instruc-
tions that compute no result, e.g. jumps, have no assigned type. The type is followed by the 
unique id of each instruction. The first block B4 is automatically introduced for the entry of 
the method and has no equivalent in the bytecodes. B0 is the first block of the method and 
initializes the loop variable denoted as i5 here. 

B4 [0, 0] sux: B0 
__bci__use__tid____instr____________________________________ 
. 0    0     19    std entry B0 
 
B0 [0, 1] pred: B4 sux: B3  
__bci__use__tid____instr____________________________________ 
. 0    1    i5     1 
. 1    0     6     goto B3 
 
B3 [2, 3] pred: B0 B2 sux: B1 B2  
Locals: 
   0: i7 [ i0 i13 ] 
   1: i8 [ i5 i11 ] 
__bci__use__tid____instr____________________________________ 
  3    1    i9     0 
. 3    0     10    if i7 <= i9 then B1 else B2 
 
B2 [6, 14] pred: B3 sux: B3  
__bci__use__tid____instr____________________________________ 
. 8    1    i11    i8 * i7 
  11   1    i12    1 
. 12   1    i13    i7 - i12 
. 14   0     14    goto B3 (safepoint) 
 
B1 [17, 18] pred: B3 
__bci__use__tid____instr____________________________________ 
. 18   0    i15    ireturn i8 
Figure 4.8: Compilation example—high-level intermediate representation (HIR) 
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The block B3 has two predecessors, so phi functions are created for all local variables. They 
are printed in the section Locals before other instructions of the block. The phi function 
for the local variable 0 (named “n” in the Java source code) has the id i7 and the two 
operands i0 and i13. The instruction i0 represents the first parameter of the method (not 
printed explicitly), and the instruction i13 is computed in block B2, which is a predecessor 
of B3. The instruction i7 gets the value of i0 when B0 was executed before (i.e. for the first 
iteration of the loop) and the value i13 when B2 was executed before (i.e. for all other 
iterations of the loop). The phi function for the local variable 1 (named “p” in the Java 
source code) has the id i8 and gets the value of i5 or i11, depending on the predecessor. 

4.5 HIR Generation 

To build the HIR, the bytecodes of the method are processed twice. The first, very fast pass 
identifies the boundaries of basic blocks and constructs the control flow graph only. The 
second pass then fills the blocks with the HIR instructions. 

4.5.1 Identifying Basic Blocks 

The first pass, implemented in the class BlockListBuilder, iterates over the bytecodes from 
the beginning to the end to find the boundaries of all basic blocks. All blocks (represented 
by BlockBegin instructions) are created and collected in a list, but they are left empty. 
Additionally, predecessor information for each block is stored. 

When all blocks are identified, the class CFGMaker constructs the basic control flow of the 
method. Blocks are linked together with successor and predecessor edges. This control flow 
is used to identify and mark loop headers, i.e. blocks that are reachable by a backward 
branch. When the complete HIR is constructed later, these blocks need a special treatment. 
Then a visiting order for all blocks is calculated by assigning a number to each block. It is 
called depth_first_number, although it is not strictly a depth-first numbering of all blocks. A 
block is not appended to the visiting order until all predecessors are appended. Backward 
branches are ignored because otherwise loops could not be processed. 

Only the loop header information and the visiting order are saved, the control flow is 
discarded before the blocks are filled with instructions. This allows optimizations of the 
control flow, because edges between blocks or even blocks themselves may be unnecessary 
due to never-taken branches. So the control flow of the final HIR can be slightly different as 
the control flow computed in this step. 

4.5.2 Filling Blocks with Instructions 

The class GraphMaker fills the basic blocks with HIR instructions by performing an abstract 
interpretation of the bytecodes. Basically, for each bytecode an HIR instruction is created 
and appended to the list. The stack-based bytecodes are transformed to the register-based 
HIR using the state array: The effect of bytecodes on the operand stack and the local 
variables is simulated. 
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The following example in Figure 4.9 shows the generation of the HIR for the computations 
in block B2 of the factorial example. The left side shows the bytecodes as presented in 
Figure 4.3 on page 27. The right side shows the HIR instructions like in Figure 4.8. In 
between, the simulated state of the local variables and the operand stack is illustrated. 
Elements that are changed by the current bytecode are marked as bold. 

[i8]

interpreted
bytecode

7:  iload_0
8:  imul
9:  istore_1
10: iload_0
11: iconst_1
12: isub
13: istore_0

6:  iload_1

local
variables

operand
stack

[i7, i8]
[i7, i8]
[i7, i8]
[i7, i11]

[i7, i8] [ ]

[i8, i7]

appended HIR
instruction

i11: i8 * i7[i11]
[ ]

[i7, i11] [i7]
[i7, i11] [i7, i12] i12: 1

[i7, i11] [i13] i13: i7 - i12

[i13, i11] [ ]  
Figure 4.9: Construction of the HIR 

At the beginning of the block, the two local variables contain the instructions i7 and i8; 
the operand stack is initially empty. The iload bytecode loads a local variable to the 
operand stack. No HIR instruction is necessary, only the state of the operand stack is 
modified. The iconst bytecode is represented by an HIR instruction of the class Constant 
that is appended to the HIR and pushed onto the operand stack. For the arithmetic 
operations, two parameters are popped from the operand stack, and a new HIR instruction 
of class ArithmeticOp is appended and pushed onto the stack. The istore bytecode pops 
the result from the operand stack and changes the state of the local variables. 

4.6 Optimizations 

The simple structure of the HIR allows the easy implementation of global optimizations, 
which are applied both during and after the construction of the HIR. Theoretically, all 
optimizations developed for traditional compilers could be applied, but most of them 
require the analysis of the data flow and are too time-consuming for a just-in-time 
compiler—even if they are considerably simplified by the SSA form of the intermediate 
representation. So the compiler implements only simple and fast, but nevertheless effective 
optimizations. 

4.6.1  Canonical Instructions 

Before an HIR instruction is appended to the instruction list, the class Canonicalizer tries to 
simplify the instruction. Especially instructions that involve constants are processed. If 
both operands of an arithmetic or logical instruction are constants, then constant folding 
can be applied. The whole calculation is then replaced by a new constant. Also, instructions 
with one argument being the constant 0 or 1 can often be optimized. 
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If the condition of a branch is proven to be always true or false, the branch can be replaced 
by an unconditional jump to the respective block. This can lead to blocks that are never 
reached and therefore discarded.  

4.6.2 Inlining 

Calling a method is an expensive operation because parameters must be passed on the 
stack and a stack frame must be maintained for each method. For short methods, e.g. 
accessors that just return the value of a field, calling a method can consume more time than 
the actual execution of the method. Therefore, short methods are inlined into their callers: 
The call to the method is replaced by a copy of its instructions. Inlining has a high impact 
on the execution time, but can be applied only if the called method is unambiguously 
known. 

This limitation complicates inlining for virtual methods: The actually called target depends 
on the dynamic type of the object and is therefore not known during compilation. If a call 
dispatches to different targets at runtime, it is called polymorphic; if the target is always 
the same, it is called monomorphic. Because of the semantics of the Java programming 
language, most method calls are virtual. However, measurements show that most calls are 
nevertheless monomorphic. Such monomorphic targets can be identified by analyzing the 
hierarchy of all loaded classes. It is then possible to inline methods even for virtual calls. 

4.6.3 Common Subexpression Elimination 

Common subexpression elimination (CSE) removes redundant computations of equal 
subexpressions. If the same instruction with the same operands is contained twice in the 
instruction stream, all references to the second instruction can be replaced by references to 
the first one. CSE is implemented via a hash table containing all computations processed 
previously. Before an instruction is appended, the compiler checks if an equal instruction is 
already present in the hash table. If an old instruction is found, it is used instead of the new 
instruction. 

Currently, only a local CSE is performed that finds subexpressions only inside a single 
basic block. A global CSE optimizing the whole method is simplified by the static single 
assignment form because it is guaranteed that each value is defined only once. However, it 
is not implemented yet. 

4.6.4 Null Check Elimination 

Because Java is a safe programming language, null pointer exceptions must be thrown 
when null objects are accessed. The virtual machine must check each access of an object. 
Two different kinds of null checks are used: 

• Most checks are implicitly performed by the processor: When a memory location 
near to 0 is accessed, the processor raises an internal exception which is processed 
by the virtual machine. No additional machine instructions are necessary for such 
checks. 



Compiler Architecture 

40 

• Some null checks must be performed explicitly because of the Java semantics. For 
example, a Java null pointer exception must be thrown if a method of a null object 
is called, even if the method executes no code. So an explicit null check is necessary 
whenever a method is inlined. 

The null check elimination tries to eliminate explicit null checks or replace them with 
implicit checks. If the input argument of a null check can be proven to be not null, i.e. when 
it is guaranteed that a null check on the same object has been executed before, then the null 
check can be eliminated. This optimization succeeds in eliminating most explicit null 
checks. 

4.6.5 Control Flow Optimizations 

The Conditional Expression Elimination searches the control flow graph for conditional 
expressions. These are conditional branches that load one of two values depending on a 
condition and then continue with the same block. The If instruction of the branch is 
replaced by a special IfOp instruction that has both values as input parameters. The back 
end can generate more efficient code for conditional move instructions where no branches 
are necessary.  

All optimizations mentioned in this chapter can lead to blocks that are only connected by a 
single edge. If a block ends with an unconditional jump to a successor, and this successor 
has the block as its only predecessor, the two blocks are merged to one larger block. This 
optimization reduces the number of blocks that must be processed by the back end later on. 

4.7 Low-Level Intermediate Representation 

The low-level intermediate representation (LIR) is conceptually very similar to native code, 
but allows platform-independent algorithms that would be difficult to implement directly 
on native code. The instructions and operands are shared between all platforms, only the 
generation and some small other parts are platform-dependent. The main optimization that 
is applied on the LIR is the register allocation. The LIR is more suitable for register 
allocation than the HIR because all operands requiring a register in machine code are 
explicitly visible in the LIR. 

In the compiler, all classes related to the LIR start also with the prefix LIR. In contrast to the 
HIR, the operations of the LIR use explicit operands, so the operations are not linked 
together directly. If an operation uses the result of another operation as an input value, 
then the result operand and the input operand refer to the same register or memory 
address. 

All LIR operations of a basic block are stored in an array list. This allows fast iterations over 
all operations. Only the control flow is shared with the HIR: The list of LIR operations for a 
block is stored in a field in the BlockBegin instruction of the HIR, avoiding the duplication 
of the control flow nodes that would be necessary otherwise. 
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4.7.1 Operands 

Operands of the LIR must be capable of modeling all operands and addressing modes 
available in the target architecture. Therefore, the following kinds of operands can be 
distinguished: 

• Virtual registers are placeholders for operands whose final location is not known yet. 
When the LIR is generated, most operands are virtual registers. The register 
allocator is responsible for replacing all virtual registers by physical registers or 
stack slots. Each virtual register has a unique index. The total number of virtual 
registers is unlimited. 

• Physical registers are a direct representation of the target architecture’s general-
purpose and floating point registers. Their number and data type is fixed. 

• Addresses are used to reference arbitrary memory locations, e.g. fields of objects and 
arrays. On Intel processors, an address consists of a base register, an index register, 
a scale factor and a displacement. The base and index registers can be either virtual 
or fixed registers. 

• Stack slots are a special form of addresses that refer to the stack frame of the current 
method. Although it would be possible to replace stack slots with addresses, stack 
slots are more convenient for accessing the stack frame because a single index is 
used instead of an address with a base register and a displacement. The actual 
location of the stack slot is determined during code generation. The first slots are 
mapped on the parameter area of the calling method and therefore represent the 
incoming method parameters, the remaining slots are mapped on the spill area of 
the current method. 

• Constants of any type are allowed in the LIR, even if they are not directly supported 
as immediate values in the target architecture. On Intel, integer constants can be 
used as immediate operands with nearly all instructions, while floating point 
constants are stored in a reserved area and referred to by their address later on. 

Operands of the LIR are typed to distinguish between integer, object and floating point 
operands and to determine the size of the operands in memory. The type of an operation is 
implicitly fixed by the type of its operands. 

Because of the high number of LIR operands, the efficient handling is crucial for the perfor-
mance of the compiler. Consequently, the compiler uses a mixture of objects and direct 
representation for encoding: Physical registers, virtual registers and stack slots are encoded 
as a bit field. Addresses and constants are represented as objects because they are too large 
to be encoded in a single integer value. To allow a consistent use of both kinds of operands, 
the bit field is directly encoded as a mock pointer. The least significant bit of a mock 
pointer is always set to 1 to distinguish mock pointers from real pointers, while this bit is 
always cleared in a real pointer because of the 4-byte alignment of objects. This trick allows 
the uniform representation of LIR operands as pointers without the need to allocate space 
for frequently used register and stack operands. 
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4.7.2 Instruction Set 

LIR operations are represented by a class hierarchy with the base class LIR_Op. The result 
operand is located in the base class because most operations return a value. The class 
hierarchy is used to group operations with an equal number of operands. Most operations 
use the classes LIR_Op0, LIR_Op1 and LIR_Op2 that specify a generic operation with zero, 
one or two input operands, respectively. Figure 4.10 shows the class hierarchy where some 
classes and fields are omitted for a better readability. 

result : LIR_Opr
code : int
id : int

LIR_Op

LIR_Op0
label : Label
LIR_OpLabel

opr : LIR_Opr
LIR_Op1

cond : LIR_Condition
block : BlockBegin

LIR_OpBranch

header_size : int
object_size : int
tmp1 : LIR_Opr
tmp2 : LIR_Opr
tmp3 : LIR_Opr
tmp4 : LIR_Opr

LIR_OpAllocObj

opr1 : LIR_Opr
opr2 : LIR_Opr

LIR_Op2
opr1 : LIR_Opr
opr2 : LIR_Opr
opr3 : LIR_Opr

LIR_Op3

target : address
receiver : LIR_Opr
arguments : LIR_OprList

LIR_OpCall
header : LIR_Opr
object : LIR_Opr
lock : LIR_Opr
tmp : LIR_Opr

LIR_OpLock
object : LIR_Opr
array : LIR_Opr
klass : ciKlass
tmp1 : LIR_Opr
tmp2 : LIR_Opr
tmp3 : LIR_Opr

LIR_OpTypeCheck
klass : LIR_Opr
length : LIR_Opr
tmp1 : LIR_Opr
tmp2 : LIR_Opr
tmp3 : LIR_Opr
tmp4 : LIR_Opr

LIR_OpAllocArray

 
Figure 4.10: Class hierarchy for LIR operations 

The classes of the bottom row in Figure 4.10 are used for special higher-level operations. 
They are later expanded to multiple native instructions. The temporary operands specify 
registers that are only used for computations inside the operation, but are not valid before 
or after the operation. The register allocator guarantees that it is save for the operation to 
overwrite these registers. 

Each LIR operation is identified by a unique code, stored in the field code, which is 
independent from the class hierarchy because it is available in the base class. The following 
enumeration lists some important codes: 

• lir_label is the first operation of each basic block. It specifies a label that is used as 
the target for jumps to this block. 

• lir_std_entry is the very first operation of a method. It is responsible for creating the 
method’s stack frame. 

• lir_return returns the control flow to the calling method. The return value is the 
operand of lir_return. 

• lir_move is the most often used operation. It performs a general move between two 
registers, between the memory and a register or between a constant and a register. 
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• lir_cmp and lir_branch are used together for conditional branches. Unconditional 
jumps are represented by a single lir_branch. 

• The arithmetic and logical instructions like lir_add and lir_sub use the three-operand 
form with two input operands and the result operand. 

• Various call operations are available for static and virtual calls. The parameters of 
the called method must be already on the stack, so preceding moves are necessary 
to store them in the appropriate stack slot. 

• Operations for type checks, synchronization and allocation of objects and arrays are 
modeled as a single LIR operation working on a higher level. They represent the 
corresponding HIR instructions. 

4.7.3 Example 

This chapter shows the LIR for the example that calculates the factorial of a number 
presented in Chapter 4.2.1. Figure 4.11 on the next page shows the detailed LIR operations 
of all blocks. The first line of each block represents the BlockBegin instruction that is equal 
to the HIR in Figure 4.8 on page 36. The following lines represent the LIR operations of the 
block. Each operation has a unique number (column id) that is computed during register 
allocation (see Chapter 5.4 on page 57 for more details). 

The list of operands must be read from left to right, so the result operand is always the 
rightmost operand. The different kinds of operands are printed in the following syntax: 

• [R40|I] refers to the virtual register with the index 40 (numbers below 40 are 
reserved). It stores an operand of type integer (represented by “I”). 

• [ecx|L] refers to the physical register ecx that contains an operand of type object 
(represented by “L”). 

• [stack:0|I] refers to the stack slot with the index 0. 
• [int:1|I] represents the integer constant 1. 
• For an address, the base register, index register, scale factor and displacement are 

printed. 

The first operand of a branch operation specifies the branch condition. The condition [LE] 
(“less or equal”) specifies that the branch is taken only if the left operand was less than or 
equal to the right operand in the preceding compare operation. The condition [AL] 
(“always”) specifies an unconditional jump. The second operand of a branch is the target 
block, identified by its block id. 

Some LIR operations must store the state of the local variables and the operand stack as 
seen by the Java bytecodes. This is necessary to allow the generation of debug information 
for deoptimization (see Chapter 3.2.2 on page 19). Therefore, the state array of the HIR is 
propagated to the LIR and later also to the machine code. Examples for such operations are 
safepoints—explicit positions where the garbage collector is allowed to run—and method 
calls. In the example, the operation with the id 38 is a safepoint because the succeeding 
branch is the backward branch of a loop. The tag [bci:14] specifies that this operation 
stores the state array, allowing the reconstruction of the local variables at the bytecode 
index 14. 
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B4 [0, 0] sux: B0 
__id__Operation_____________________________________________ 
   0  label [label:0x31da99c] 
   2  std_entry [ecx|L] 
   4  move [stack:0|I] [R40|I]  
   6  branch [AL] [B0]  
 
B0 [0, 1] pred: B4 sux: B3  
__id__Operation_____________________________________________ 
   8  label [label:0x31bb9d4] 
  10  move [R40|I] [R42|I]  
  12  move [int:1|I] [R43|I]  
  14  branch [AL] [B3]  
 
B3 [2, 3] pred: B0 B2 sux: B1 B2  
__id__Operation_____________________________________________ 
  16  label [label:0x31da264] 
  18  cmp [R42|I] [int:0|I]  
  20  branch [LE] [B1]  
  22  branch [AL] [B2]  
 
B2 [6, 14] pred: B3 sux: B3  
__id__Operation_____________________________________________ 
  24  label [label:0x31da17c] 
  26  move [R43|I] [R44|I]  
  28  mul  [R44|I] [R42|I] [R44|I] 
  30  move [R42|I] [R45|I]  
  32  sub  [R45|I] [int:1|I] [R45|I] 
  34  move [R44|I] [R43|I]  
  36  move [R45|I] [R42|I]  
  38  safepoint [bci:14] 
  40  branch [AL] [B3]  
 
B1 [17, 18] pred: B3 
__id__Operation_____________________________________________ 
  42  label [label:0x31da094] 
  44  move [R43|I] [eax|I]  
  46  return [eax|I]   
Figure 4.11: Compilation example—low-level intermediate representation (LIR) 

4.8 LIR Generation 

The LIR is generated by visiting all instructions of the HIR. Each basic block is processed 
independently. Inside a basic block, all pinned instructions are handled in their original 
order. Instructions that are not pinned are processed recursively: If the currently processed 
instruction uses another instruction as an input operand that has not been handled yet, this 
instruction is processed before. For each HIR instruction, an arbitrary number of LIR 
operations can be created. The LIR uses an unlimited number of virtual registers for the 
operands. 

4.8.1 Phi Functions 

Phi functions necessary for the SSA form do not have a direct representation in any target 
architecture, so they must be resolved by move operations. This conversion is done during 
the LIR generation. The LIR does not contain phi functions and is therefore not in SSA 
form. Phi functions are replaced by moves in the predecessor blocks: Each phi function has 
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a unique virtual register assigned that is used as the target of move-operations in the 
predecessors. 

Figure 4.12 shows a simple example of a phi function and the appropriate moves necessary 
for resolution. The virtual register [R1] representing the instruction n3 is assigned in both 
predecessors: In the first predecessor, the first operand n1 of the phi function (the constant 
10) is used. In the second predecessor, the second operand n2 (the constant 20) is used. 

n1 = 10 n2 = 20

return n3
n3 = [n1, n2]

a) unresolved phi function

[R1] = 10 [R1] = 20

return [R1]

b) resolved phi function  
Figure 4.12: Resolving phi functions with moves 

4.8.2 Two-Operand Form 

The LIR uses the three-operand form for arithmetic and logical operations: An operation 
contains the left and right input operand and the result operand. However, the IA-32 
architecture uses the two-operand form for all instructions, where the left input operand is 
equal to the result operand. It is not possible to generate machine code from a LIR 
operation with three different operands. Therefore, the LIR is constrained when generating 
code for the IA-32 architecture: The left input operand is always equal to the result 
operand. Before each operation, a move from the left operand to the result operand is 
inserted. For example, the operation  

add  [R1] [R2] [R3] 

that would add [R1] and [R2] and store the result in [R3] is replaced by 
move [R1] [R3] 
add  [R3] [R2] [R3] 

This sequence first copies the left input operand into the result operand and adds the right 
operand to the result. Both operations can be converted directly to machine instructions of 
the IA-32 architecture. The insertion of moves is not necessary when generating code for 
the Sparc architecture because the three-operand form is also used by its native code. 

4.8.3 Fixed Registers 

Most IA-32 instructions can operate on all general-purpose registers. But some instructions 
are constrained to fixed registers, like instructions for divisions and shifts. To support such 
instructions, operands referring to physical registers are uses instead of virtual registers in 
the LIR. Because fixed registers restrict the register allocator, their live ranges are made as 
short as possible: move operations from and to fixed registers are inserted immediately 
before and after operations requiring them. 
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For example, the shift count for shift operations must be always in the fixed register [ecx]. 
Therefore, the operation 

shl [R1] [R2] [R3] 

that would shift [R1] to the left by [R2] bits and store the result in [R3], is replaced by 
move [R1] [R3] 
move [R2] [ecx] 
shl  [R3] [ecx] [R3] 

The first move is necessary because of the two-operand form. The second move copies the 
virtual register [R2] to the fixed register [ecx]. The register allocator can assign an arbi-
trary register to [R2] without considering the constraints of the IA-32 architecture. 
Another common occurrence of a fixed register is the return operation of a method: When a 
method returns an integer value, the calling convention requires the result in the register 
[eax]. When the virtual register [R1] should be returned for example, a move to the fixed 
register [eax] is necessary before the return operation: 

move   [R1] [eax] 
return [eax] 

The LIR operations for returning a floating point value are similar, except that the first 
floating point register is used instead of [eax]. 

4.9 Register Allocation 

The register allocator is responsible for replacing all virtual registers with physical 
registers. After register allocation, the LIR contains only operations with operands that can 
be mapped directly to machine instructions. The register allocator using the linear scan 
algorithm is the main result of this master thesis, so the algorithm is described in all details 
in Chapter 5. In principle, the following steps are performed: 

• First, the basic blocks are sorted into a linear order, i.e. the control flow graph is 
flattened to a list. All LIR operations are numbered increasingly using this block 
order. 

• For each virtual register, the lifetime interval is calculated. A virtual register is live 
between the operation that defines the value and the operations that use it. The 
lifetime interval can contain holes where the virtual register does not contain a 
useful value. 

• For the actual register allocation, the list of all intervals—sorted by increasing start 
position—is traversed. Each interval gets a physical register assigned that is not 
used by a simultaneously live interval. If more intervals are live than registers are 
available, then intervals are split and spilled to the stack. 

• After register allocation, all operands referring to virtual registers are replaced with 
the physical registers or stack slots that were assigned to the according intervals. 

The register allocator must be capable of handling the fixed registers emitted during the 
generation of the LIR. Additionally, some LIR operations such as method calls destroy all 
registers. The register allocator must guarantee that no register is in use at these positions. 
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Because all constraints of the target architecture are already reflected in the LIR, the register 
allocator needs not reserve registers as scratch registers. Many other compilers exclude one 
or even more registers from the normal register allocation and use these registers later 
during code generation. For example, spilled values that are required in a register are 
loaded to a scratch register before the value is needed. Because the register demands are 
properly modeled by this version of the linear scan algorithm, no scratch register is needed 
and all registers are available for allocation. This is especially valuable for the IA-32 
architecture since only six general-purpose registers are available. Reserving one of these 
registers as a scratch register would lead to a significantly higher register pressure. 

4.10 Code Generation 

Generating machine code from the LIR is straightforward: Because all platform-dependent 
issues are already represented in the LIR and the register allocator guarantees correct 
operands, most LIR operations result in one or two native instructions. All arithmetic and 
logical operations, moves and branches can be converted without using further algorithms. 

Only the higher level LIR operations for type checks, synchronization and object allocation 
are replaced by longer patterns of machine instructions. These operations use the Focus on 
the Common Case principle: The implementation is split into a common and an uncommon 
case. The code for the common case, which is executed frequently, is inlined directly into 
the normal code. The code for the uncommon case, which is used if the common case fails, 
is located outside of the method’s regular code and usually calls a function of the runtime 
environment. 

The common case can be executed very fast because no runtime calls are necessary. All 
machine instructions and therefore all used registers are known, so other values can be 
kept in registers that are not affected by the common case. For the uncommon case, all 
registers must be saved because they are destroyed by the runtime call. This extra cost for 
saving registers in the uncommon case is justified by a faster execution of the common 
case. 

For example, objects can be allocated very fast in nearly all cases. All new objects are 
allocated from a reserved memory area that is managed by the garbage collector, so the 
allocation of a new object requires only the following instructions in the common case: 

obj = top 
top = top + size 
if (top > limit) then goto slowcase 

For the allocation, chunks of the reserved memory are returned until the limit of the 
reserved memory is reached. If this happens, then the uncommon case is called that 
invokes the garbage collector. Because the garbage collector needs much more time 
compared with the three machine instructions, the additional overhead for saving and 
restoring all registers before and after the call is not a significant delay anyway. 
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4.11 Meta Data 

The main output of the compiler is the native code that can be executed directly by the 
processor. Because the native code runs in the managed environment of the virtual 
machine, the virtual machine needs some meta data for its work: 

• Debug information contains a mapping from compiled code back to the state of the 
interpreter. It is used for deoptimization, when the execution of a compiled method 
is transferred back to the interpreter. Debug information is emitted for all machine 
instructions where deoptimization might be possible, e.g. for all method calls and 
all instructions that are allowed to throw an exception. For each program counter of 
such machine instructions, the actual location, i.e. register or spill slot, of all local 
variables and operand stack items is stored. 

• Oop maps specify the exact location of all oops (ordinary object pointers; pointers to 
objects that are managed by the garbage collector) for all program counters where 
garbage collection can happen. During garbage collection, all these locations are 
treated as root pointers into the heap. If the garbage collector moves an object, then 
these locations must be updated as well. 

• Exception handling is implemented with tables specifying all possible exception 
handler entry points for a given program counter range. When an exception is 
thrown at runtime, the correct exception handler is searched using the dynamic 
type of the exception. 

Debug information and oop maps are created during register allocation since the necessary 
information is contained in the lifetime intervals. Before register allocation, the exact 
locations are not yet known, and after register allocation the information is no longer 
available. 
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Chapter 5 

5. Linear Scan Register Allocation 

 

This chapter presents the linear scan algorithm used for register allocation in 
detail. The algorithm is presented in pseudo-code and illustrated with examples. 
First, the basic blocks are ordered in an optimal linear order, using the loop 
depth of the blocks. Then the lifetime intervals, consisting of multiple ranges and 
use positions, are constructed. For the actual register allocation, the intervals 
are walked and each interval gets a register assigned. If no more free registers 
are available, intervals are split and spilled. In the last step, the allocated 
registers are written back to the LIR. 

The linear scan algorithm implemented for this master thesis in principle follows the 
algorithm presented by O. Traub et al. in [Traub98], although many details are imple-
mented differently. It adheres to the following basic principles: 

• The basic blocks are sorted into a linear order for allocation. The control flow graph 
is hidden during the allocation. This allows a linear algorithm to work on a non 
linear control flow graph. 

• No scratch register is reserved by the allocator, so all registers are available for 
allocation. A scratch register is not needed for the code generation since the 
allocator guarantees that a register is available for all operations that cannot operate 
on memory operands. 

• The lifetime of virtual registers is represented by intervals with multiple ranges. 
Intervals can have holes between ranges, called lifetime holes, where a virtual 
register does not contain a useful value. 

• The SSA form of the HIR leads to many short intervals, where each interval is 
assigned only once. Only intervals for the resolving moves of phi functions have 
multiple definitions. These intervals also have large holes. 

• The register allocator assigns a register to each interval in a linear pass over all 
intervals such that no intersecting intervals have the same register assigned. 
Intervals that do not intersect can get the same register because they are 
independent from each other. 

• If no register is available for the entire lifetime of an interval, the register available 
for the longest time is selected. The interval is split at the position where the 
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register is no longer available, and the decision what to do with the split part is 
postponed. 

• If no register is available because all registers are already blocked by other 
intervals, then one or more intervals must be spilled to the stack. In this case, the 
interval is split at this position and a move from the register to the stack is inserted 
into the LIR. 

• The splitting algorithm is very flexible. An interval can be split to change its 
location everywhere. Because the linear block order cannot model the control flow 
graph, a resolution pass is necessary that inserts moves at control flow edges. 

• If an operation requires an operand to be in a register, a use position is registered. If 
an interval is split and spilled, it is reloaded to a register at least before the next use 
position that must be in a register. 

• The selection strategy for spilling is not based on the absolute weight of an interval, 
but on the relative distance to the next use position: In general, the interval with the 
next use position furthest away is spilled. 

• Fixed intervals model operations that require operands in fixed registers. One fixed 
interval per physical register models the ranges where the register is not available 
for normal allocation. 

• Fixed intervals are also used to block all register at call operations. Because a call to 
another method destroys all registers, a short range is added to all fixed intervals at 
the position of the call. This forces a spilling of all non-fixed intervals that are live at 
a call without further special handling of calls during allocation. 

• The rewriting of the LIR where all virtual registers are replaced with physical 
registers and stack slots is done in a separate pass after all intervals were processed. 

5.1 Class Overview 

The class diagram in Figure 5.1 shows the structure and dependencies of the classes used 
during register allocation. It contains the classes together with their most important fields 
and some methods that are used later on in the algorithms. The actual implementation in 
the compiler is sometimes slightly different due to optimizations for a higher compile 
speed. For example, some lists are implemented as linked lists to allow fast insertion and 
removal of elements. The necessary next-pointers are omitted from the class diagram. 
Dashed lines in the class diagram represent dependencies between classes where one class 
is used locally in some methods of the other. 



Class Overview 

51 

blocks : BlockList
intervals : IntervalList
max_spills : int

LinearScan

add_range(in from, to : int) : void
add_use_pos(in pos, kind : int) : void
split(in op_id : int) : Interval
covers(in op_id : int) : bool
intersects(in it : Interval) : bool
child_at(in op_id : int) : Interval

reg_num : int
type : BasicType
assigned_reg : int
assigned_regHi : int
ranges : RangeList
use_positions : UsePositionList
split_parent : Interval
split_children : IntervalList
register_hint : Interval

Interval

from : int
to : int

Range
position : int
use_kind : int

UsePosition

block_id : int
predecessors : BlockList
successors : BlockList
operations : LIR_List
loop_index : int
loop_depth : int
live_gen : BitMap
live_kill : BitMap
live_in : BitMap
live_out : BitMap

BlockBegin

code : int
id : int

LIR_Op

add_mapping(in from, to : Interval) : void
find_insert_position(in from, to : BlockBegin)
resolve_mappings() : void

insert_block : BlockBegin
insert_idx : int

MoveResolver

walk_intervals() : void
allocate_interval() : bool
try_alloc_free_reg() : bool
try_alloc_blocked_reg() : void

unhandled : IntervalList
active : IntervalList
inactive : IntervalList
current : Interval

LinearScanWalker

visit(in op : LIR_Op) : void

input_oprs : LIR_OprList
temp_oprs : LIR_OprList
output_oprs : LIR_OprList
has_call : bool

LIR_OpVisitState

*

successors

predecessors

*

operations

*

1

LIR_Opr

*1

blocks

*

1

register_hint

*

1

intervals

*

1

split_parent

split_children

1 1

* * use_positionsranges

*

 
Figure 5.1: Classes uses during linear scan register allocation 
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5.2 Basic Algorithm 

The important parts of the algorithms are presented in pseudo-code where formal 
instructions and informal text is mixed. Variables are always written in italic, keywords for 
if- and loop-statements are written in bold. The algorithms are presented on a high level 
with unimportant details omitted. Algorithm 5.1 shows the basic steps of the linear scan 
algorithm. Each method that is called herein represents a phase of the algorithm and is 
described later in its own chapter. 

LINEAR_SCAN 
 // order blocks and operations (including loop detection) 
 COMPUTE_BLOCK_ORDER 
 NUMBER_OPERATIONS 

 // create intervals with live ranges 
 COMPUTE_LOCAL_LIVE_SETS 
 COMPUTE_GLOBAL_LIVE_SETS 
 BUILD_INTERVALS 

 // allocate registers 
 WALK_INTERVALS 
 RESOLVE_DATA_FLOW 

 // replace virtual registers with physical registers 
 ASSIGN_REG_NUM 

 // special handling for the Intel FPU stack 
 ALLOCATE_FPU_STACK 

Algorithm 5.1: Steps of linear scan 

5.3 Block Order 

The linear scan algorithm does not operate on a structured control flow graph, but on a 
linear list of blocks. Most parts are not sensitive to the actual order of the blocks, so any 
linear order could be used theoretically. But the order has a high impact on the quality and 
speed of the allocation: A good block order leads to short intervals with few holes and 
reduces the number of intervals that must be split. Additionally, the same block order is 
used for the generation of native code, so a good block order reduces the number of 
unconditional jumps necessary in native code. The algorithm for ordering blocks presented 
in this chapter has the following characteristics: 

• Two blocks linked by a jump are emitted consecutively if possible. This reduces the 
number of unconditional jumps because they are not necessary between 
consecutive blocks. 

• Blocks located close to each other, such as the if- and the else-branch of an if-
statement, are also arranged nearby in the block order. This is ensured by emitting 
a block not before all predecessors of this block except backward branches are 
emitted. 

• Blocks that are part of a loop are executed far more often than blocks of a sequential 
control flow, so their order is important. The algorithm guarantees that all blocks of 
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a loop are emitted consecutively, without blocks in between that do not belong to 
the loop. This ensures a good locality of the frequently executed loop blocks and 
helps the allocator to assign registers to all intervals used in the loop. 

• Blocks that are known to be executed rarely, such as blocks for exception handling, 
are emitted as late as possible and placed at the end of the method. This increases 
the locality of frequently executed blocks. 

5.3.1 Loop Detection 

The loop detection algorithm is integrated in the block ordering because the loop depth is 
used for ordering blocks. A loop is identified by its loop header block. This block is always 
the first block of the loop and the target of all backward branches. Because the bytecodes 
also allow unstructured programming with arbitrary jumps, it is possible to find loops with 
multiple header blocks. Such loops are ignored because they are very rare. It is guaranteed 
that the remaining loops have a unique header block. In contrast, many loops have 
multiple loop end blocks, which is handled correctly by the algorithm.  

The following two numbers are computed for each block. They are stored as fields of the 
BlockBegin instruction because they are also used later during register allocation: 

• loop_index stores the unique number of the innermost loop in which this block is 
contained. 

• loop_depth stores the loop nesting level of this block. The higher this number, the 
more important is this block. 

The algorithm needs several iterations over the control flow graph. At first, the graph is 
iterated forward starting with the first block of the method and using the successors of a 
block. When a block is reached for the first time, it is marked as visited. As long as 
successors of a block are processed, the block is additionally marked as active. The visited-
flag is not cleared during the iteration, whereas the active-flag is cleared after all successors 
were processed. 

When the iteration reaches a block where the active-flag is already set, a loop is detected: 
The block with the active-flag set is the loop header, the previously processed block is the 
loop end. The edge between these two blocks is marked as a backward branch, and the 
loop end block is added to a list that collects all loop end blocks. Each loop header is 
assigned a unique loop index. Additionally, this iteration computes the number of 
incoming forward and backward branches for all blocks. They are needed later for 
computing the block order. The iteration stops when all blocks are marked as visited. 

In the next step, the list of loop end blocks is processed. Each loop end block is the starting 
point for a backward iteration of the control flow graph using the predecessors of a block. 
The iteration stops when the loop header block belonging to the loop end is reached. All 
blocks that are reached during the iteration are contained in the loop. A block is contained 
in multiple nested loops if it is reachable from multiple loop end blocks with different loop 
indices. The output of this step is stored in a two-dimensional bit set where the first dimen-
sion is the block id and the second dimension is the loop index. A block is contained in a 
loop if the bit for this block id and loop index is set. 
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This bit set is used in the third step to calculate the loop depth and the index of the 
innermost loop: The loop depth of a block is the number of bits that are set for the 
according block id. The final loop index is the index of the lowest bit that is set, because a 
nested loop has a lower loop index than its surrounding loops (this is guaranteed by the 
first step that assigns the loop indices). 

5.3.2 Example 

The following example illustrates the loop detection algorithm. Figure 5.2 shows a 
complicated control flow graph with eight basic blocks and two nested loops. The outer 
loop has two loop end blocks B3 and B7 because both blocks have a backward branch to 
the same loop header B1. Block B0 is the start block; B5 ends with a return statement and 
has no successors. The numbering of the blocks is arbitrary. 

a) CFG with successors:
Loop end blocks and
backward branches
are marked

b) CFG with predecessors:
Blocks reachable from
B7 with predecessors
are marked

c) CFG with final loop
depth and loop
index for each block

depth: 1
index: 1

B1

B0

B3

B5 B4

B7 B6

B2

B1

B0

B3

B5 B4

B7 B6

B2

depth: 0
index: -1

depth: 1
index: 1

depth: 1
index: 1

depth: 1
index: 1

depth: 0
index: -1

depth: 2
index: 0

depth: 2
index: 0

 
Figure 5.2: Example of loop detection 

The first step of the algorithm collects the loop end blocks. Three loop end blocks are 
found: B3 and B7 are end blocks of the loop with the index 1, starting at B1. B6 is the only 
end of the loop with the index 0, starting at B4. This loop has a lower index than the first 
loop because it is nested in the first loop. The loop end blocks with their according 
backward branches are marked in Figure 5.2 a). Each loop end block has a single successor 
edge to its loop header. Table 5.1 summarizes the loop end table collected in the first step of 
the algorithm. 

Loop End Loop Header Loop Index 
B3 B1 1 
B6 B4 0 
B7 B1 1 

Table 5.1: Loop end blocks of example 
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The next step marks all blocks of the loops. Figure 5.2 b) shows all blocks that are reachable 
from the loop end block B7 when the control flow graph is iterated backward using the 
predecessors: B4 is a direct predecessor of B7, and B1, B2 and B6 are indirect predecessors. 
The predecessors of B1 are not processed because B1 is the loop header block of B7, so B0 
and B3 are not marked as loop blocks. B0 actually is no loop block and remains unmarked, 
whereas B3 is marked later because it is also present in the list of loop end blocks. B5 is not 
reachable from any loop end block using the predecessors, so it is not contained in any 
loop. Table 5.2 shows the two-dimensional bit set of loop blocks after all loop end blocks 
were processed. 

  Block Id 
  B0 B1 B2 B3 B4 B5 B6 B7 

0     x  x  Loop Index 
1  x x x x  x x 

Table 5.2: Two-dimensional bit set of blocks belonging to loops 

The loop depth of a block is the number of bits that are set in its column of the table. The 
loop index of a block is the first row where a bit of the block is set. If no bit is set in a 
column, then the block is not contained in a loop, represented by a loop depth of 0 and a 
loop index of -1. Figure 5.2 c) shows the final loop depths and loop indices. 

5.3.3 Compute Block Order 

The algorithm for computing the block order uses a sorted work list of blocks to process 
the control flow graph. It is ordered by increasing weight of a block and managed stack-
based, so the block with the highest weight is processed first. The most significant part of 
the weight is the loop depth of a block. If two blocks have the same loop depth, some other 
criteria are used, e.g. blocks of exception handlers or blocks that throw an exception are 
sorted down the list. Nevertheless, most blocks of a sequential control flow have the same 
weight. In this case, the work list behaves like a stack, so the block that was added last is 
removed first. 

Algorithm 5.2 on the next page is used for computing the final block order. The list of 
blocks is stored in the field blocks of the class LinearScan. Whenever blocks are iterated 
later on during register allocation, this block order is used. 

At the beginning, the first block of the method is added to the work list. Then, the work list 
is processed until it is empty. The first block with the highest weight is removed from the 
work list and appended to the final block order. All successors ready for processing are 
sorted into the work list. A block is ready for processing if all predecessors except 
backward branches are already present in the final block order. This is decided using the 
number of incoming forward branches initialized during the loop detection: whenever a 
successor is processed, its number of incoming forward branches is decremented. When the 
number reaches 0, all forward branches are processed. 
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COMPUTE_BLOCK_ORDER 
 append first block of method to work_list 

 while work_list is not empty do 
  BlockBegin b = pick and remove first block from work_list 
  append b to blocks 

  for each successor sux of b do 
   decrement sux.incoming_forward_branches 
   if sux.incoming_forward_branches = 0 then 
    sort sux into work_list 
   end if 
  end for 
 end while 

Algorithm 5.2: Compute block order 

5.3.4 Example 

In the example started in Chapter 5.3.2, all blocks have only one incoming forward branch 
and so they are ready for processing when they appear in a successor list the first time. In 
this example, the loop depth is used as the only component of the weight for simplicity. 
Figure 5.3 shows the first iterations of the loop in Algorithm 5.2. The left side represents the 
work list, the right side the final block order. The number printed beneath each block of the 
work list is the weight of the block. 

B0

Work List Final Block Order

01.

B012. B1
B013. B3 1B2 B1
B004. B5 1B3 B12B4 B2
B005. B5 1B3 B11B7 B22B6 B4

 
Figure 5.3: Example of computing block order 

The following actions are executed: 

1. The work list is initialized with B0 
2. B0 is processed and appended to the block order. The only successor B1 is sorted 

into the work list. 
3. B1 is processed. The two successors B2 and B3 have the same weight, so their order 

is not important. Assume that B2 becomes the top of the work list. 
4. B2 is processed. The first successor B4 has the highest weight and is sorted to the 

top of the work list. The second successor B5 has a lower weight than B3 which is 
already in the work list, so B5 is sorted in before B3. 

5. B4 is processed. B6 has the highest weight and is sorted to the top. B7 is sorted in 
after B6, but before B3 because of the stack-based ordering of blocks with the same 
weight. 



Numbering of LIR Operations 

57 

In the remaining steps, no new blocks are sorted into the work list because all successors 
are backward branches that are ignored. The top of the work list is just appended to the 
block order without sorting new blocks into the work list. Figure 5.4 shows the resulting 
final block order. The quality criteria mentioned at the beginning of the chapter are 
fulfilled, both loops are continuous. Although the return block B5 was ready for processing 
during the loop, it is the last block in the linear order. 

B0 B5B3B1 B7B2 B6B4

Inner Loop

Outer Loop

 
Figure 5.4: Final block order of example 

5.4 Numbering of LIR Operations 

The block ordering leads to a linear list of all blocks. This order is used to compute a linear 
order of all LIR operations. The field id of the class LIR_Op is used to store the number of 
each operation. The numbering, as shown in Algorithm 5.3, is a straightforward iteration of 
blocks and operations. 

NUMBER_OPERATIONS 
 int next_id = 0 

 for each block b in blocks do 
  for each operation op in b.operations do 
   op.id = next_id 
   next_id = next_id + 2 
  end for 
 end for 

Algorithm 5.3: Numbering of LIR operations 

The number for the next operation is always incremented by 2, so only even numbers are 
used. This simplifies many algorithms because there is always a free position between two 
operations where a new operation, e.g. a spill move, can be inserted. Only when more than 
one operation is inserted at a single position, the inserted operations must be ordered such 
that no register is overwritten. 

5.5 Lifetime Intervals 

Lifetime intervals are the main data structure used during register allocation. For each 
virtual register that is used in the LIR, one interval is constructed that represents the 
lifetime of the register. There is a strong conjunction between a virtual register and its 
lifetime interval. Because the same numbering schema is used, the virtual register with the 
number n corresponds to the interval with the number n when the intervals are created. 
When intervals are split later during register allocation, one virtual register can also 
correspond to multiple intervals. 
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A lifetime interval is represented by the class Interval. The class diagram in Figure 5.1 on 
page 51 contains the important fields and methods of this class: 

• The field reg_num stores the number of the virtual register that this interval 
corresponds to. 

• The type of an interval is needed to select the appropriate physical register set for 
the interval: Intervals of the types float and double require a floating point register 
to be assigned, whereas int and object need a general-purpose register. The type 
long needs two general-purpose register because the IA-32 architecture provides 
only 32-bit integer registers. 

• The register assigned to the interval during register allocation is stored in the field 
assigned_reg. The second register for intervals of the type long is stored in 
assigned_regHi. 

5.5.1 Ranges 

One lifetime interval may consist of multiple live ranges. They model the parts of the 
method where a virtual register contains a meaningful value that is used later on. In the 
simplest case there is only a single live range that starts at the operation that defines the 
register and ends at the last operation that uses the register. More complicated intervals 
consist of multiple ranges, so each interval stores a list of ranges. 

Every live range has two fields from and to, denoting the id numbers of the first and last 
LIR operation covered by the range. The field from is meant to be inclusive, while to is 
meant to be exclusive. For example, the range [4, 8[ starts at operation 4 and ends at 
operation 8 where it is not live any more. The ranges [4, 8[ and [8, 12[ do not intersect 
because the id 8 is not covered by the first range, whereas [4, 8[ and [7, 12[ intersect because 
they have the id 7 in common.  

The register allocator later assigns registers to intervals so that intervals with intersecting 
lifetimes do not get the same register assigned. To reduce the number of intersecting 
intervals, the lifetime should be as small as possible, i.e. there should be no subrange in the 
lifetime where the virtual register does not contain a useful value. Therefore, the compiler 
uses a representation of lifetime intervals with holes, which allows an exact modeling of 
live ranges. The example in Chapter 5.5.5 illustrates lifetime intervals with holes. 

5.5.2 Use Positions 

The use positions of an interval store the id numbers of operations where the according 
virtual register is used. This information is required later on to decide which interval is 
split and spilled when no more registers are available, and when a spilled interval must be 
reloaded into a register. 

Each use position has a flag use_kind denoting whether a register is required at this 
position or not: If the use position must have a register, the register allocator must 
guarantee that the interval has a register assigned at this position. If the interval was spilled 
to memory before this position, it is reloaded to a register. If the use position should have a 
register, then the interval may be spilled. This allows the modeling of machine instructions 
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of the IA-32 architecture that can handle memory operands. For example, the second input 
operand of all arithmetic and logical instructions can be a memory operand. If the interval 
is spilled at such a position, the register allocator needs not reload the interval to a register. 
This reduces the number of spill moves significantly. 

5.5.3 Fixed Intervals 

Some LIR operations use operands referring to physical registers (see Chapter 4.8.3 on page 
45 for details). Although the register allocator must leave these operands unchanged, they 
must be considered during allocation because they limit the number of available registers 
at certain positions. Information about physical registers is collected in fixed intervals: These 
intervals use the same data structure as normal non-fixed intervals, but are handled in a 
special way during register allocation. 

To distinguish between fixed and non-fixed intervals, fixed intervals use a reserved range 
of the interval numbers. On Intel, the following numbers are used. 

• The eight general-purpose registers use the interval numbers 0 to 7 
• The eight registers of the FPU stack use the interval numbers 8 to 15 
• The eight XMM registers of the SSE2 extensions use the interval numbers 16 to 23 

The first non-fixed interval must have a number higher than all fixed intervals. Currently, 
the numbering starts with 40 (there is no real reason why the numbers 24 to 39 are not 
used). This implies that there are also no virtual registers with a register number smaller 
than 40. 

The list of ranges is maintained in the same way both for fixed and non-fixed intervals: The 
lifetime of a fixed interval consists of short ranges that model the parts of the method 
where the according register is not available for other non-fixed intervals. For each physical 
register, one fixed interval cumulates all ranges where the register is blocked. Use positions 
are not needed for fixed intervals because they are never split and spilled. 

5.5.4 Splitting of Intervals 

The value of an interval need not be stored at the same location during its whole lifetime. It 
can reside in a register for some time and then change to memory, or vice versa. In order to 
accomplish this change, the interval has to be split into two intervals, one residing in a 
register and the other in memory. This avoids storing multiple locations for a single 
interval. When an interval is split, a new interval is created and appended to the list of 
intervals. The new interval is called a split child of the original interval, which is called split 
parent. 

Ranges and use positions after the split positions are moved to the split child. The split 
parent ends at the split position, the split child starts there. The split child gets its own 
interval number assigned, although it belongs to the same virtual register as the split 
parent. Both the split parent and the split child can be split again later on. All these 
intervals share the same split parent. The split parent maintains a list of all split children. 
The function child_at(id) returns the split child that covers a given operation id. 
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The example in Figure 5.5 shows the interval with the number 40, modeling the lifetime of 
the virtual register [R40]. It has three ranges and three use positions. The interval was not 
split yet, so split_parent is empty and there is no list of split_children. 

reg_num = 40

use_positions
ranges

[4, 8[
[12, 16[
[20, 24[4

12
16

split_parent
split_children  

Figure 5.5: Interval with ranges and use positions 

Now the interval is split twice:  

• At first, the interval 40 is split at the position 14. This creates the new interval 50 
with all ranges and use positions above 14. The original range [12, 16[ is split into 
the range [12, 14[ for interval 40 and [14, 16[ for interval 50. 

• Afterwards, the interval 50 is split at the position 20, creating the new interval 51. 
Although the split occurred at position 20, interval 50 now ends at position 16 
because the register is not live between 16 and 20. 

The newly created intervals 50 and 51 are both split children of the original interval 40. 
Figure 5.6 shows the resulting graph of intervals with their according ranges and use 
positions. 

reg_num = 40

use_positions
ranges [4, 8[

[12, 14[
4
12split_parent

split_children

reg_num = 50

use_positions
ranges

[14, 16[

16
split_parent
split_children

reg_num = 51

use_positions
ranges

[20, 24[

split_parent
split_children

 
Figure 5.6: Intervals after splitting 

5.5.5 Example 

Ranges and use positions of lifetime intervals can be understood most easily when shown 
in a graphical representation. Figure 5.7 shows the intervals for the example that calculates 
the factorial of a number. The LIR for this example was presented in Figure 4.11 on page 44. 
Each interval is represented by a line. The grey rectangles show the live ranges, the small 
black blocks the use positions. For example, the operation with id 10—the move operation 
between [R40] and [R42]—is registered as a use position for the intervals 40 and 42. 

Interval 43 is one example for an interval with a lifetime hole: Two move operations (with 
the id 12 and 34) write to the operand [R43], and two move operations (with the id 26 and 
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44) read it. Between the operations 26 and 34, the operand contains no useful value because 
it is not read any more before it is overwritten. The lifetime hole avoids wasting a register 
between 26 and 34. Written in textual form, the interval 43 consists of the two ranges [12, 
26[ and [34, 44[. 

[R40]
[R42]
[R43]
[R44]
[R45]

[eax]

0 8 16 24 48

B4 B0 B3 B2 B1

42  
Figure 5.7: Compilation example—lifetime intervals 

The first line of the example represents the fixed interval for the register [eax]. The 
operation at the id 44 is the move from [R43] to [eax], followed by the return expecting 
the result in the fixed register [eax]. Use positions are not needed for fixed intervals, so 
they are not collected by the algorithm. 

5.6 Building Intervals 

In order to create accurate live ranges for each virtual register, a data flow analysis is 
performed before the intervals are built. This is necessary to model the data flow in a not 
sequential control flow, e.g. an operand that is defined before a loop and used in the loop is 
live for the entire loop because the value must be preserved for further loop iterations. 
Therefore, three steps are necessary to create lifetime intervals: 

• At first, all operands read or written in a block are collected in the local live sets. 
• Then, a standard backward data flow analysis [Aho86] computes the set of all oper-

ands that are live at the beginning and end of a block, called the global live sets. 
• Using this information, accurate live ranges can be constructed. 

The following chapters present the detailed algorithms for each of the three steps. 

5.6.1 Compute Local Live Sets 

To generate the local live sets, each block is processed and the fields live_gen and live_kill of 
the class BlockBegin are filled: live_gen contains all operands that are used in this block 
before they are defined, so they must be defined somewhere in a predecessor. The set 
live_kill contains all operands that are defined in the block, so a possible value of a 
predecessor is overwritten. This complicated handling is necessary because the LIR is not 
in SSA form: The phi functions of the HIR are already resolved by moves in the LIR. 
Algorithm 5.4 is used to compute the local live sets. 
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COMPUTE_LOCAL_LIVE_SETS 
 LIR_OpVisitState visitor // used for collecting all operands of an operation 

 for each block b in blocks do 
  b.live_gen = { } 
  b.live_kill = { } 

  for each operation op in b.operations do 
   visitor.visit(op) 

   for each virtual register opr in visitor.input_oprs do 
    if opr ∉ block.live_kill then b.live_gen = b.live_gen ∪ { opr } 
   end for 

   for each virtual register opr in visitor.temp_oprs do 
    b.live_kill = b.live_kill ∪ { opr } 
   end for 

   for each virtual register opr in visitor.output_oprs do 
    b.live_kill = b.live_kill ∪ { opr } 
   end for 
  end for 
 end for 

Algorithm 5.4: Compute local live sets 

To abstract the register allocator from the class hierarchy of LIR operations, a visitor is used 
to collect all operands of an operation. The visitor, implemented in the class LIR_OpVisit-
State, provides a comfortable access to all input, temporary and output operands of an 
operation and is used several times in the register allocator. In the algorithm, the operands 
are accessed via the sets input_oprs, temp_oprs and output_oprs of the visitor. 

Temporary and output operands are treated equally here: Both overwrite a possible prior 
value of the operand and are therefore added to live_kill. Input operands must be defined 
somewhere before. When no prior definition was found in the same block, i.e. when the 
operand is not present in live_kill, then it is added to live_gen because it must be defined in 
a predecessor. 

5.6.2 Compute Global Live Sets 

To compute the set of all operands that are live at the beginning and end of a block, the 
backward dataflow analysis shown in Algorithm 5.5 is used. 

COMPUTE_GLOBAL_LIVE_SETS 
 do 
  for each block b in blocks in reverse order do 
   b.live_out = { } 
   for each successor sux of b do 
    b.live_out = b.live_out ∪ sux.live_in 
   end for 

   b.live_in = (b.live_out – b.live_kill) ∪ b.live_gen 
  end for 
 while change occurred in any live set 

Algorithm 5.5: Compute global live sets 
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The live_out set of a block is the union of the live_in sets of all successors. Because no value 
can be generated at a control flow edge, all operands that are live at the beginning of a 
successors must also be live at the end of the current block. The live_in set is then calculated 
from the live_out set using live_kill and live_gen. 

Unfortunately, the live sets in a loop cannot be computed in a single pass: When a loop end 
block is processed the first time, the according loop header was not processed yet because 
the loop header is always located before the loop end, so the live_in set of the loop header is 
initially empty. After processing the loop, the live_in set of the loop header is filled 
correctly, and the second pass over all blocks computes the correct live sets. The number of 
necessary iterations depends on the maximum nesting level of loops in the method. To 
simplify the computation, the iteration stops when the live sets do not change any more. 

All live sets are internally stored as bit maps, indexed by the register number of the 
operands. This allows the fast implementation of operations like union and difference 
using logical operations. Also no iteration of the operations is necessary. Therefore, this 
step is very fast, even if some iterations are required until a fixpoint is reached. 

5.6.3 Build Intervals 

After the data flow analysis, all information necessary to construct accurate live ranges and 
use positions are available. Again, all operations of all blocks are iterated, but this time in 
reverse order. Algorithm 5.6 on the next page is used to build the intervals. 

Before the operations are processed, the live_out set of the block is used to generate the 
ranges that must last until the last operation of the block. At first, the entire range of the 
block is added—this is necessary if the operand does not occur in any operation of the 
block. If the operand is defined in the block, then the range is shortened to the definition 
position later. 

Then, all operations of the block are traversed in reverse order, and the visitor is used to 
collect the operands. In contrast to the computation of the local live sets, not only the 
virtual registers are processed here, but also the physical registers. Processing the physical 
registers creates the fixed intervals without further costs. 

If an operation is a call to another method, then all registers are destroyed when the 
operation is executed. Short ranges of length 1 are added to all fixed intervals, so the later 
allocation pass cannot assign a register to any non-fixed interval at this position—
otherwise two intersecting intervals would have the same register assigned. This 
guarantees that all intervals live at a call site are spilled to memory before the call. An 
example with a method call can be found in Appendix A. 

Output operands of the operation shorten the first range of the interval: The definition 
overwrites any previous value of the operand, so the operand cannot be live immediately 
before this operation. The range that was defined until the start of the block is resized to 
the accurate length. 
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BUILD_INTERVALS 
 LIR_OpVisitState visitor; // visitor used for collecting all operands of an operation 

 for each block b in blocks in reverse order do 
  int block_from = b.first_op.id 
  int block_to = b.last_op.id + 2 

  for each operand opr in b.live_out do  
   intervals[opr].add_range(block_from, block_to) 
  end for 

  for each operation op in b.operations in reverse order do 
   visitor.visit(op) 

   if visitor.has_call then 
    for each physical register reg do 
     intervals[reg].add_range(op.id, op.id + 1) 
    end for 
   end if 

   for each virtual or physical register opr in visitor.output_oprs do 
    intervals[opr].first_range.from = op.id 
    intervals[opr].add_use_pos(op.id, use_kind_for(op, opr)) 
   end for 

   for each virtual or physical register opr in visitor.temp_oprs do 
    intervals[opr].add_range(op.id, op.id + 1) 
    intervals[opr].add_use_pos(op.id, use_kind_for(op, opr)) 
   end for 

   for each virtual or physical register opr in visitor.input_oprs do 
    intervals[opr].add_range(block_from, op.id) 
    intervals[opr].add_use_pos(op.id, use_kind_for(op, opr)) 
   end for 
  end for 
 end for 

Algorithm 5.6: Build intervals 

Temporary operands add short ranges of length 1, similar to the processing of calls. A 
temporary operand has no defined value before and after the operation, so it is not live 
before and after it either. These operands are another reason for numbering the LIR 
operations using the distance two: A short range of length 1 is never adjacent to a range 
starting at the succeeding operation. 

Input operands use values that are calculated somewhere before the current operation, but 
the actual position is not known yet. So a range from the start of the current block to the 
operation is added. It may be shortened later when output operands are processed, as 
described above. If the range is already present because the same input operand occurred 
in another operation, then no new range is necessary; the existing range covers all 
necessary operations. It is not allowed that multiple ranges of the same interval overlap. 

Whenever a range is added to an interval, adjacent ranges are merged to reduce the total 
number of ranges. For example, when the range [4, 8[ is added to the range [8, 12[, both 
ranges are merged to the single range [4, 12[. A use position is added for each input, 
temporary and output operand. The new position is simply added to the list of all use 
positions. The function use_kind_for checks whether this operand requires a register or if 
the operation can also work directly with a spilled operand, as described in Chapter 5.5.2. 
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5.6.4 Example 

This example explains how ranges are added and then truncated to the correct length. The 
processing of block B2 of the factorial example is presented step by step. Figure 5.8 shows 
the LIR for this block. This is a part of the entire LIR presented in Figure 4.11 on page 44. 

B2 [6, 14] pred: B3 sux: B3  
__id__Operation_____________________________________________ 
  24  label [label:0x31da17c] 
  26  move [R43|I] [R44|I] 
  28  mul  [R44|I] [R42|I] [R44|I] 
  30  move [R42|I] [R45|I] 
  32  sub  [R45|I] [int:1|I] [R45|I] 
  34  move [R44|I] [R43|I] 
  36  move [R45|I] [R42|I] 
  38  safepoint [bci:14] 
  40  branch [AL] [B3] 
Figure 5.8: Compilation example—LIR of block B2 

Figure 5.9 illustrates the building of intervals using a snapshot before, amid and after 
processing the operations of the block. It contains the relevant section of the complete 
intervals shown in Figure 5.7 on page 61. 

24 4224 42 24 42

a) Before processing of
operations

b) After processing of
operation 34

c) After processing of
all operations

26 28 30 32 34 36 38 40

[R42]
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[R44]
[R45]

[R42]
[R43]
[R44]
[R45]

26 28 30 32 34 36 38 40 26 28 30 32 34 36 38 40

 
Figure 5.9: Compilation example—building intervals of Block B2 

The live_out set of Block B2 contains two operands [R42] and [R43]. Therefore, whole 
block ranges are added for both operands, as shown in Figure 5.9 a). Then, the operations 
are iterated in reverse order, starting with the last operation: 

• The operations 40 and 38 have no operands, so they do not change the ranges. 

• For operation 36, the output operand [R42] is processed first and the range of 
interval 42 is shortened: The start position is moved from 24 to 36. For the input 
operand [R45], a range from the start of the block at 24 to 36 is added. Use 
positions are added to the intervals 42 and 45. 

• Operation 34 is processed similarly: The output operand [R43] shortens the range 
of interval 43; the input operand [R44] adds a range from 24 to 34 to interval 44. 
Figure 5.9 b) shows the ranges after processing operation 34. 

• Operation 32 has [R45] as input and output operand. So the range of interval 45 is 
first shortened to 32 by the input operand and immediately afterwards prolonged 
to 24 by the output operand. The range is effectively unchanged, only a new use 
position is registered at position 32. 
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• Operation 30 truncates the interval 45 to the position 30 and adds a new range from 
24 to 30 to the interval 42. The interval now has a lifetime hole from 30 to 36. 

• Operation 28 has [R42] and [R44] as input operands and [R44] as the output 
operand. Similarly to operation 32, the interval 44 is shortened and prolonged, so 
the range remains the same. The input operand [R42] also does not change 
interval 42 because the range from 24 to 28 is already present. Only the according 
use positions are added to the intervals 42 and 44. 

• Operation 26 truncates the interval 44 to position 26 and adds a new range from 24 
to 26 to interval 43. 

The final ranges after the processing of all operations are shown in Figure 5.9 c). 

5.7 Allocation 

During the allocation phase, the unbound number of virtual registers—represented by the 
intervals—is mapped to the small set of physical registers. All intervals are sorted in the 
order of increasing start points and traversed in this order. The interval currently processed 
is called the current interval. The starting position of this interval, i.e. the from field of its first 
range, divides the remaining intervals into the following four sets: 

• The unhandled set contains all intervals starting after position. 
• The intervals in the active set cover position and have a register assigned. 
• The inactive intervals start before position and end after position, but do not cover it 

because position is in a lifetime hole. 
• All handled intervals end before position or were spilled to memory. These intervals 

are not processed any more, so it is not necessary to store them in a set. 

If an interval is handled because it is spilled to memory, then it must not contain a use 
position that requires a register. When an interval with such a use position is spilled, the 
part containing the use position is split off and moved to the unhandled set to get a register 
assigned. 

5.7.1 Walking Intervals 

The main allocation loop processes all intervals of the sorted unhandled set, initialized with 
all intervals created in the steps before. In each iteration, the interval with the lowest 
starting position is removed from unhandled and processed by the allocator. During 
allocation, new intervals may be sorted into the unhandled set: When an interval is split, the 
split child is not processed immediately but instead added to unhandled. This postpones the 
decision what to do with split children until the allocator reaches their starting position. 

Algorithm 5.7 shows how the active and inactive sets are adjusted before a register is 
searched for current. Intervals from active that do not cover the current position are either 
moved to handled if they end before position or moved to inactive. Similarly, intervals from 
inactive are moved to handled or active. 
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WALK_INTERVALS 
 unhandled = list of intervals sorted by increasing start point 
 active = { } 
 inactive = { } 

 // note: new intervals may be sorted into the unhandled list during  
 // allocation when intervals are split 
 while unhandled ≠ { } do 
  current = pick and remove first interval from unhandled 
  position = current.first_range.from 

  // check for intervals in active that are expired or inactive 
  for each interval it in active do 
   if it.last_range.to < position then 
    move it from active to handled 
   else if not it.covers(position) then 
    move it from active to inactive 
   end if 
  end for 

  // check for intervals in inactive that are expired or active 
  for each interval it in inactive do 
   if it.last_range.to < position then 
    move it from inactive to handled 
   else if it.covers(position) then 
    move it from inactive to active 
   end if 
  end for 

  // find a register for current 
  TRY_ALLOCATE_FREE_REG 
  if allocation failed then 
   ALLOCATE_BLOCKED_REG 
  end if 

  if current has a register assigned then 
   add current to active 
  end if 
 end while 

Algorithm 5.7: Walk intervals for allocation 

The method try_allocate_free_reg tries to find a register for current without spilling an 
interval. In the best case, a register is free for the entire lifetime of the interval, but it is also 
sufficient if a free register is found only for the beginning of the interval. If the allocation 
without spilling fails, then allocate_blocked_reg tries harder to find a register by spilling 
some intervals. The spilling decision is based on the use positions; the interval that is not 
used for the longest time is spilled. It is also possible that current itself is spilled if it is used 
later than all other intervals that block the registers. 

5.7.2 Selection Strategy for Registers 

Algorithm 5.8 is used to select a register for the current interval that is not occupied by any 
other interval. The algorithm inspects the active and inactive intervals, but does not split or 
change the assigned register of any interval but current. 
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TRY_ALLOCATE_FREE_REG 
 set free_pos of all physical registers to max_int 

 for each interval it in active do  
  set_free_pos(it, 0) 
 end for 

 for each interval it in inactive intersecting with current do 
  set_free_pos(it, next intersection of it with current) 
 end for 

 reg = register with highest free_pos 
 if free_pos[reg] = 0 then 
  // allocation failed, no register available without spilling 
  return false  
 else if free_pos[reg] > current.last_range.to then 
  // register available for whole current 
  assign register reg to interval current 
 else 
  // register available for first part of current 
  assign register reg to interval current 
  split current at optimal position before free_pos[reg] 
 end if 

Algorithm 5.8: Allocate register without spilling 

All intervals of the active and inactive sets can possibly affect the allocation decision. They 
are used to fill the array free_pos: Each register is available for allocation until its free_pos. 
Before the active and inactive sets are processed, all physical registers are marked as entirely 
free by setting the free_pos to a high number (the maximum integer number is used). Then, 
the intervals are processed: 

• All registers used by active intervals must be completely excluded from the 
allocation decision, so their free_pos is set to 0. 

• Inactive intervals that do not intersect with current can be completely ignored 
because they do not disturb each other. 

• The free_pos for registers of inactive intervals intersecting with current is set to the 
next intersection point, i.e. the register is available at the beginning because position 
is in a lifetime hole of the inactive interval, but it is not available for the whole 
lifetime of current. 

The method set_free_pos modifies the free_pos for the register assigned to the given 
interval. If the position for one register is set multiple times—this can happen when many 
inactive intervals have the same register assigned—the minimum of all positions is used. 
The register with the highest free_pos is searched and used for allocation. Three cases can 
be distinguished: 

• If the highest free_pos is 0, then all registers are occupied by active intervals. No 
free register is available for allocation. It is not possible to allocate a register without 
spilling, so Algorithm 5.9 on page 70 is used for allocation with spilling. 

• If free_pos is higher than the end position of current, the register is available for the 
entire lifetime of the interval. This is the best case: The register is simply assigned to 
current, and the allocation completes successfully. 
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• If free_pos lies somewhere in the middle of current, the register is available for the 
first part of the interval only. The register is assigned to current, but current is split 
at free_pos (or even before). The split child is sorted into the unhandled list and will 
be processed later. A move operation between the two intervals is inserted at the 
split position. 

Assigning a register only for the first part of the interval is an important optimization. It 
guarantees a good register utilization even if many long intervals with complex lifetime 
holes compete for registers. Long intervals can switch between different registers, so the 
probability for spilling is lower. 

In the current implementation, allocating partial intervals is also necessary for method 
calls: Since all registers are blocked at a call by adding a short range to the fixed intervals, 
an interval live at a call site can never get a register for the entire lifetime. Such intervals are 
split automatically before the call. They start in a register, then they are split and spilled at 
the call site and later reloaded to a register if necessary. 

Figure 5.10 illustrates the three different cases, in which the intervals 41 and 42 are slightly 
different. Assume that only two physical registers [r1] and [r2] are available for allo-
cation. The intervals 40 and 41 have already the registers [r1] and [r2] assigned, res-
pectively. Interval 42 is the current interval for allocation (printed as a light grey bar). 
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Figure 5.10: Example of allocation without spilling 

The free_pos of register [r1] is 0 in all three examples because interval 40 is always active, 
so [r1] is never available for allocation. The free_pos of [r2] is different: 

• In Figure 5.10 a), interval 41 does not intersect with interval 42, so it does not 
disturb the allocation. The free_pos of register [r2] has its initial high value, so 
[r2] is assigned to interval 42 without any splitting necessary. 

• In Figure 5.10 b), the intervals 41 and 42 intersect; the free_pos of register [r2] is 
16. Interval 42 gets the register [r2] assigned, but must be split before position 16. 
The split child is appended to the unhandled list and processed later, where it has 
the chance to get another register. 

• In Figure 5.10 c), both registers are blocked because the intervals 40 and 41 are 
active. Since the free_pos of both registers is 0, the allocation fails. At least one 
interval must be spilled, as described in the next chapter. 

5.7.3 Spilling of Intervals 

When more intervals are simultaneously live than physical registers are available, spilling 
is inevitable. Finding the optimal interval for spilling with the smallest negative impact on 
the overall performance is too complicated. Instead a simple heuristic based on the use 



Linear Scan Register Allocation 

70 

positions is applied: The interval that is not used for the longest time is spilled because this 
frees a register as long as possible. 

The heuristic also estimates the weights for intervals used by other register allocation 
algorithms: If an interval is used often and would therefore have a high weight assigned, 
then there is probably also a near use position, so the interval is not spilled. The heuristic 
also works well for intervals with changing utilization: If an interval is heavily used at first 
and then remains unused for a long time, then it is not spilled before the unused part. 

Algorithm 5.9 shows the code that selects the spilled interval and assigns the freed register 
to the current interval. 

ALLOCATE_BLOCKED_REG 
 set use_pos and block_pos of all physical registers to max_int 

 for each non-fixed interval it in active do 
  set_use_pos(it, next usage of it after current.first_range.from) 
 end for 

 for each non-fixed interval it in inactive intersecting with current do 
  set_use_pos(it, next usage of it after current.first_range.from) 
 end for 

 for each fixed interval it in active do 
  set_block_pos(it, 0) 
 end for 

 for each fixed interval it in inactive intersecting with current do 
  set_block_pos(it, next intersection of it with current) 
 end for 

 reg = register with highest use_pos 
 if use_pos[reg] < first usage of current then 
  // all active and inactive intervals are used before current, so it is best to spill current itself 
  assign spill slot to current 
  split current at optimal position before first use position that requires a register 
 else if block_pos[reg] > current.last_range.to then 
  // spilling made a register free for whole current 
  assign register reg to interval current 
  split and spill intersecting active and inactive intervals for reg 
 else 
  // spilling made a register free for first part of current 
  assign register reg to interval current 
  split current at optimal position before block_pos[reg] 
  split and spill intersecting active and inactive intervals for reg 
 end if 

Algorithm 5.9: Allocate register with spilling 

Again, all intervals of the active and inactive list can possibly affect the decision. The 
algorithm collects two numbers for each physical register based on these intervals: 

• use_pos[reg] stores the position where an interval with the register reg assigned is 
used next. If more than one position is available, then the minimum is used. This 
number is used for the heuristic selecting the spill candidate. It is calculated by 
iterating all non-fixed active and inactive intervals and searching their next use 
position after the start position of current. 
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• block_pos[reg] stores a hard limit for each register where the register cannot be 
freed by spilling. This position is set by the fixed active and inactive intervals that 
model the operations requiring operands in fixed registers. The register allocator 
must adhere to these constraints since fixed intervals can never be spilled. The 
method set_block_pos implicitly sets the use_pos, so use_pos of a register is never 
higher than block_pos. 

The register with the highest use_pos is selected as the best candidate for the current 
interval. Based on the collected positions, three cases can be distinguished: 

• If the first use position of the current interval is found after the highest use_pos, it is 
better to spill current. It is split before its first use position where it must be 
reloaded. The active and inactive intervals are not changed and remain in their old 
locations. This case is also taken if all registers are blocked at a call site: All fixed 
registers are active at call sites, therefore the block_pos and the use_pos of all 
registers is 0. 

• Otherwise, current gets the selected register assigned. All active and inactive 
intervals for this register intersecting with current are split before the start of current 
and spilled to the stack. These split children are not considered during allocation 
any more because they do not have a register assigned. If they have a use positions 
requiring a register, however, they must be reloaded again to a register later on. 
Therefore, they are split a second time before these use positions, and the second 
split children are sorted into the unhandled list. They get a register assigned when 
the allocator advances to the start position of these intervals. 

• The third case is an extension of the second: If the selected register has a block_pos 
somewhere in the middle of current, then the register is not available for the whole 
lifetime. So current is split before block_pos, and the split child is sorted into the 
unhandled list. 

This algorithm guarantees that current either gets a register assigned or is spilled itself. 
Many new split children may be created and sorted into the unhandled list, but all split 
children have a starting position after the start of current. This guarantees that the allocator 
can always advance. The allocation pass is guaranteed to terminate; endless loops of 
splitting and spilling cannot occur.  

Figure 5.11 shows an example with two slightly different variations of the same intervals. 
The ranges are equal, only the use position of interval 42 is different. Assume that only two 
physical registers [r1] and [r2] are available for allocation, and that all use positions 
require a register. Normally, each interval starts with a use position as in Figure 5.11 a), but 
situations like Figure 5.11 b) can occur for split children. 

[R40]
[R41]
[R42]

10
a) splitting of intersecting interval b) splitting of current interval

r1
r2

[R40]
[R41]
[R42]

10

r1
r2

16 16

 
Figure 5.11: Example of spilling intervals—before allocation of interval 42 
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The intervals 40 and 41 were already allocated before: Interval 40 got the register [r1] 
assigned, interval 41 the register [r2]. Interval 42 is the current interval for allocation 
(printed as a light grey bar in the figure). Table 5.3 shows the use_pos and block_pos for 
both registers.  

 use_pos block_pos 
[r1] 12 max_int 
[r2] 14 max_int 

Table 5.3: Registers state for spilling 

The allocation result is different for case a) and b). In Figure 5.11 a), the maximum use_pos 
of the two intervals is 14, so [r2] is the best candidate for allocation. Because the first use 
position of interval 42 at position 10 is located before 14, interval 41 is split at the following 
positions: The first split is at position 10, the split child is spilled. Because of the use 
position at 14, the interval is split again before 14 (assume at position 13). This split child is 
appended to unhandled and processed when the allocator advances to position 13. 

In Figure 5.11 b), the first use of the current interval 42 is not at position 10, but at 16. Since 
it is higher than the maximum use_pos of [r2], current is spilled itself. It is split at position 
15, and the split child with the use position 16 will get a register later when the allocator 
processes this interval. 

Figure 5.12 shows the result after processing interval 42: The spilled split child is printed as 
a dark grey bar; the split child with the use position that is sorted into unhandled is printed 
as a light grey bar. The spilled part is as long as possible in both cases, i.e. the new interval 
sorted into the unhandled list starts as late as possible. 

[R40]
[R41]
[R42]

10

r1
r2

[R40]
[R41]
[R42]

10

r1
r2

r2

a) splitting of intersecting interval b) splitting of current interval
16 16

 
Figure 5.12: Example of spilling intervals—after allocation of interval 42 

5.7.4 Optimal Split Position for Intervals 

Even during the allocation of medium-sized methods, many intervals must be split. The six 
general-purpose registers available for allocation on the IA-32 platform barely suffice for 
the local variables and temporaries of any method. Additionally, all intervals must be split 
and spilled for each call site because no callee-saved registers are available on Intel 
platforms. 

The negative impact of spilled intervals can be reduced by searching the optimal position 
for splitting. In most cases, the split position is not fixed to a single position, but can be 
chosen from a range. In general, the position where an interval is spilled or reloaded can be 
moved to a lower position, while the upper bound is specified by the position calculated by 
the algorithms. The following three rules are used to find an optimal split position: 
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• Move split position out of loops: Loop blocks are executed far more often than blocks 
of a sequential control flow. Therefore, spilling or reloading inside a loop leads to a 
higher number of memory accesses than spilling before or after a loop. The loop 
information calculated during block ordering is used to move the split position to 
the latest position with the lowest loop depth. 

• Move split position to block boundaries: When an interval is spilled, a move operation 
from the old to the new location must be inserted. If a split position is moved to a 
block boundary, the algorithm for resolving the data flow takes care of inserting the 
move. It is also possible that no move is necessary at all because of the control flow. 

• Move split position to odd positions: If the split position cannot be moved to a block 
boundary, then the interval is split at an odd position. Normal operations have only 
even positions assigned, so all odd positions are available for spill moves. 

Although the algorithm for searching the optimal split position is only a heuristic, it 
accounts much to the overall quality of the register allocation. 

5.8 Resolving the Data Flow 

As described earlier, the linear scan approach to register allocation simplifies the control 
flow graph to a linear list of basic blocks before allocation. The lifetime intervals hold the 
information how long a virtual register contains a useful value. This data is correct as long 
as no intervals are split. When an interval is split, a move operation is inserted from the old 
to the new location at the split position, so the data flow is correct in the basic block where 
the split occurred. But the linear block list models the control flow incompletely, so an 
additional resolving step is necessary. 

Figure 5.13 shows a simple example of an interval where resolving is necessary: The four 
blocks of an if-then-else statement have been sorted into a linear order. Assume that the 
interval was split in the middle of block B3 at the position 32, so it is in a register before 32 
and spilled to the stack after 32.  

B4

20

B1 B2 B3

28 36  
Figure 5.13: Example where resolving of data flow is necessary 

If the control flow B1 → B3 → B4 is taken, everything is correct because a move was 
inserted before operation 32. But in the alternative control flow B1 → B2 → B4, the interval 
is still in the register at the end of B2, but expected on the stack at the beginning of B4. A 
resolving move from the register to the stack must be inserted between B2 and B4. 
Conceptually, the move is inserted at the edge between the blocks B2 and B4, but actually it 
is inserted at the end of B2. 
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Algorithm 5.10 shows the code that inserts resolving moves between basic blocks. Each 
edge between basic blocks is processed separately. The live_in set of the successor block is 
used to iterate through all virtual registers that are live at the edge. 

RESOLVE_DATA_FLOW 
 MoveResolver resolver // used for ordering and inserting moves into the LIR 

 for each block from in blocks do 
  for each successor to of from do 
   // collect all resolving moves necessary between the blocks from and to 
   for each operand opr in to.live_in do 
    Interval parent_interval = intervals[opr] 

    Interval from_interval = parent_interval.child_at(from.last_op.id) 
    Interval to_interval = parent_interval.child_at(to.first_op.id) 

    if from_interval ≠ to_interval then 
     // interval was split at the edge between the blocks from and to 
     resolver.add_mapping(from_interval, to_interval) 
    end if 
   end for 

   // the moves are inserted either at the end of block from or at the beginning of block to, 
   // depending on the control flow 
   resolver.find_insert_position(from, to) 

   // insert all moves in correct order (without overwriting registers that are used later) 
   resolver.resolve_mappings() 
  end for 
 end for 

Algorithm 5.10: Resolving the data flow 

For each operand that is live at the currently processed edge from → to, an interval was 
created during the building of intervals. This interval is the split parent of all split children 
created during allocation. The function child_at(id) returns the split child covering the 
operation id (or the interval itself if it has not been split). For resolving, two intervals are 
searched: 

• from_interval stores the location of the virtual register at the end of block from. 
• to_interval stores the location of the virtual register at the beginning of block to. 

If these two locations are different, the interval was split somewhere in between, so a 
resolving move must be inserted. When multiple moves must be inserted at one edge, then 
the order of the moves is important because the same register can occur as the source of 
one move and the destination of another move. The moves must be ordered such that a 
register is saved first before it is overwritten. The ordering of moves and the insertion into 
the LIR is implemented in the class MoveResolver. 

5.9 Assignment of Register Numbers 

After allocation, the lifetime intervals hold the mapping from virtual registers to physical 
registers. In the last step, this information is propagated back to the LIR operations. 
Algorithm 5.11 shows the straightforward iteration over all blocks, operations and 
operands. 
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ASSIGN_REG_NUM 
 LIR_OpVisitState visitor // used for collecting all operands of an operation 

 for each block b in blocks do 
  for each operation op in b.operations do 
   visitor.visit(op) 

   // process input, temporary and output operands  
   for each virtual register v_opr in visitor.oprs do 
    // calculate new operand based on the register assigned to the interval 
    r_opr = intervals[v_opr].child_at(op.id).assigned_opr 

    // store the new operand back to the operation 
    visitor.set_opr(r_opr) 
   end for 

   if op is move with equal source and target then 
    // remove useless moves from the list of LIR operations 
    remove op from b.operations. 
   end if 
  end for 
 end for 

Algorithm 5.11: Assign register numbers 

All operands are handled equally; there is no difference between input, temporary and 
output operands. The list of intervals and the split children are used to search the physical 
location of a virtual register: 

• First, the original interval created during the building of intervals for the virtual 
register is searched. 

• The function child_at returns the split child for the currently processed operation id. 
• The split child either has a register or a stack slot assigned. A corresponding LIR-

operand is created for the assigned location. 
• The virtual register is replaced by the new operand using the visitor. 

During the construction of the LIR, many move operations are inserted for technical 
reasons: They are needed for resolving phi functions, to ensure the two-operand form of 
the LIR and for moves from and to fixed registers. Many of these moves are unnecessary 
after register allocation because the allocator succeeded to put the source and the target 
operand in the same register. Such moves are removed from the LIR. 

After the register assignment, the LIR does not contain references to virtual registers any 
more. The LIR is ready for code generation: All constraints of LIR operations requiring 
either arbitrary or fixed registers are met. Only the handling of the FPU register stack 
requires additional work, as described in Chapter 6. 

5.10 Move Optimizations 

About 50% of all LIR operations are move operations, and most moves access the memory. 
Reducing the number of moves also reduces the number of memory accesses, which is the 
original goal of register allocation. Several optimizations try to avoid or eliminate 
unnecessary moves. 
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5.10.1 Register Hints 

In the linear scan algorithm described above, the selection strategy for registers is based on 
the intersection and use position of the intervals only. But there are some cases where an 
interval should get a certain register assigned: If an interval is defined by a move operation 
where both the source and the target operand are virtual registers, then the target should 
get the same register assigned as the source. In this case, the move operation is unnecessary 
and therefore deleted during the assignment of register numbers. 

To model such dependencies between intervals, register hints are used. Each interval has a 
field register_hint filled by the following algorithm: 

for each move operation move in all operations of all blocks do 
 intervals[move.target].register_hint = intervals[move.source] 
end for 

The register hint is later used when a register is processed during allocation: If possible, the 
interval gets the same register as the hint interval, even if this register is not optimal 
according to the previously explained algorithm, i.e. even if it is not the register with the 
highest free_pos in Algorithm 5.8. 

Selecting non-optimal registers could result in a higher number of intervals that must be 
spilled later on, but measurements show that register hints have an overall positive effect 
on the quality of register allocation, the total number of move operations in the LIR 
decreases. 

5.10.2 Spill Optimization 

When an interval is split, a move operation from the old to the new location is inserted into 
the LIR. The move can either be a move from a register to the stack, or from the stack to a 
register. Moves from the stack to a register are always necessary, but moves from a register 
to the stack can be eliminated in certain cases: When the stack slot is known to be correct, 
i.e. when it can be proven statically that the stack slot already contains the same value as 
the register, the move can be deleted. Normally this is difficult to prove, but there are two 
special cases where it is easy: 

• Method parameters are passed on the stack and loaded from there when they are 
required in a register. When such an interval is spilled later, then no store to the 
stack slot is necessary because parameters never change their value. 

• Most intervals have only one operation that defines the value that is used multiple 
times later on. If such an interval is spilled and reloaded several times, then a spill 
move is inserted directly after the definition. This guarantees that the stack slot is 
correct in all possible code paths, so all further moves to this stack slot can be 
eliminated. 

Spill optimization reduces the number of stores to spill slots significantly. Especially the 
this-pointer of a method, passed as the first method parameter, is frequently used in a 
method and therefore often spilled and reloaded. Because the this-pointer never changes, 
all spill stores to its stack slot are unnecessary. 
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5.10.3 Merging Moves 

If all predecessors of a block end with the same sequence of move operations, then these 
moves can be placed once at the begin of the successor instead of multiple times at the end 
of the predecessors. This optimization is performed after the assignment of register 
numbers because moves with equal physical operands can be merged, even if they 
originate from different virtual registers. Similarly, equal moves at the beginning of all 
successors can be placed at the end of the predecessor. 

This optimization especially processes moves that were inserted during the resolution of 
phi functions (see Chapter 4.8.1) and during data flow resolution (see Chapter 5.8). The 
number of moves executed dynamically at runtime is not changed, but nevertheless the 
optimization has two positive effects: 

• The static number of moves is reduced, so the native code of the method is smaller. 
• Many blocks that originally contain only moves become empty by the optimization 

and can be deleted entirely, reducing the number of jumps executed at runtime. 

Figure 5.14 shows an example where moves are merged: The last two moves of the blocks 
B1 and B2 are equal, so they can be merged and placed at the beginning of B3. The first 
move of B1 is not present in B2, so it remains in B1. But block B2 is empty after the 
optimization, so it will be deleted. 

move ecx, st1
move ebx, eax
move eax, st0

move ebx, eax
move eax, st0

move ebx, eax
move eax, st0

move ecx, st1
B1 B2

B3

B1 B2

B3
 

Figure 5.14: Example before and after merging moves 
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Chapter 6 

6. Handling of Floating Point Values 

 

This chapter presents the architecture of the IA-32 floating point unit (FPU). Its 
floating point registers are organized as a stack, requiring additional work for 
the register allocator because register numbers must be translated to stack 
indices. Additionally, the data format of FPU registers does not match the IEEE 
standard used by Java, so explicit rounding is necessary. Finally, the SSE and 
SSE2 extensions requiring no special handling are presented as an alternative to 
the FPU for modern processors. 

In the IA-32 architecture, floating point instructions are executed in the floating point unit 
(FPU, [Intel1]). Historically, the FPU was separated from the main processor and located in 
a coprocessor. Since the time of the Intel486 processor, the FPU is integrated in all 
processors and therefore generally available. But the separation is still visible in the 
instruction set and the instruction format of floating point instructions. They use a 
completely different paradigm that complicates the compiler’s work. In particular, the 
following two issues must be considered: 

• The internal data format of the FPU registers is not compliant to the IEEE 754 
standard for floating point arithmetic [IEEE754] required by the Java specification. 
The FPU has a higher precision than specified, so explicit rounding is necessary. 

• The FPU register set is organized as a stack. It is not possible to address registers by 
their number, but only by their offset from the current stack top. This requires an 
additional phase in the register allocator that converts register numbers to stack 
indices using a simulation of the FPU stack. 

The SSE and SSE2 extensions offer single-instruction multiple-data (SIMD) instructions for 
floating point values. The SSE instructions operate on four single-precision floating point 
values, whereas the SSE2 instructions operate on two double-precision floating point 
values. Both extensions were also designed as a complete replacement for the FPU. All SSE 
and SSE2 instructions are also available in a scalar form operating only on one value. 

These instructions adhere to the IEEE standard and allow a direct addressing of registers, 
so they are much easier to handle in the compiler. If the SSE2 extensions are available on 
the processor, then the compiler creates code that uses SSE2 instructions instead of FPU 
instructions. Usually, this code executes faster because no rounding is necessary. The SSE 
extensions alone are not sufficient because they contain only instructions for single-
precision values. The SSE2 extensions add support for double-precision values. 
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6.1 Intel FPU Architecture 

The execution environment of the FPU consists of 8 data registers and several control and 
status registers. Each data register has a width of 80 bits and stores a floating point value in 
the so-called double extended-precision floating point format. The registers are organized 
as a stack that grows downwards. The register number of the current stack top, stored in a 
status register, is decremented by load instructions (equivalent to a push on the stack) and 
incremented by store instructions (equivalent to a pop). There is no possibility to address a 
register by its register number; all addressing is done relative to the stack top. Figure 6.1 
shows the FPU register stack. 

R7 ST(4)
R6 ST(3)
R5 ST(2)
R4 ST(1)
R3 ST(0)
R2
R1
R0

Stack grows
down Stack Top

 
Figure 6.1: FPU register stack 

6.1.1 Instruction Set 

The FPU offers the usual arithmetic instructions for floating point values, together with 
instructions for loading, storing and comparing values and instructions for manipulating 
the register stack. As a convention, all FPU instructions start with the prefix “f” [Intel2A]. 

• FPU registers can be loaded from (instruction fld) and stored to (instruction fst) 
memory in various formats, including 32, 64 and 80-bit floating point formats and 
32-bit integer numbers. All formats are automatically converted from and to the 
internal 80-bit floating point format. 

• Arbitrary moves between floating point registers are not possible. Instead, a 
register can be loaded to the stack top (fld), the stack top can be stored in another 
register (fst), or the stack top can be exchanged with another register (fxchg). A 
raw stack pop can be simulated by incrementing the stack top pointer. All these 
instructions are directly available as LIR operations in the compiler to allow FPU 
stack manipulations in the LIR. 

• In addition to the basic arithmetic instructions fadd, fsub, fmul fdiv and frem, 
trigonometric functions like fsin and fcos and transcendent functions like fsqrt 
are available. 

All instructions require at least one operand at the top of the FPU stack. Only the second 
operand of binary instructions can be an arbitrary stack index. If none of the two operands 
is on the top of the stack, an fxchg is necessary prior to the actual instruction to bring one 
operand to the top. 
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Instructions reading an operand from the stack top but not writing the result to it are 
available in two variants: The normal variant does not change the stack top, while the 
variant with a trailing “p” in the instruction name pops the stack top. These instructions 
can be used to remove obsolete operands from the register stack without the need for an 
explicit pop instruction. 

6.1.2 Precision Control 

All floating point registers have a width of 80 bits, so register values are internally always 
stored in the double extended-precision format. However, the precision of calculations can 
be limited by setting a precision control flag. Figure 6.2 shows the three different precisions 
available for calculations. The formats differ only in the bits used for the mantissa; the 
exponent always has a width of 15 bits. 

S E M
1 15 bit 64 bit

a) Double extended-precision

S E M
1 15 bit 53 bit

b) Double-precision

S E M
1 15 bit 24 bit

c) Single-precision  
Figure 6.2: Available precisions for calculations 

The formats for loading and storing floating point values from and to memory are inde-
pendent from the calculation formats. Again, three formats are available, but with slightly 
different bit widths. Figure 6.3 shows the formats available for memory access. The single- 
and double-precision formats exactly match the IEEE 754 standard for single- and double-
precision floating point numbers. 

S E M
1 15 bit 64 bit

a) Double extended-precision

S E M
1 11 bit 52 bit

b) Double-precision

S E M
1 8 bit 23 bit

c) Single-precision  
Figure 6.3: Available precisions for memory access 

6.2 Rounding of FPU Registers 

The two floating point types of the Java programming language, float and double, are 
conceptually associated with the single-precision 32-bit and double-precision 64-bit format 
of the IEEE 754 standard. These are the formats shown in Figure 6.3 c) and b), respectively. 
The value sets for Java are strictly defined in the specification [Gosling00]. All virtual 
machines must enforce them to guarantee the platform-independent semantics of floating 
point calculations. 

Because the Intel FPU does not adhere to the IEEE 754 standard, it is difficult to implement 
the Java semantics on Intel processors. The internal formats for calculation have a too high 
precision that must be explicitly rounded to a lower precision. The Java language 
specification does not allow a higher precision of floating point values than defined in the 
standard. The only exceptions are values on the Java operand stack, as explained later. The 
compiler uses the following settings and operations to meet the Java specification. 
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• The precision control of the FPU is set to double-precision, so the format shown in 
Figure 6.2 b) is used internally by the processor for all floating point calculations. 
This precision is high enough for both float and double calculations of the Java 
programming language. 

• For calculations using the type double, the internal format has the correct bit width 
of the mantissa, but a too wide exponent. This format is allowed for values on the 
operand stack by the Java language specification, but not for values stored in local 
variables and object fields. These values must be rounded explicitly. 

• For calculations using the type float, the internal format is far too precise. After 
each instruction, the result must be rounded explicitly. 

Unfortunately, the only way to round values is to store them to memory and then reload 
them into a register. This undermines the primary goal of register allocation and prevents 
the generation of effective floating point code. It is not allowed to hold a floating point 
value in a register between its definition and use, even if a register would be free. In the 
compiler, the rounding of floating point values needs special handling in all phases of the 
compilation: 

• The HIR instruction RoundFP rounds the result of a computation when it would be 
saved in a local variable. 

• The LIR operation lir_roundfp rounds a floating point register in the LIR. 
• During linear scan register allocation, the output operand of lir_roundfp is always 

assigned a spill slot. So the rounding operation of the LIR is converted to a store to 
memory in native code. 

6.3 FPU Stack Allocation 

The second issue in conjunction with the Intel FPU is the stack-based handling of floating 
point registers. The linear scan algorithm for register allocation is not capable of handling 
stack indices. Register allocation for the floating point registers ignores the stack-based 
handling and emits code that directly addresses all eight registers. The FPU stack allocation 
converts the register numbers to stack indices. Algorithm 6.1 shows the main steps 
necessary for FPU stack allocation  

ALLOCATE_FPU_STACK 
 for each block b in blocks do 
  load initial FPU stack state of b to simulator 

  for each floating point operation op in b.operations do 
   bring input operands of op on top of FPU stack if necessary 
   simulate effect of op on FPU stack 
   replace register numbers with stack indices 
  end for 

  for each successor sux of b do 
   PROCESS_EDGE(b, sux) 
  end for 
 end for 

Algorithm 6.1: Allocate FPU stack 
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The FPU stack allocation operates on the LIR where virtual registers were already replaced 
by physical registers. All operations with floating point operands are processed in a FPU 
stack simulator. The simulator provides a mapping from register numbers to stack indices. 
The simulation state is updated when an operation modifies the FPU stack, e.g. when items 
are pushed, popped or exchanged. 

Most FPU operations require at least one operand at the top of the stack. If no operand is 
on top before the operation, then an exchange operation is inserted in the LIR before the 
actual operation. If an input register is no longer required after an operation, i.e. when the 
operation is the last use position of the according interval, then the register should be 
removed from the stack. If this register is on top of the stack, then the special variant of the 
instruction that pops the stack top is used. If the register is not on top of the stack, the 
register is left as a dead value on the stack. 

When a block has more than one predecessor, the stack states of the predecessors must be 
merged because each predecessor has a different register order on the stack. The first 
predecessor defines the initial state of the block, all other predecessors are merged with this 
state. During merging, operations that modify the stack are inserted at the end of the 
predecessor. 

6.3.1 FPU Stack Simulation 

In the stack simulator, the FPU stack is represented as an array of registers. Figure 6.4 
shows a simple example of a stack containing the five register R2, R0, R4, R3 and R7 (in this 
order), where R7 is the current top of the stack. Assume that the register R0 should be 
stored to the memory location mem. Because the value is not needed later any more, the 
register should also be removed from the stack.  

R2
R0
R4
R3
R7Stack grows

down

fxchg 3

R2
R7
R4
R3 fstp mem

R2
R7
R4
R3

R0

 
Figure 6.4: FPU stack simulation 

First, R0 must be moved to the top of the stack. The registers R0 and R7 are exchanged by 
the instruction fxchg 3 because R0 has the index 3, counted from the top of the stack. Then 
the variant of the store instruction is used that pops the argument from the stack and stores 
it to the memory location. This avoids an explicit pop instruction. The store instruction 
does not need a stack index as a parameter since it always operates on the stack top. 

Each LIR operation affecting the FPU stack is processed by the simulator. The following list 
summarizes the actions for different classes of operations. 

• Arithmetic operations for floating point operands require one operand on top of the 
stack. If neither the left operand nor the right operand is the current top, one 



Handling of Floating Point Values 

84 

operand is moved to top with an fxchg operation. The register numbers of the 
original operation are replaced by the according stack indices. 

• Move operations from memory or from one register to another register are replaced 
by an fld operation. The result is always on top of the stack. 

• Move operations from a register to the memory are replaced by an fst operation. 
The source operand is brought to the top of the stack before. 

• Return operations require the stack to be empty, so all dead registers that are still 
present on the stack must be popped. If the method returns a floating point value, 
then the result is passed to the caller as the only value on the FPU stack. 

• When another method is called, the FPU stack must be empty too. The register 
allocator guarantees that no register is live at the call; all registers that are still 
present on the stack are dead registers and must be popped. 

• All other operations with no floating point operands can be ignored. 

6.3.2 Merging FPU Stacks 

Before a block is processed, the initial state of the FPU stack at the beginning of the block is 
loaded into the simulator. This state is provided by the predecessor blocks: Because the 
state does not change at control flow edges, the state at the beginning of the block is equal 
to the state at the end of its predecessors. Algorithm 6.2 shows the actions necessary for 
processing a control flow edge between the blocks from_block and to_block. The current 
state refers to the state at the end of from_block because this block was simulated last. 

PROCESS_EDGE(BlockBegin from_block, to_block) 
 if to_block has only one predecessor then 
  copy current state to to_block 
 else if from_block is first predecessor of to_block then 
  cleanup current state 
  set initial state of to_block to current state 
 else 
  // initial state of to_block already present 
  merge current state with initial state of to_block 
 end if 

Algorithm 6.2: Process a control flow edge 

If a block has only one incoming edge, i.e. one predecessor, then no special handling is 
needed for this edge. The initial state is simply a copy of the state at the end of the 
predecessor. Dead registers remain on the stack because they do not disturb the further 
processing. 

If a block has more than one predecessor, all predecessors must end with the same state. 
The first predecessor defines the initial state of the block. This state is arbitrary—no fixed 
ordering of the registers is required—but it must not contain any dead values. The cleanup 
removes all dead registers from the stack by exchanging them to the stack top and popping 
them. The cleanup code is placed at the end of the predecessor. 
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All other predecessors are merged with the initial state set by the first predecessor. The 
code inserted for merging at the end of the predecessor exchanges registers of the stack 
until it matches the initial state. Because all dead registers were removed from the initial 
state, it is guaranteed that the stack size does not increase when stacks are merged. 

Figure 6.5 illustrates step by step when a copy, cleanup or merge is necessary. The control 
flow graph consists of 4 blocks B1, B2, B3 and B4 that are also processed in this order.  

B1

B2 B3

B4

1. Simulation of B1

2. Copy state to B2 and B3

3. Simulation of B2

4. Cleanup state Code for
Cleanup

5. Set initial state of B4

Code for
Merging

6. Simulation of B3

7. Merge with initial state of B4

8. Simulation of B4

 
Figure 6.5: Copy, cleanup and merge of FPU stack state 

The following operations are performed: 

1. Block B1 is simulated. When all operations are processed, the current state reflects 
the FPU stack state at the end of B1. 

2. The successors B2 and B3 of B1 have only one predecessor. So the current state is 
copied to B2 and B3, so both blocks have an initial state equal to the state at the end 
of B1. 

3. Block B2 is simulated, starting with the initial state defined in step 2. When all 
operations are processed, the current state might contain dead registers. 

4. The successor B4 of B2 has two predecessors, so merging is necessary for this block. 
Because B2 is the first predecessor of B4, the current state is cleaned so that it does 
not contain dead registers. The operations for cleanup are inserted at the end of B2. 

5. The cleaned current state is set as the initial state of B4. 

6. Block B3 is simulated, starting with the initial state defined in step 2. The simula-
tion works completely independent from any state of step 3 to 5. 

7. The successor B4 of B3 has already an initial state defined. Therefore, the current 
state is merged with the initial state of B3. The operations for merging are inserted 
at the end of B3. 

8. Block B4 is simulated, starting with the initial state defined in step 5. 
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6.3.3 Algorithm for Stack Cleanup 

When a state is cleaned or merged, only exchange and pop operations are inserted. Other 
operations are not required. The algorithm for cleanup is very simple: as long as the state 
contains dead registers, they are exchanged with the stack top and popped. Figure 6.6 
shows the details for the cleanup at the end of B2 in Figure 6.5. Assume that the registers 
R1 and R5 are dead, illustrated by grey rectangles. The left side shows the original stack 
before cleanup, the right side the final state after cleanup. 
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Figure 6.6: Example of stack cleanup 

The current stack top R1 is dead and is therefore popped without an exchange necessary. 
The next dead register is R5 with the stack index 2, so it is exchanged with the stack top. 
This moves R4 down to the old location of R5. Finally, the stack top R5 can be popped from 
the stack and all dead registers are removed. The final code for cleanup is: 

fpop 
fxchg 2 
fpop 

This code is inserted at the end of B2. The stack without dead registers is saved as the 
initial state for the succeeding block B4. The simulation of B4 could start now, even if the 
other predecessor was not processed yet. 

6.3.4 Algorithm for Stack Merging  

For the second and all further predecessors of a block, the stack at the end of the 
predecessor must be merged with the initial state set by the first predecessor. The following 
rules are applied until the stack is correct: 

1. As long as the current stack top is not at the right location, i.e. it should not be on 
the stack top, it is exchanged with the right location. 

2. If the stack top is correct, but the remaining stack is not ordered properly, then the 
stack top is exchanged with some other register that is not yet in place to get 
another value on the top. Then the algorithm continues with the first step. 

3. If a dead value is on the stack top, it is popped from the stack. 

Figure 6.7 shows the details for the cleanup at the end of B3 in Figure 6.5. The left side 
shows the original stack before merging, the right side the result of the merging, which 
must be equal to the initial state of B4 shown on the right side of Figure 6.6. 
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Figure 6.7: Example of stack merging 

The register R3 must be dead because it is not present in the initial state, so it is popped 
from the stack. The new stack top R7 would be at the correct location, but the remaining 
stack is not correct. So R7 must be exchanged with a register somewhere down the stack 
that is not yet in place. Assume that R7 is exchanged with R4. Then R4 can be put to its 
correct location by exchanging it with R2. After the last exchange of R2 and R7, the stack 
matches the initial state and the merging is complete. The final code for cleanup is: 

fpop 
fxchg 2 
fxchg 1 
fxchg 2 

This code is inserted at the end of B3. Exchange and pop operations inserted for stack 
merging are usually no performance bottleneck because the processor executes them very 
fast. In contrast to rounding registers, no memory access is necessary. Only the code size 
increases slightly. 

6.4 Intel SSE2 Architecture 

The SSE and SSE2 extensions of the IA-32 architecture were introduced with the Intel 
Pentium III and Pentium 4 processor, respectively. They allow the processor to perform 
single-instruction multiple-data (SIMD) operations for floating point operands. The 
execution unit works completely separated from the FPU. The instructions operate on 8 
XMM registers, where each register has a width of 128 bits and can store four single-
precision or two double-precision floating point values. The data types adhere to the IEEE 
754 standard, so they also fulfill the Java specification. 

The extensions are designed to work on two or four floating point values in parallel, but all 
instructions are also available in a scalar form. These instructions use only the low 32 or 64 
bits of the XMM registers. All usual arithmetic instructions are available, so the scalar in-
structions of the SSE and SSE2 extensions can serve as a complete replacement for the FPU. 

The compiler uses the SSE2 extensions to overcome the problems with the FPU stack. 
Because SSE2 instructions adhere to the IEEE 754 standard and the XMM registers are not 
stack-based, the special handling described in the previous parts of this chapter is not 
necessary. The XMM registers can be allocated with the same algorithms as the general-
purpose registers. 

Only the scalar versions of the instructions are used, no parallelization is performed. 
Nevertheless, floating point applications run faster when the SSE2 extensions are used 
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since no rounding is necessary. This is an obvious result of the benchmarks presented in 
the next chapter. 

Nevertheless, the code generation algorithms for the FPU cannot be removed from the 
compiler because the SSE2 extensions are only available in modern processors, while the 
virtual machine must work on all Intel processors. But the high overhead of the FPU is 
alleviated by the fact that all new Intel processors implement the SSE2 extensions, so the 
percentage of systems where FPU stack allocation is necessary decreases. 
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Chapter 7 

7. Evaluation 

 

This chapter evaluates the performance of the linear scan algorithm. Both the 
speed of the compilation and the speed of the generated code are measured and 
compared with the product version of the client compiler shipped with the Sun 
JDK 1.4.2. The compilation speed of linear scan is slightly lower compared to the 
product version, but the speed of the generated code is significantly higher: The 
speed of applications that profit largely from register allocation, such as parts of 
the SciMark 2.0 benchmark for numerical computations, can even double. But 
also the average speed of real-world applications, as measured with SPECjvm98, 
is about 30% higher compared to the JDK 1.4.2. 

The original design goal of the Java HotSpot client compiler was to provide a high 
compilation speed at the cost of peak performance [Griesemer00]. This goal was achieved 
by omitting time-consuming optimizations. For this reason, the product version of the 
client compiler implements a heuristic for register allocation only. The main goals of this 
master thesis was the implementation of a global register allocation algorithm that leads to 
faster executing code, but without a significant compile time increase. The measurements 
of this chapter prove that this goal was achieved. 

Additionally, the measurements show the large difference between the code using the FPU 
and the SSE2 extensions for floating point computations. Whereas numeric applications 
using the FPU show a speedup below average when the linear scan algorithm is compared 
with the old heuristic for register allocation, the speedup is above average when the SSE2 
extensions are enabled. 

7.1 Compared Configurations 

To evaluate the quality of the linear scan algorithm, the research version of the Java 
HotSpot client compiler is compared with the product version of the client compiler 
shipped with the Sun JDK 1.4.2. In particular, the following three configurations are 
compared. 

• The Java HotSpot client compiler of the Sun JDK 1.4.2_05, as described in Chapter 
3.2.4 on page 23, using a local heuristic for register allocation. 
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• The research version of the client compiler with SSA form for the HIR and the 
linear scan algorithm for register allocation. The Intel FPU is used for floating point 
operations. 

• The research version of the client compiler, using the SSE2 extensions for floating 
point operations. 

The runtime library of the JDK 1.4.2_05 is used for all three compilers. All benchmarks are 
measured on an Intel Pentium 4 processor with 2.5 GHz, 512 KByte L2-Cache, 1 GByte of 
main memory and an Asus P4G8X motherboard with the Intel 7205 chipset, running 
Microsoft Windows XP Professional. The Pentium 4 processor implements the SSE2 
extensions, so direct comparisons between FPU and SSE2 code are possible. 

The upcoming Sun JDK 1.5 was available only as a beta version at the time when the 
benchmarks were run in August 2004, so the JDK 1.4.2 serves as the reference for all 
comparisons. Tests with the latest version JDK 1.5.0_beta2 did not show a big difference to 
the JDK 1.4.2_05, only some benchmarks were slightly faster. 

The usage of SSE2 extensions can be configured with a startup flag of the research 
compiler: The flag -XX:UseSSE=0 disables the extensions, the flag -XX:UseSSE=2 enables 
them. To reduce the influence of garbage collection and memory management, the flags 
-Xms800M -Xmx800M of the HotSpot VM were used to fix a large heap size of 800 MB. No 
other flags were set, so the default values for all internal configuration parameters of the 
VM were used. 

7.2 Compile Time 

The compile time of methods can be easily measured via internal timers of the HotSpot 
virtual machine. To get a reasonable set of methods compiled, the SPECjvm98 benchmark 
was used. In a typical run, about 1200 methods are compiled (the exact number varies 
slightly because of a different inlining of methods). Table 7.1 summarizes some statistical 
data about the compilation. The numbers are accumulated over all compiled methods. 

 JDK 1.4.2 Client Linear Scan 
Compiled bytes 232,918 bytes 240,083 bytes 
Code size 843,232 bytes 987,087 bytes 
Total size 2,192,390 bytes 2,370,319 bytes 
Compilation time 1.143 sec. 1.273 sec. 
Compilation speed 204,329 bytes/sec. 189,750 bytes/sec. 

Table 7.1: Comparision of compile time 

All of these numbers use the physical size of the methods in bytes, not the number of 
bytecodes (typical bytecodes have a size from one to three bytes). Compiled bytes 
accumulates the size of all methods compiled, i.e. the number of bytes parsed by the 
compiler. Code size is the size of the native code generated by the compiler. Total size is the 
total memory size allocated to store the compilation result. This number includes the code 
size, but is much bigger because it also includes the size of the meta data like debug 
information and oop maps that require a large amount of space. Compilation time is the total 
time spent in the compiler 
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The most important number is the compilation speed, calculated as the quotient of compiled 
bytes and compilation time. The higher the compilation speed is, the less time is spent in the 
compiler and the shorter are the pauses when a method is compiled. The compilation 
speed of the research compiler is only 7% lower than the speed of the product compiler. 

7.2.1 Compilation Phases 

Table 7.2 shows the distribution of the total compile time on the different phases of the 
research compiler. About half of the time is spent in the front end for HIR generation. This 
time includes parsing the bytecodes and optimizations performed on the HIR. The 
generation of the LIR from the HIR takes about 10% of the time, the generation of the 
native code from the LIR about 14%. 

 Absolute Relative 
HIR Generation 0.592 sec. 46.5% 
LIR Generation 0.130 sec. 10.2% 
Linear Scan 0.341 sec. 26.8% 
Code Generation 0.175 sec. 13.7% 
Other 0.035 sec. 2.7% 
Total 1.273 sec. 100.0% 

Table 7.2: Distribution of total compile time 

About one fourth of the total compilation time is spent in the linear scan algorithm. This is 
a considerable amount of time, but not unusually much. For example, the Java HotSpot 
server compiler, which is overall much slower than the client compiler, spends nearly half 
of the compilation time in its graph coloring register allocator [Paleczny01]. Table 7.3 
breaks the time spent in the linear scan algorithm down into the basic steps of the algo-
rithm, as presented in Algorithm 5.1 on page 52. 

 Absolute Relative 
Number Operations 0.005 sec. 1.5% 
Compute Local Live Sets 0.033 sec. 9.7% 
Compute Global Live Sets 0.006 sec. 1.7% 
Build Intervals 0.075 sec. 22.0% 
Walk Intervals 0.096 sec. 28.1% 
Resolve Data Flow 0.020 sec. 5.9% 
Assign Register Numbers 0.027 sec. 7.9% 
Construct Debug Information 0.059 sec. 17.3% 
Other 0.020 sec. 5.9% 
Total 0.341 sec. 100.0% 

Table 7.3: Distribution of linear scan time 

The three main parts of the algorithm require approximately one third of the total time: 

• The pre-work for building the intervals, including the computation of the live sets 
and the data flow analysis. 

• The actual allocation using the intervals, and the succeeding data flow resolution. 
• The post-work for assigning the register numbers back to the LIR, including the 

construction of the debug information and the oop maps. 
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The parts of the algorithm that are known to be non-linear, such as the computation of the 
global live sets and the data flow resolution, require only a minor part of the total 
allocation time. So the asymptotic complexity of the implemented algorithm is higher than 
O(n), but nevertheless nearly linear in practice. This is also confirmed by the measurements 
of the next chapter. 

7.2.2 Allocation Time for Large Methods 

The time needed for compiling a method mainly depends on the size of the method in 
bytecodes. Most methods are very small and have a size less than 200 bytes. Only about 100 
of the 1200 methods compiled during SPECjvm98 are larger. The number of LIR operations 
generated for a method does not only depend on the size of the method, but also on the 
size of inlined methods. The linear scan algorithm operates on the LIR, so the time needed 
for compilation is proportional to the number of LIR operations. Therefore, it is best to 
show the time used for register allocation depending on the number of LIR operations of 
the method. Figure 7.1 shows the 100 methods with the highest allocation time of all 1200 
methods. 
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Figure 7.1: Time for register allocation—100 slowest methods out of 1200 

The absolute compilation time is largely dependent on the system where the benchmark is 
run, so only the relative time is of interest. Figure 7.1 indicates that the linear scan 
algorithm nearly has a linear time behavior. It remains efficient even for large methods 
with many thousand LIR operations. 

7.3 Run Time 

The impact of the linear scan algorithm on the runtime of an application is difficult to 
measure. The total runtime of a Java application depends not only on the quality of the 
generated native code, but also on many other factors. A benchmark measures also the 
following components of the virtual machine: 
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• All classes used by a benchmark must be loaded by the class loader and verified 
before the execution starts. 

• Before a method is compiled, it is executed in the interpreter for a while. Most 
methods are executed very infrequently and never get compiled. A good compila-
tion policy ensures that the time spent in the interpreter is not significant for a long 
running benchmark. 

• Occasional runs of the garbage collector are necessary to free unused objects. If the 
heap is full even after garbage collection, it must be enlarged. The overhead for 
memory management can be reduced by executing the benchmark with a large, 
fixed heap size. 

• Several parts of the native code, e.g. the correct handling of exceptions, need the 
help of the virtual machine. The time spent in runtime calls does not depend on the 
quality of the native code generated by the JIT compiler. 

• The I/O time for loading and storing files mainly depends on the speed of the 
external devices and the caches of the operating system. 

Two benchmarks are used to evaluate the linear scan register allocation: SciMark 2.0 and 
SPECjvm98. Both benchmarks show a significant speedup, especially when the SSE2 
extensions are enabled. 

7.3.1 SciMark 2.0 

SciMark 2.0, which is available for free at [SciMark2], is a benchmark for scientific and 
numerical computing. It executes and measures five computational kernels and reports a 
score in Mflops. The benchmark has the following characteristics: 

• All kernels perform a large number of floating point operations. 
• Each kernel consists only of one or two methods, executing long running but small 

nested loops. 
• A slow start is performed, so all methods are already compiled for the finally 

measured run. 
• No objects are allocated, so no garbage collection is necessary during the 

benchmark. 
• No files are accessed; the kernels operate on randomly generated data. 

Because of these characteristics, the benchmark is suitable for showing the difference 
between the Intel FPU and the SSE2 extensions. As presented in Chapter 6.2, native code 
for the FPU requires explicit rounding of floating point values by storing and reloading 
them to memory, so there is a big difference between the FPU and SSE2 code of the 
research compiler. The product version of the JDK 1.4.2 has no SSE2 support, so floating 
point operations are always executed in the FPU. 

Table 7.4 and Figure 7.2 show the results of SciMark 2.0 for the three measured configura-
tions. The relative numbers represent the speedup when the linear scan results are 
compared with the product compiler of the JDK 1.4.2. 
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 JDK 1.4.2 Client Linear Scan FPU Linear Scan SSE2 
  absolute relative absolute relative 
Fast Fourier Transformation (FFT) 84.1 156.8 1.87 226.9 2.70 
Jacobi Succ. Over-relaxation (SOR) 354.5 344.5 0.97 383.1 1.08 
Sparse matrix multiply (SMM) 131.1 198.8 1.52 281.5 2.15 
Dense LU matrix factorization (LU) 383.3 393.7 1.03 491.0 1.28 
Monte Carlo integration (MC) 44.5 49.1 1.10 44.5 1.00 
Arithmetic Mean 199.5 228.6 1.15 285.4 1.43 

Table 7.4: Results of SciMark 2.0 in Mflops (higher is better) 
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Figure 7.2: Results of SciMark 2.0 (higher is better) 

The relative speedup of the five kernels varies from no improvement up to a nearly triple 
speed, so a closer look at the kernels is necessary: 

• FFT performs a Fast Fourier Transformation on a one-dimensional array of complex 
numbers. This is the kernel with the highest speedup because it requires extensive 
computations where many temporary values are stored in local variables. The 
register allocator succeeds to put most local variables into registers, so the number 
of loads and stores to memory is greatly reduced. 

• SOR operates on a two-dimensional grid of numbers. The innermost loop of this 
benchmark computes a new value for each grid point by averaging the four nearest 
neighbors. It operates directly on array elements without using local variables. 
Loading and storing array elements dominates the runtime, the register allocator is 
quite useless. 

• SMM multiplies a sparse matrix with a vector. This is the second benchmark with a 
high speedup. Again most local variables can be held in registers. 

• LU computes the factorization of a dense matrix. Only a moderate speedup is 
possible because of a high number of array accesses. 

• MC approximates Pi using the Monte Carlo integration. Two random numbers are 
generated in each loop iteration. The random number generator is placed in its own 
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synchronized method, so the overhead for the method call and the synchronization 
countervails the optimizations of the register allocator. 

The high speedup for the kernels FFT and SMM show the potential of a good register 
allocation algorithm for numerical computations. But the arithmetic mean of all five kernels 
is impressive too: The linear scan algorithm using the SSE2 extensions generates code 
running 43% faster than the product compiler of the JDK 1.4.2, without a significant 
increase of the compilation time. 

The benchmark also shows the importance of the Intel SSE2 extensions for the Java 
programming language: The necessity for explicit rounding in the FPU mode prohibits a 
good register allocation for floating point numbers and leads to a significantly slower 
execution of numeric applications. 

7.3.2 SPECjvm98 

The SPECjvm98 benchmark [Spec98] is commonly used to assess the performance of Java 
runtime environments. It consists of seven programs derived from real-world applications 
that cover a broad range of scenarios where Java applications are deployed in real life. In 
contrast to SciMark 2.0, SPECjvm98 measures the overall performance of a JVM including 
class loading, garbage collection and loading input data from files. The programs are 
executed several times until no major change in the execution time occurs. A score is then 
calculated for the slowest and the fastest run, where a higher score is better. 

• The slowest run is usually the first run of the benchmark where the classes must be 
loaded and execution starts in the interpreter. During the first run, the hot methods 
of the program are compiled, so the compilation time is also included in the slowest 
run. Therefore, this number is an indication of the startup speed of the JVM: A 
higher score of the slowest run denotes a faster startup of applications. 

• The fastest run is usually the last run of the benchmark. All hot methods were 
already compiled during previous runs; the program has reached a fixpoint of 
execution time. This number measures the quality of the generated code: A higher 
score of the fastest run denotes a higher peak performance of the JVM. 

The HotSpot client compiler is optimized for a fast startup, possibly at the cost of peak 
performance. So the difference between the slowest and the fastest run is usually very 
small. Table 7.5 shows the absolute results of SPECjvm98 for the three configurations. The 
relative numbers of Table 7.6 represent the speedup when comparing the linear scan 
results with the product compiler of the JDK 1.4.2. Figure 7.3 shows a diagram of the fastest 
runs for the three configurations. 

The SPECjvm98 benchmark defines strict run rules that must be enforced for official 
results. These rules are negligibly violated by the configuration used because the bench-
mark was not run as an applet, but as a stand-alone application. The numbers given in 
Table 7.5 should not be compared with other published SPECjvm98 metrics. Nevertheless, 
the relative comparisons for a single system made in this chapter are correct. 
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 JDK 1.4.2 Client Linear Scan FPU Linear Scan SSE2 
 slowest fastest slowest fastest slowest fastest 
_227_mtrt 228.0 261.0 245.0 283.0 307.0 382.0 
_202_jess 134.0 151.0 165.0 196.0 168.0 199.0 
_201_compress 161.0 162.0 203.0 205.0 202.0 206.0 
_209_db 33.2 35.0 34.4 36.3 33.0 36.9 
_222_mpegaudio 193.0 203.0 205.0 216.0 327.0 354.0 
_228_jack 162.0 183.0 180.0 211.0 180.0 211.0 
_213_javac 76.4 95.4 83.4 109.0 83.7 110.0 
Geometric Mean 121.0 134.0 136.0 154.0 150.0 174.0 

Table 7.5: Absolute results of SPECjvm98 (higher is better) 

 

 Linear Scan FPU Linear Scan SSE2 
 slowest fastest slowest fastest 
_227_mtrt 1.07 1.08 1.35 1.46 
_202_jess 1.23 1.30 1.25 1.32 
_201_compress 1.26 1.27 1.25 1.27 
_209_db 1.04 1.04 1.00 1.05 
_222_mpegaudio 1.06 1.06 1.69 1.74 
_228_jack 1.11 1.15 1.11 1.15 
_213_javac 1.09 1.14 1.10 1.15 
Geometric Mean 1.12 1.15 1.24 1.30 

Table 7.6: Relative results of SPECjvm98 compared with JDK 1.4.2 Client 
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Figure 7.3: SPECjvm98 fastest run (higher is better) 
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The geometric mean can be considered as a realistic measure for the overall performance of 
a JVM. The speedup results of Table 7.6 are not synthetic numbers for special areas of 
applications, but represent the speedup that can be expected in everyday applications. The 
following results can be deduced from the table: 

• The difference between the FPU and the SSE2 extensions affects not only numerical 
applications, but also common client applications like the decoding of mpeg audio 
files. The decision to extend the compiler to generate SSE2 code was therefore 
undoubtedly correct. 

• Even on old processors with no SSE2 extensions, floating point applications are 
measurably faster. Applications with no floating point computations show an 
equally high speedup in both configurations. 

• Linear scan outperforms the product compiler of the JDK 1.4.2 by 30%, i.e. the peak 
performance is 30% higher. This comes at no cost of the startup time because even 
the slowest run—which includes all compilations—is 24% faster. 

The speedups of Table 7.6 correspond with the expected results based on the characteristics 
of the benchmark programs: 

• _227_mtrt implements a ray-tracing algorithm that makes heavy use of floating 
point operations. This explains the modest speedup for FPU code and the high 
speedup for SSE2 code, similar to the results of SciMark 2.0. 

• _202_jess is the Java Expert Shell System, which applies rules to a set of data to 
solve a set of puzzles. No floating point operations are performed, so the speed of 
FPU and SSE2 code is equal. 

• _201_compress compresses and decompresses data using the LZW algorithm. It 
works only with integers and characters, so the speedup of FPU and SSE2 code is 
equally high. 

• _209_db performs database functions on a memory-resident address database. The 
most time is spent in the sorting algorithm that offers no possibility for optimiza-
tions by linear scan. Additionally, all data is stored using the class Vector of the 
runtime library where all accesses are synchronized, which leads to a high 
overhead. 

• _222_mpegaudio decompresses audio files that conform to the ISO MPEG Layer-3 
audio specification. The transformation uses floating point operations, so there is a 
low speedup for the FPU code and a high speedup for the SSE2 code. 

• _228_jack is a parser generator generating Java code from a specification file. The 
implementation makes heavy use of exception handling; exceptions are used for the 
modeling of the normal control flow. Exception handling is complicated by register 
allocation because local variables are not in fixed locations, but the benchmark 
shows that this is no performance bottleneck. 

• _213_javac is the Java compiler from the JDK 1.0.2. It operates mostly on strings, so 
there is no difference between FPU and SSE2 code. 
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Chapter 8 

8. Summary 

 

This final chapter summarizes the basic principles of the linear scan register 
allocator implemented for this master thesis. A short outlook on ongoing and 
planned future work of the project is given: Global optimizations that are known 
to be effective will be implemented. Sun Microsystems plans to integrate the 
research compiler in a future version of their JDK. 

This master thesis presented the detailed algorithms of a register allocator using the linear 
scan algorithm. The algorithm is implemented in a research version of the Java HotSpot 
client compiler of Sun Microsystems. The research compiler is the result of a long lasting 
and ongoing research collaboration between Sun Microsystems and the Institute for System 
Software at the Johannes Kepler University Linz. 

Compared with register allocation algorithms based on graph coloring, the linear scan 
algorithm is much simpler and faster. It is capable of allocating lifetime intervals in a single 
linear pass over all intervals. The simplest form of the algorithm has the drawback that it 
does not support lifetime holes of intervals. Also each interval is fixed to one location, 
either in a register or on the stack. Therefore, the algorithm implemented for this thesis is 
extended to support holes in intervals and splitting of intervals. When an interval should 
change its location, it is split into two independent intervals. 

This optimization allows a much better utilization of the register set, especially for 
architectures with a low number of registers such as the Intel IA-32 architecture. This 
architecture additionally complicates the work of a register allocation by requiring fixed 
registers for some instructions and a complicated structure of the floating point registers. 

The flexible algorithm for splitting intervals is one of the main results of this thesis. An 
interval can be split anywhere by the register allocator if this seems to be good for the 
overall performance of the method. The splitting position can be moved to the optimal 
position out of loops to minimize the spill moves in frequently executed parts of the 
method. The actual splitting position is calculated by a heuristic taking many parameters 
into account. The correct parameterization of the heuristic is crucial for the overall 
performance of the generated code. 

Register constraints of the IA-32 architecture are modeled by fixed intervals, representing 
ranges where a physical register is not available for normal allocation. The allocation 
algorithm needs not handle operations that require operands in fixed registers, method 
calls that destroy all registers or other operations that have special demands on registers. 
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This simplifies the allocation algorithm considerably and avoids platform-dependent code 
in the allocator. Especially the automatic handling of calls is worth mentioning: At a call 
operation, all registers are marked as blocked by a short range in all fixed intervals. There-
fore, the allocation algorithm cannot assign a physical register to any non-fixed interval at 
this position, and all values that are live at the call site are automatically spilled to the 
stack. 

The implementation of the linear scan algorithm required some changes in other parts of 
the compiler, mostly because of the fact that a local variable has no fixed location on the 
stack any more, but remains in a register if possible: 

• The computation of the debug information and oop maps, necessary for deopti-
mization and garbage collection, respectively, must be done during register 
allocation. Previously, this work was done when the native code was generated. 

• The correct handling of exceptions is somewhat more complicated now because 
arbitrary registers can be in use when an exception is thrown. These registers must 
be preserved when the exception handler is searched. Currently, the debug 
information is used to match up the state of the local variables at the throwing 
instruction and the begin of the exception handler. 

The benchmark results show the high capabilities of the linear scan algorithm: While the 
compilation is only 7% slower when compared to the product version of the JDK 1.4.2, the 
average application speed is about 30% better. So the linear scan algorithm is able to 
allocate the registers nearly as fast as the old local allocator, which uses only a simple 
heuristic for the optimization of loops, but the generated code is much better, i.e. the 
register allocator succeeds to reduce the number of moves from and to memory 
significantly. 

8.1 Future Work 

The research compiler extends the product compiler of the JDK 1.4.2 with an intermediate 
representation in static single assignment (SSA) form. This form allows the complete 
elimination of instructions accessing local variables, but requires phi functions when a 
block has more than one predecessor. The SSA form simplifies many optimizations, such as 
common subexpression elimination. This potential is currently unused. 

The goal of the ongoing project is the implementation of global optimizations that can be 
applied fast and that are known to be effective in increasing the application speed. The first 
optimization will be the implementation of global common subexpression elimination, 
which is considerably simplified by the SSA form of the intermediate representation. 

Another field of research in the project deals with escape analysis for the compiler: In his 
PhD thesis, Thomas Kotzmann implements an analysis that detects allocation sites that do 
not escape, i.e. the allocated objects are not installed into static fields or heap objects and 
are not returned to the caller. The following optimizations are currently under 
development: 
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• When an object is local to a single method, the allocation can be completely 
eliminated (scalar replacement). The fields of the object are treated equally to local 
variables; they are initially assigned a virtual register and then processed normally 
by the register allocator. 

• An object passed as a parameter to another method can be allocated on the stack 
when it does not escape in the called method. The elimination of non-escaping 
allocations frees the garbage collector from processing many short living objects, 
such as temporary string buffers. 

• When methods are synchronized on non-escaping objects, the synchronization is 
also unnecessary and can be safely removed. 

The research compiler has meanwhile reached a very stable state. Many stress tests that are 
implemented in the virtual machine were successfully executed. So another goal is to bring 
the compiler to product quality that allows the deployment in the product version of a 
future version of the JDK. Sun Microsystems plans a possible replacement of the current 
client compiler with the research compiler, using the linear scan algorithm for register 
allocation. 
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Appendix A 

A. Compilation Example 

 

This chapter presents a complete example for the compilation of a method. First, 
the Java source code, the Java bytecodes and the two intermediate representa-
tions HIR and LIR are presented. Then, all steps necessary for linear scan 
register allocation are shown in detail. The chapter closes with the native code 
that is ready for execution. 

The example described in this chapter calculates and prints all Fibonacci numbers below 
10,000. The numbers are summed up and printed in a loop. Figure A.1 shows the Java 
source code of the calculation method. The standard iterative algorithm is used that saves 
the last but one number (called lo) and the last number (called hi) in local variables. 

public static void fibonacci() { 
  int lo = 0; 
  int hi = 1; 
  while (hi < 10000) { 
    hi = hi + lo; 
    lo = hi - lo; 
    print(lo); 
  } 
} 
Figure A.1: Java source code 

Assume that the method print that is called in each iteration is a static method of the 
same class just prints the number and a trailing space to the standard output stream. Since 
this requires several other method calls that would complicate the example too much, the 
method print is not considered any more. Especially, it is not inlined during compilation. 
The following output is generated by the method: 

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 

Figure A.2 shows the machine-independent, stack-based bytecodes created by the Java 
compiler for this method. The bytecodes refer to the local variables by numbers: The local 
variable lo has the index 0, hi the index 1. The while loop is compiled to a conditional 
branch for the loop condition at the bytecode index (bci) 8 and an unconditional jump at 
the bci 23.  
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0:  iconst_0 
1:  istore_0            // lo = 0 
2:  iconst_1 
3:  istore_1            // hi = 1 
4:  iload_1 
5:  sipush 10000 
8:  if_icmpge 26        // while (hi < 10000) 
11: iload_1 
12: iload_0 
13: iadd 
14: istore_1            // hi = hi + lo 
15: iload_1 
16: iload_0 
17: isub 
18: istore_0            // lo = hi - lo 
19: iload_0 
20: invokestatic #12    // print(lo) 
23: goto 4              // end of while-loop 
26: return 
Figure A.2: Java bytecodes 

A.1 HIR 

The bytecodes are the main input of the just-in-time compiler when the virtual machine 
decides to compile this method. The front end of the compiler generates the HIR by 
iterating through the bytecodes twice. In the first iteration, the boundaries of the basic 
blocks are determined. The following blocks are identified (the numbering of the blocks is 
arbitrary): 

• B0 (bci 0-3): Block before the loop that initializes the local variables lo and hi. 
• B3 (bci 4-8): Header block of the loop that checks the loop condition. 
• B2 (bci 11-23): Body of the loop that calculates the next number and calls print. 
• B1 (bci 26): Block that contains only the return bytecode. 

Additionally, the compiler generates the header block B4 for technical reasons. This block 
has no representation in the bytecodes. The second iteration of the bytecodes fills the blocks 
with HIR instructions. Figure A.3 shows the complete HIR: The first line of each block 
represents the BlockBegin instruction. The bytecode range and the predecessors and 
successors of the block are printed. The following lines represent the HIR instructions. 

The instructions i7 and i8 are phi functions of block B3 for the local variables lo and hi, 
respectively. They are necessary because B3 has two predecessors. The instruction i7 gets 
the value i4 when Block B0 was executed before block B3 (i.e. for the first iteration of the 
loop) and the value i12 when B2 was executed before (i.e. for all other iterations). The 
instruction i8 gets the value i5 or i11, respectively. 
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B4 [0, 0] sux: B0  
__bci__use__tid____instr____________________________________ 
. 0    0     17    std entry B0 
 
B0 [0, 3] pred: B4 sux: B3  
__bci__use__tid____instr____________________________________ 
. 0    1    i4     0 
. 2    1    i5     1 
. 3    0     6     goto B3 
 
B3 [4, 8] pred: B0 B2 sux: B1 B2  
Locals: 
   0: i7 [ i4 i12 ]     // phi function for lo 
   1: i8 [ i5 i11 ]     // phi function for hi 
__bci__use__tid____instr____________________________________ 
  5    1    i9     10000 
. 8    0     10    if i8 >= i9 then B1 else B2 
 
B2 [11, 23] pred: B3 sux: B3  
__bci__use__tid____instr____________________________________ 
. 13   2    i11    i8 + i7 
. 17   2    i12    i11 - i7 
. 20   0    v13    invokestatic(i12) 
. 23   0     14    goto B3 (safepoint) 
 
B1 [26, 26] pred: B3  
__bci__use__tid____instr____________________________________ 
. 26   0    v15    return 
Figure A.3: HIR 

A.2 LIR before Register Allocation 

The back end of the compiler generates the LIR from the HIR. Figure A.4 on the next page 
shows the LIR before register allocation where most operands of the LIR operations are 
virtual registers. The structure of the basic blocks is equivalent to the HIR, so the first line 
of each block is equal to Figure A.3. The following lines represent the LIR operations. 

Each block starts with a label that is used as the target for branches to this block. The last 
operation of each block is always an unconditional jump to a successor or a return 
operation because otherwise the control flow at the end of the block would be undefined. 
Most LIR operations are a direct result of the HIR instructions. Only the move operations 
are inserted for special reasons: 

• The moves with the id 8, 10, 36 and 38 are resolving moves for the phi functions of 
the HIR. 

• The moves with the id 24 and 28 are inserted because of the two-operand form 
required by the IA-32 architecture. For succeeding arithmetic operations, the left 
input operand and the result operand are equal. 

• The move with the id 32 stores the parameter for the method call to the appropriate 
stack slot. 
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B4 [0, 0] sux: B0  
__id__Operation_____________________________________________ 
   0  label [label:0x31a8904] 
   2  std_entry [ecx|L] 
   4  branch [AL] [B0]  
 
B0 [0, 3] pred: B4 sux: B3  
__id__Operation_____________________________________________ 
   6  label [label:0x978b8c] 
   8  move [int:1|I] [R42|I]  
  10  move [int:0|I] [R41|I]  
  12  branch [AL] [B3]  
 
B3 [4, 8] pred: B0 B2 sux: B1 B2  
__id__Operation_____________________________________________ 
  14  label [label:0x31a81d4] 
  16  cmp [R42|I] [int:10000|I]  
  18  branch [GE] [B1]  
  20  branch [AL] [B2]  
 
B2 [11, 23] pred: B3 sux: B3  
__id__Operation_____________________________________________ 
  22  label [label:0x31a80fc] 
  24  move [R42|I] [R43|I]  
  26  add  [R43|I] [R41|I] [R43|I] 
  28  move [R43|I] [R44|I]  
  30  sub  [R44|I] [R41|I] [R44|I] 
  32  move [R44|I] [Base:[esp|I] Disp: 0|]  
  34  static call: [bci:20] 
  36  move [R43|I] [R42|I]  
  38  move [R44|I] [R41|I]  
  40  safepoint [bci:23] 
  42  branch [AL] [B3]  
 
B1 [26, 26] pred: B3  
__id__Operation_____________________________________________ 
  44  label [label:0x978c64] 
  46  return 
Figure A.4: LIR before register allocation 

A.3 Block Order 

Before computing the final block order, the loops of the method are searched. The loop 
detection algorithm identifies block B2 as the only loop end block of the loop with index 0 
starting at block B3. The remaining blocks B4, B0 and B1 are not part of a loop. 

The options for the block order algorithm are very limited: B4, B0 and B3 must be arranged 
in this order because of their sequential control flow. Only the order of B1 and B2 is not 
fixed by the control flow. B2 is emitted before B1 because it has a higher loop depth and 
therefore a higher weight. The final block order is B4, B0, B3, B2, B1. Note that the two loop 
blocks B3 and B2 are consecutive. The upper part of Figure A.5 shows the control flow 
graph with this block order. 
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A.4 Building Intervals 

Figure A.5 shows the lifetime intervals for the example. Each virtual register of the LIR is 
represented by its own line. In order to deal with the fact that the call operation 34 destroys 
all registers, short ranges are added to all fixed intervals. For each physical register (the 
general-purpose registers eax, ebx, ecx, edx, esi, edi and the 8 FPU registers), a fixed 
interval is created. Because all fixed intervals have exactly the same lifetime in this 
example, only one line is printed for all fixed intervals. The intervals 41 and 42 have a 
lifetime hole in B2, e.g. the virtual register [R42] is overwritten by the operation 36, so its 
value is not required between operation 24 and 36. 

[R41]
[R42]
[R43]
[R44]

0 6 22 464414

B4 B0 B3 B2 B1

Fixed Intervals

 
Figure A.5: Intervals before register allocation 

The following shading of boxes is used for printing intervals: 

• Unhandled intervals are printed as light grey bars. All non-fixed intervals of Figure 
A.5 are initially unhandled. 

• Already processed intervals with a register assigned are printed as medium grey 
bars. 

• Processed intervals that were spilled to memory are printed as dark grey bars. 

A.5 Walking Intervals 

The actual register allocation assigns a physical register to each interval. Because all 
intervals store integer values, one of the six general-purpose registers must be assigned to 
each interval. No floating point registers are used by the example. 

The non-fixed intervals are sorted by increasing start position and traversed in this order. 
The unhandled set contains all intervals that were not processed yet. In each iteration, the 
interval with the lowest start position is removed from the unhandled set and processed. 
This interval is the current interval. The active and the inactive sets contain all intervals that 
have already a register assigned and that do not end before the start position of current. 

The following sections show the content of the unhandled, active and inactive sets when the 
intervals are processed. The inactive intervals are further classified into the inactive intervals 
intersecting with current—these intervals are relevant for the allocation—and the inactive 
intervals not intersecting with current—these can be ignored. 
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A.5.1 Interval 42 

• current: interval 42, starting at position 8 
• unhandled: { 41, 43, 44 } 
• active: { } 
• inactive intersecting with current: { } 
• inactive not intersecting with current: { all fixed intervals } 

The active set is empty, and the fixed intervals of the inactive set do not intersect with 
current because current has a lifetime hole at the call operation with the id 34. Therefore, all 
registers are available for the whole lifetime of current. Assume esi is selected for 
allocation. Then interval 42 is added to the active set. Figure A.6 shows the intervals with 
esi assigned to [R42]. 

[R41]
[R42]
[R43]
[R44]

0 6 22 464414

Fixed Intervals

esi

 
Figure A.6: Intervals after processing of interval 42 

A.5.2 Interval 41 

• current: interval 41, starting at position 10 
• unhandled: { 43, 44 } 
• active: { 42 } 
• inactive intersecting with current: { } 
• inactive not intersecting with current: { all fixed intervals } 

Similarly to interval 42, current does not intersect with the fixed intervals. The register esi 
is blocked because interval 42 is active. All other registers are available for the whole 
lifetime of current. Assume edi is selected for allocation. Then interval 41 is added to the 
active set. Figure A.7 shows the intervals after processing of interval 41. 

[R41]
[R42]
[R43]
[R44]

0 6 22 464414

Fixed Intervals

edi
esi

 
Figure A.7: Intervals after processing of interval 41 
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A.5.3 Interval 43 

• current: interval 43, starting at position 24 
• unhandled: { 44 } 
• active: { 41 } 
• inactive intersecting with current: { all fixed intervals } 
• inactive not intersecting with current: { 42 } 

Before the current interval 43 is processed, interval 42 is moved from the active set to the 
inactive set because of its lifetime hole starting at position 24. The interval 41 is still active. 
The fixed intervals intersect with current, so no register is available for the whole lifetime 
of current and current must be split. The splitting position cannot be moved to a block 
boundary or out of the loop, so current is split at position 33 before the call.  

A new interval with the number 45 is created for the split child starting at position 33. This 
interval is sorted into the unhandled set and processed later when position 33 is reached by 
the allocator. The current interval 43 is shorter now and ends before the call, so a register is 
available. It gets the register esi assigned and is added to the active set. 

Figure A.8 shows a snapshot of the intervals after processing interval 43: The intervals 41 
and 42 have a register assigned for their whole lifetime. Interval 43 was split at position 33, 
so the part before 33 (interval number 43) has a register assigned, while the part after 33 
(interval number 45) is still unhandled. Both intervals are printed in the same line of [R43] 
to emphasize that they represent the lifetime of the virtual register [R43] together. There is 
no virtual register [R45] present in the LIR. Interval 44 is still completely unhandled. 

[R41]
[R42]
[R43]
[R44]

0 6 22 464414
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edi
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e si

 
Figure A.8: Intervals after processing of interval 43 

A.5.4 Interval 44 

• current: 44, starting at position 28 
• unhandled: { 45 } 
• active: { 41, 43 } 
• inactive intersecting with current: { 42, all fixed intervals } 
• inactive not intersecting with current: { } 

This interval is processed similarly to interval 43: Because it intersects with the fixed 
intervals, it is split at position 33. The first part gets ebx assigned because esi and edi are 
still blocked by the active intervals 41 and 43. A new interval with the number 45 is created 
for the split child starting at position 33. This interval is sorted into the unhandled set. 



Compilation Example 

110 

Figure A.9 shows the intervals after processing of interval 44: Interval 44 was split at 
position 33, so the part before 33 (interval number 44) has a register assigned, while the 
part after 33 (interval number 46) is still unhandled. Again, both intervals are printed in the 
line of the virtual register [R44]. 
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Figure A.9: Intervals after processing of interval 44 

A.5.5 Interval 45 

• current: 45, starting at position 33 
• unhandled: { 46 } 
• active: { } 
• inactive intersecting with current: { all fixed intervals } 
• inactive not intersecting with current: { 41, 42 } 

This interval is the split child of the original interval 43. All registers are blocked by the 
fixed intervals at position 34, so no register is available for allocation and an interval must 
be spilled to the stack. Because fixed intervals must never be spilled, the only candidate for 
spilling is the current interval 45 itself. So current gets a new spill slot assigned, called 
[stack:0]. A move operation from the register esi to the spill slot is inserted into the LIR 
at position 33. 

The use position at id 36 does not require a register because the interval is used as the input 
parameter of a move at id 36. The value needs not be reloaded in a register and interval 45 
remains on the stack for its entire lifetime. No further splitting is necessary. Figure A.10 
shows the intervals after spilling interval 45, representing the right part of the virtual 
register [R43]. 
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Figure A.10: Intervals after processing of interval 45 
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A.5.6 Interval 46 

• current: 46, starting at position 33 
• unhandled: { } 
• active: { } 
• inactive intersecting with current: { 42, all fixed intervals } 
• inactive not intersecting with current: { 41 } 

Similarly to interval 45, this interval is spilled to the stack because all registers are blocked 
by the fixed intervals. The use position at the id 38 requires no register, so the entire 
interval 45 is spilled to the spill slot [stack:1] and no further splitting is necessary. 
Another move operation is inserted into the LIR at position 33. 

Now the unhandled set is empty, all intervals are processed and the algorithm stops. All 
intervals have either a register assigned or are spilled to the stack. Figure A.11 shows the 
intervals after register allocation. No unhandled intervals are present any more. 
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Figure A.11: Intervals after register allocation 

It is easy to see that the allocation was done properly: 

• Intervals with intersecting ranges have different registers assigned. Only the 
intervals 42 and 43 have the same register assigned because interval 43 fits into the 
lifetime hole of interval 42. 

• All intervals that are live at the call operation with the id 33 are spilled. No value is 
destroyed when the called method overwrites the registers. 

A.6 LIR after Register Allocation 

No resolving of the data flow is necessary in this simple example: The intervals 41 and 42 
that span multiple blocks are not split, so no additional move operations must be inserted 
into the LIR. 

Figure A.12 shows the LIR where the virtual registers are replaced with the allocated 
physical registers. The following operations and operands are different when compared 
with the original LIR showed in Figure A.4. 
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• The virtual registers [R41] and [R42] are replaced by the physical register esi 
and edi, respectively. 

• The virtual register [R43] is replaced with the physical register esi. Only the input 
operand of the operation 36 is replaced with the spill slot [stack:0] because this 
operation is covered by the split child 45. 

• The virtual register [R44] is replaced with the physical register ebx. Only the input 
operand of the operation 38 is replaced with the spill slot [stack:1] because this 
operation is covered by the split child 46. 

• Two new move operations are inserted at position 33. They save the registers ebx 
and esi before the method call to the stack slots [stack:1] and [stack:0], 
respectively. 

• The move operation at position 24 is deleted because the source operand [R42] and 
the target operand [R43] are allocated to the same register esi. 

B4 [0, 0] sux: B0  
__id__Operation_____________________________________________ 
   0  label [label:0x31a8904] 
   2  std_entry [ecx|L] 
   4  branch [AL] [B0]  
 
B0 [0, 3] pred: B4 sux: B3  
__id__Operation_____________________________________________ 
   6  label [label:0x978b6c] 
   8  move [int:1|I] [esi|I]  
  10  move [int:0|I] [edi|I]  
  12  branch [AL] [B3]  
 
B3 [4, 8] pred: B0 B2 sux: B1 B2  
__id__Operation_____________________________________________ 
  14  label [label:0x31a81d4] 
  16  cmp [esi|I] [int:10000|I]  
  18  branch [GE] [B1]  
  20  branch [AL] [B2]  
 
B2 [11, 23] pred: B3 sux: B3  
__id__Operation_____________________________________________ 
  22  label [label:0x31a80fc] 
  26  add  [esi|I] [edi|I] [esi|I] 
  28  move [esi|I] [ebx|I]  
  30  sub  [ebx|I] [edi|I] [ebx|I] 
  32  move [ebx|I] [Base:[esp|I] Disp: 0|]  
  33  move [ebx|I] [stack:1|I]  
  33  move [esi|I] [stack:0|I]  
  34  static call: [bci:20] 
  36  move [stack:0|I] [esi|I]  
  38  move [stack:1|I] [edi|I]  
  40  safepoint [bci:23] 
  42  branch [AL] [B3]  
 
B1 [26, 26] pred: B3  
__id__Operation_____________________________________________ 
  44  label [label:0x978c44] 
  46  return    
Figure A.12: LIR after register allocation 
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A.7 Code Generation 

The native code can be generated in a straightforward way from the LIR. In this example, 
all moves and arithmetic operations are converted to a single native instruction. The other 
operations are converted as follows:  

• Labels are needed only for marking the target of jumps, so no native instruction is 
necessary for them. 

• Unconditional jumps between succeeding blocks are unnecessary, so they are 
omitted. In this example, the jumps with the id 4, 12 and 20 are unnecessary. 

• Spill slots are addressed relative to the base pointer ebp. 
• The loop header is aligned at a 4-byte boundary for performance reasons. 
• The safepoint operation is translated to a native instruction accessing a special, 

fixed memory address. This address is used by the runtime to stop the thread for 
garbage collection. 

• The entry code for the method builds the stack frame by modifying esp and ebp. 
The very first instruction of the method checks for possible stack overflows in the 
near future. 

• The return code removes the stack frame. Before the actual return instruction, 
another safepoint is inserted. 

The native code for the method is shown in Figure A.13. The usual syntax for IA-32 
assembler code is used, i.e. the target of moves and the result of arithmetic instructions is 
always the leftmost operand. This native code is then installed in the code cache of the 
virtual machine and is ready for execution. 

00000000: mov   dword ptr [esp-3000h], eax 
00000007: push  ebp 
00000008: mov   ebp, esp 
0000000a: sub   esp, 18h 
0000000d: mov   esi, 1h 
00000012: mov   edi, 0h 
00000017: nop     
00000018: cmp   esi, 2710h 
0000001e: jge   00000049 
00000024: add   esi, edi 
00000026: mov   ebx, esi 
00000028: sub   ebx, edi 
0000002a: mov   dword ptr [esp], ebx 
0000002d: mov   dword ptr [ebp-8h], ebx 
00000030: mov   dword ptr [ebp-4h], esi 
00000033: call  00a50d40 
00000038: mov   esi, dword ptr [ebp-4h] 
0000003b: mov   edi, dword ptr [ebp-8h] 
0000003e: test  dword ptr [370000h], eax 
00000044: jmp   00000018 
00000049: mov   esp, ebp 
0000004b: pop   ebp 
0000004c: test  dword ptr [370000h], eax 
00000052: ret 
Figure A.13: Native code 
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