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Abstract

The linear scan algorithm for register allocation providegood
register assignment with a low compilation overhead andhis t
frequently used for just-in-time compilers. Although moéthese
compilers use static single assignment (SSA) form, therilkgo

has not yet been applied on SSA form, i.e., SSA form is usually
deconstructed before register allocation. However, thecstral
properties of SSA form can be used to simplify the algorithm.

With only one definition per variable, lifetime intervalshét
main data structure) can be constructed without data flodyana
sis. During allocation, some tests of interval intersetcttan be
skipped because SSA form guarantees non-intersectionllyin
deconstruction of SSA form after register allocation carirtte-
grated into the resolution phase of the register allocatitiout
much additional code.

We modified the linear scan register allocator of the Java
HotSpot™ client compiler so that it operates on SSA form. The
evaluation shows that our simpler and faster version gésera
equally good or slightly better machine code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage¥ Processors—Compilers, Optimization, Code generation

General Terms Algorithms, Languages, Performance

Keywords Java, just-in-time compilation, register allocation; lin
ear scan, SSA form, lifetime analysis, SSA form deconsnct

1. Introduction

Register allocation, i.e., the task of assigning processgisters
to local variables and temporary values, is one of the most im
portant compiler optimizations. A vast amount of researas led
to algorithms ranging from simple and fast heuristics toropt
algorithms with exponential time complexity. Because thebp
lem is known to be NP-complete [8], algorithms must balatee t
time necessary for allocation against the resulting coaditgLiTwo
common algorithms in modern compilers a@ph coloring(see
for example [5, 8]), which is suitable when compilation tirmeot

a major concern, anhear scan[22, 28], which is faster and there-
fore frequently used for just-in-time compilers where cdatpn
time adds to run time.
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Static single assignment (SSA) form [9] is a type of interme-
diate representation that simplifies many compiler optatians.

All variables have only a single point of definition. At cowitflow
joins, phi functionsare used to merge different variables of the pre-
decessor blocks. Because processors cannot execute ptiofis

it is necessary to replace them with move instructions ducimde
generation $SA form deconstructipn

Traditionally, SSA form deconstruction was performed befo
register allocation. Only recently has it been observetirdgister
allocation on SSA form has several advantages due to additio
guarantees on variable lifetime. Lifetime information &sential
for register allocation because two variables that intetfee., that
are live at the same time, must not have the same registgnasisi
The interference graph of a program in SSA forroherdal (every
cycle with four or more edges has an edge connecting twocesrti
of the cycle, leading to a triangulated structure).

Many graph algorithms are simpler on chordal graphs, e.g.,
graph coloring can be performed in polynomial time. Thesper-
ties were used to simplify register allocators based ontycajor-
ing [14]. When the maximum register pressure is below or Egua
the number of available registers, allocation is guarahteesuc-
ceed. This allows to split the algorithms for spilling andjister
assignment. Traditionally, spilling and register assigntiwere in-
terleaved, i.e., a variable was spilled when the graph thms to
be not colorable. This led to a time-consuming repeatedutixec
of the graph coloring algorithm.

This paper explores the impact of SSA form on linear scarsregi
ter allocation. Thdifetime intervals which are the basic data struc-
ture of the algorithm, are easier to construct and have alsimp
structure. Additionally, infrastructure already presenthe linear
scan algorithm can be used to perform SSA form deconstructio
after register allocation, thus making a separate SSA farooa-
struction algorithm unnecessary.

Our implementation for the Java HotSPbtclient compiler
shows that SSA form leads to a simpler and faster linear skean a
gorithm. It generates the same or even better code than thentu
product version that deconstructs SSA form before regédteca-
tion. In summary, this paper contributes the following:

¢ We show how SSA form affects the lifetime intervals used by
the linear scan algorithm.

¢ We present an algorithm for constructing lifetime intesvhlat
does not require data flow analysis. The algorithm can also be
adapted to construct the interference graph for graph iogjor
register allocation.

o We show how to use SSA form properties during allocation.

e We integrate SSA form deconstruction into the resolutioaiggh
of the linear scan algorithm.

e We evaluate the algorithm using the Java Hot8potlient
compiler.
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Figurel. Linear scan register allocation not on SSA form.

2. Overview

The linear scan algorithm is used for register allocatiomgny
major compilers, e.g., the client compiler of the Java HotSp
VM [11, 16], the optimizing compiler of the Jikes RVM [1], and
the compiler of the Low Level Virtual Machine (LLVM) [17]. Al
implementations use different heuristics to make the élyorfast

Figure 2. Linear scan register allocation on SSA form.

construction can be easily integrated into the alreadytiagiseso-
lution phase.

Moving out of SSA form after register allocation is reasdeab
because register allocation is usually one of the last ¢lopa-
mizations, so SSA form would not be beneficial afterwardsyHo
ever, it would also be possible to maintain SSA form, which re
quires the insertion of new phi functions for variables whée-

and to produce good machine code, but none operate on SSA form {jme intervals were split. The standard algorithm for SSif@on-

However, all three compilers use SSA form for global optaniz
tions, so all provide the necessary infrastructure for S&#fs-
based register allocation.

We use our previous work on linear scan register allocation
for the Java HotSp&Y client compiler [30] as the baseline for
this study. The client compiler is a production-qualitytjistime
compiler and thus highly tuned both for compilation speed an
code quality. Its source code is available as open source tine
OpenJDK project [27]. Implementation details of the linsaan
register allocator are available from [29].

The front end of the client compiler first parses Java byte-
codes [18] and constructs the high-level intermediate esgn-
tation (HIR), which is in SSA form. Several optimizationsear
performed on the HIR, including constant folding, globaluea
numbering, method inlining, and null-check eliminatiomeTback
end translates the HIR into the low-level intermediate @spnta-
tion (LIR). Itis not in SSA form in the current product versiso
the translation includes SSA form deconstruction.

The LIR is register based. At first, most operands are viregd
isters. Only register constraints of the target architecare mod-
eled using physical registers in the initial LIR. Beforeister al-
location, the control flow graph is flattened to a list of blsckhe
register allocator replaces all virtual registers with gibgl regis-
ters, thereby inserting code for spilling registers to tlaelsif more
values are simultaneously live than registers are availdiiis is
accomplished by splitting lifetime intervals, which reqps a reso-
lution phase after register allocation to insert move ingtons at
control flow edges. There is no distinction between locailaides
and temporary values, they are all uniformly representedrasl
registers. After register allocation, each LIR operat®translated
to one or more machine instructions, whereby most LIR opm@rat
require only one machine instruction. Figure 1 shows thepil@mn
phases of the current product version that are relevaniefgister
allocation.

Figure 2 illustrates the changes necessary for SSA-forseda
register allocation. SSA form is no longer deconstructddreaeg-
ister allocation. Additionally, construction of lifetimiatervals is
simplified because no data flow analysis is necessary. The mai
linear scan algorithm remains mostly unchanged, but stitiefits
from some SSA form properties. If SSA form is no longer reegir
after register allocation, as in our implementation, SShrfale-
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struction [9] can be used for this.

3. Lifetimelntervalsand SSA Form

Our variant of the linear scan algorithm requires exactitife
information: The lifetime interval of a virtual register sticover all
parts where this register is needed, with lifetime holeseatwieen.
Lifetime holes occur because the control flow graph is reduoe
a list of blocks before register allocation. If a registemffanto an
else-block, but not into the correspondinif-block, the lifetime
interval has a hole for thef-block. In contrast, a register defined
before a loop and used inside the loop must be live in all [daxfk
the loop, even blocks after the last use.

The lifetime intervals resulting from phi functions haveach
acteristic patterns. When SSA form is deconstructed befmyis-
ter allocation, move instructions are inserted at the end phi
function’s predecessor blocks. This leads to a lifetimerival with
multiple definition points and lifetime holes before thesimi-
tions. SSA form deconstruction inserts the moves in a cedw@er.
While there are some constraints for the order in cases vithere
same register is both used and defined by phi functions ofaime s
block, the order is mostly arbitrary.

Figure 3(c) shows the lifetime intervals for the LIR fragrhen
(computing the factorial of a number) shown in Figure 3(au-
blocksB1 to B4 use six virtual registerB10 to R15. Assume that
R10 andR11 are defined iB1, and thaR10 andR12 are used irB4.
R10 represents a long-living value that is infrequently useistill
alive, e.g., thechis pointer of a Java method. The LIR operations
20 to 42 (numbers are incremented by two for technical reasons)
are arithmetic and control flow operations that use up to tvpuoif
operands (either virtual registers or constants) and dafirte one
output operand (a virtual register).

The register&12 andR13 represent the original phi functions,
and the registere14 andR15 represent the new values assigned
to the phi functions at the end of the loop. Theref®2 andR13
have the characteristic lifetime intervals2 andi13 in Figure 3(c)
(virtual registers and intervals use matching numbersgriali12
is defined by the operatior2® and36. Because the definition as
overwrites the previous value without using it, there isfeatiine
hole before this operation, starting at the last use at tipera2.
The intervalsi12 andi13 have a similar structure, onli12 ex-



define R10 and R11

20: move 1 -> R12

22: move R11 -> R13 define R10 and R11

24: label B2 20: label B2

26: cmp R13, 1 phi [1, R14] -> R12

28: branch lessThan B4 phi [R11, R15] -> R13
22: cmp R13, 1

30: label B3 A

32: mul R12, R13 -> R14 24: branch lessThan B4

34: sub R13, 1 -> R15 26: label B3

36: move R14 -> R12 28: mul R12, R13 -> R14

38: move R15 -> R13 30: sub R13, 1 -> R15

40: jump B2 32: jump B2

42: label B4 34: label B4

use R10 and R12 use R16 and R12

(a) LIR without SSA form (b) LIR with SSA form

B > 83 RE3
| | | | | | | | |

i10 4 | 4
i11
i12 I
- Ha==
i14
i15 |

20 22 24 26 28 30 32 34 36 38 40 42

(c) Lifetime intervals without SSA form

¥y
‘ B1 P‘ B2

e ] [ee]
i1e ¢ ‘ 4
i1l
i12 )
i13
i14
i15 |

20 22 24 26 28 30 32 34

(d) Lifetime intervals with SSA form

Figure3. Example of LIR and lifetime intervals.

tends after operation2 becauser12 is used somewhere later in
blockB4. Note that although the interval 2 is contiguous fronB3
to B4, there is no direct control flow possible between these two
blocks.

Building lifetime intervals directly from LIR in SSA form
changes the pattern of the intervals. All phi functions &t lte-
ginning of a block haveparallel copysemantics, i.e., they are not
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ordered. All phi functions together specify a permutatiémenis-
ters and not a list of copies. Therefore, it would be coumtetpc-
tive to assign individual operation numbers to them; we giisich
them to the block label. The lifetime interval for the virtuagis-
ter defined by a phi function starts directly at the beginront¢he
block. The lifetime intervals for the virtual registers dggy a phi
function end at the end of the corresponding predecessckd(as
long as the virtual registers are not used by other opeatdter
the phi function).

Figure 3(b) and Figure 3(d) show the LIR and the lifetimerinte
vals of our example when using SSA form. The two phi functions
of block B2 are attached to operatiar0. Therefore, the lifetime
intervalsi12 andi13 both start at positio0. The linear scan al-
gorithm, which processes intervals ordered by their stasitjon,
can freely decide which interval to process first, i.e., isesaof
high register pressure it can better decide which interatspill
at this position. Intervai 13 no longer has a lifetime hole. Inter-
val 112 still requires a lifetime hole because the value is live at th
beginning of84 but not at the end a3, however the lifetime hole
ends at a block boundary.

These patterns of lifetime intervals show two advantagesnwh
performing linear scan register allocation on SSA form: b
artificial order is imposed for moves resulting from phi ftioos,
resulting in more freedom for the register allocator. (2 Tifetime
intervals for phi functions have fewer lifetime holes, leaglto less
state changes of the intervals during allocation.

Note that both with and without SSA form, no coalescing
of non-overlapping lifetime intervals is performed. WithdSSA
form, i.e., in the current product version, it would be toovel
and complicated. With SSA form, it is not allowed because it
would violate SSA form. In both casa®gister hintsare used as a
lightweight replacement. Intervals that should be assighe same
physical register are connected via a register hint. Thealirscan
allocator honors this hint if possible, but is still allowtnassign
different registers. The source and target of a move areemed
with such a hint. With SSA form, the input and result operands
of a phi function are also connected. In our example, the-inte
valsili, i13, andi15 are connected, as well as the interval®
andii4. In this small example, the register hints lead to machine
code without any move instructions, both with and withouASS
form.

4. LifetimeAnalysis

Traditionally, lifetime information has been computed ngsian
iterative data flow analysis that is repeated until a stabiedfi
point is reached. Using properties guaranteed by SSA form in
combination with a special block order allows us to eliméntie
data flow analysis. With SSA form, each virtual register haingle
point of definition. This definition is “before” all uses, i.ahe
definition dominates all uses [7]. If the definition and a use a
in different blocks, this means that the block of the defomitis

a dominator of the block of the use.

The linear scan algorithm does not operate on a structuned co
trol flow graph, but on a linear list of blocks. The block ortiais a
high impact on the quality and speed of linear scan: A goodiblo
order leads to short lifetime intervals with few holes. Oladi or-
der guarantees the following properties: First, all predsors of
a block are located before this block, with the exception axfks
ward edges of loops. This implies that all dominators of ablare
located before this block. Secondly, all blocks that are pathe
same loop are contiguous, i.e., there is no non-loop blotkédsn
two loop blocks. Even though the current product versionhef t
client compiler’s linear scan algorithm could operate on biock
order, this order turned out to be best.



BUILDINTERVALS
for each block b in reverse order do
live = union of successor.liveln for each successor of b

for each phi function phi of successors of b do
live.add(phi.inputOf(b))

for each opd in live do
intervals[opd].addRange(b.from, b.to)

for each operation op of b in reverse order do
for each output operand opd of op do
intervals[opd].setFrom(op.id)
live.remove(opd)
for each input operand opd of op do
intervals[opd].addRange(b.from, op.id)
live.add(opd)

for each phi function phi of b do
live.remove(phi.output)

if b is loop header then
loopEnd = last block of the loop starting at b
for each opd in live do
intervals[opd].addRange(b.from, loopEnd.to)

b.liveln = live

Figure 4. Algorithm for construction of lifetime intervals.

4.1 Algorithm
Input of the algorithm:

1. Intermediate representation in SSA form. An operatios ha
input and output operands. Only virtual register operands a
relevant for the algorithm.

2. Alinear block order where all dominators of a block areobef
this block, and where all blocks belonging to the same loep ar
contiguous. All operations of all blocks are numbered usiig)
order.

Output of the algorithm: One lifetime interval for each uat
register, covering operation numbers where this registalive,
and with lifetime holes in between. Thus, a lifetime intérean-
sists of one or moreangesof operation numbers.

Figure 4 shows the algorithm. In addition to the input angbatit
data structures, it requires a set of virtual registerdeddiveln,
for each block. It is used to propagate the virtual registeed
are live at the beginning of a block to the block’s predecesso
The algorithm requires one linear iteration of all blocks ail
operations of each block. The iteration is in reverse ordéhat all
uses of a virtual register are seen before its definitionrdfee,
successors of a block are processed before this block. @nly f
loops, the loop header (which is a successor of the loop emmt)at
be processed before the loop end, so loops are handled asia spe
case.

The initial set of virtual registers that are live at the erfd o
block b is the union of all registers live at the beginning of the
successors df. Additionally, phi functions of the successors con-
tribute to the initial live set. For each phi function, thein operand
corresponding tb is added to the live set. For each live register, an
initial live range covering the entire block is added. This range
might be shortened later if the definition of the registemsain-
tered.

Next, all operations df are processed in reverse order. An out-
put operand, i.e., a definition of a virtual register, shastéhe cur-
rent range of the register’s lifetime interval; the starsition of the
first range is set to the current operation. Additionallg thgister
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is removed from the set of live registers. An input operarel, &
use of a virtual register, adds a new range to the lifetimeriat
(the new range is merged if an overlapping range is preséng.
new live range starts at the beginning of the block, and agégit
be shortened later. Additionally, the register is addechéoget of
live registers.

Phi functions are not processed during this iteration ofr@pe
tions, instead they are iterated separately. Becauseuthednge
of a phi function starts at the beginning of the block, it i$ nec-
essary to shorten the range for its output operand. The ogpésa
only removed from the set of live registers. The input opédsaof
the phi function are not handled here, because this is dalegpén-
dently when the different predecessors are processed, fiitiser
an input operand nor the output operand of a phi functiorvesat
the beginning of the phi function’s block.

The steps described so far are sufficient to create thenfigeti
intervals for methods without loops. With loops, the in@svare
incomplete: When a loop’s end block is processed, the loapére
has not been processed, solitIn set is still empty. Therefore,
registers that are alive for the entire loop are missing iatttme.
These registers are known at the time the loop header isgzede
All registers live at the beginning of the loop header mustie
for the entire loop, because they are defined before the ladp a
used inside or after it. Using the property that all blocksdbop
are contiguous in the linear block order, it is sufficient ¢l @ne
live range, spanning the entire loop, for each registerithiate at
the beginning of the loop header.

Finally, the current set of live registers is saved inltheln field
of the block. Note thdivelnis only a temporary data structure. Be-
cause the loop handling adds live ranges but does not ufidelte
sets, they remain incomplete. If thigeln sets were needed by a
later compiler phase, a fixup would also be necessary. Hayisee
do not need them later.

4.2 Example

The example shown in Figure 3(b) and Figure 3(d) uses thealirt
registersk10 to R15. The algorithm processes the blocks in the
orderB4, B3, B2, andB1. At the beginning oB4, the register&10
andRr12 are live and therefore in tHveln set ofB4. The live ranges
of these values faB4 have been added.

The first complete block of the exampleBs. Theliveln set of
its successoB2 is empty sinceB2 has not been processed yE2.
has two phi functions, whose operands relevanB®areR14 and
R15. They are added to the live set, and the initial ranges spgnni
the entire blockB3 are added. When the definitionsrif4 andR15
are encountered at operatip& and30, respectively, the ranges are
shortened to their final starting points. Rangeskft®2 andR13 are
added, and these two registers are inltheln set ofB3. Note that
the live range oR10 for B3 is not yet present.

The initial live set ofB2 is the union ofliveln of B3 and B4,
i.e., it contain®k10, R12, andR13. These three registers are live for
the entire block. Becauget 2 andr13 are defined by phi functions
of B3, they are removed from the live set when the phi functions
are processed, S0 is the only register live at the beginning of
B2. Becauses2 is a loop header, the special handling for loops is
performed: ThéoopEndblock isB3, so a live range spanning from
the beginning oB2 to the end oB3 is added to the interval &10.
This live range is merged with the existing one, resultin@io
being live contiguously.

Finally, B1 is processed. The registto is initially live be-
cause it is in thdiveln set of the successap, andR11 is live be-
cause it is the relevant operand for a phi function. Live esngre
added to the intervals of these two registers. The remaiharg
dling of B1 is outside the scope of this example. Figure 3(d) shows
the final intervals for the example.
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Figure5. CFG with irreducible loop.

use R10

use R11
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4.3

The algorithm presented in the previous sections does ndt wo
properly for irreducible loops, i.e., for loops with mulgpen-
try points. Java bytecodes are usually created from strerttan-
guages like Java, so irreducible loops do not occur normtdthyw-
ever, since Java bytecodes themselves are unstructusdath
possible with handcrafted bytecodes.

Figure 5 shows such a loop: it can be entered via the biB¢ks
andBs5. The figure shows definitions and uses of the registees
andR11. ForR11, the algorithm works correctly: the register is in
the liveln sets ofB4 andB5 and thus the liveness information is
correctly propagated to the block8 andB2. However, the register
R10 is only in theliveln set of B4, since it was not yet regarded
as live whenB5 was processed. It is therefore not considered live
in B2, which is erroneous. There are two solutions to handle this
problem:

Irreducible Control Flow

1. Perform a precise loop analysis for irreducible loop$ tua-
rectly detects all entry blocks. Irreducible loops must bae-c
tiguous, i.e., all non-loop blocks leading to a loop entrysirhe
placed before the first loop entry. After all blocks of a logvé
been processed by our algorithm, theln of all loop headers
must be set to the union of the registers flowing into the loop.
This solution requires a more complicated loop analysisels w
as modifications to our algorithm.

. Make sure thato values flow into an irreducible loop, i.e., that
theliveln set of all loop headers is empty. This can be achieved
by inserting phi functions at the loop headers for variakies

TRYALLOCATEFREEREG
set freeUntilPos of all physical registers to maxint
for each interval it in active do
freeUntilPosit.reg] = 0
for each interval it in inactive intersecting with current do
freeUntilPos[it.reg] = next intersection of it with current
reg = register with highest freeUntilPos

ALLOCATEBLOCKEDREG
set nextUsePos of all physical registers to maxint
for each interval it in active do
nextUsePosiit.reg] = next use of it after start of current
for each interval it in inactive intersecting with current do
nextUsePoslit.reg] = next use of it after start of current
reg = register with highest nextUsePos

Figure 6. Algorithm for register selection (from [30]).

the loop from the normal pre-loop code and from the OSR entry
point are completely disjoint, phi functions must alwaygbesent.
Therefore, OSR methods need no special handling in ourteggis
allocator.

4.4 Analogy with Interference Graphs

Our algorithm to build lifetime intervals can be modified taild
the interference graph for a graph coloring register attmca a
single pass over the operations. The live sets are managbe in
same way. Whenever a definition of a register is encounténes,
register interferes with all registers that are currentiythie live
set. It is sufficient to look at the definition points becaus®AS
form guarantees that two registers that interfere someavhko
interfere at the definition of one of the registers [7]. Agaispecial
handling is necessary at the loop header: A register liveeatdop
header interferes with all registers defined inside the .Idbjs
straightforward to collect all registers defined insideltw during
the iteration of the operations, and to add the interferextges
with all registers live at the loop header.

5. Linear Scan Algorithm

The main linear scan algorithm needs no modifications to work
SSA form. Because the algorithm is extensively describg@0i
we give only a short summary here. It processes the lifetime i
tervals sorted by their start position and assigns a registstack

are not modified inside the loop. These phi functions serve as slot to each interval. For this, four sets of intervals arenaged:

explicit definitions of virtual registers inside the loop.

unhandledcontains the intervals that start after the current pasitio
and are therefore not yet of intereattive contains the intervals

We use the second solution because the necessary precondithat are live at the current positiomactive contains the intervals

tions, the additional phi functions, are already fulfillgdthe client
compiler. The client compiler uses a conservative SSA foom-c
struction algorithm where phi functions are created whesy th

that start before and end after the current position, buthtaee a
lifetime hole at the current position; ahdndledcontains the inter-
vals that end before the current position and are therefmtenger

might be needed, and unnecessary phi functions are eliminatedof interest. An interval can switch several times betwaetiveand

later. However, they are not eliminated for irreducibledsdoe-
cause this would complicate the elimination algorithm ameldd-
ditional phi functions are not harmful. This is a good exagripbw
the conservative handling of corner cases in multiple pafrthe
compiler play nicely together.

One special case where irreducible loops occur in practiee a
methods compiled fopn-stack replacemenfOSR) [10, 15]. In
order to switch from the interpreter to compiled code in thédie
of a long-running loop, the method is compiled with a speerdty
point that jumps directly into the middle of the method. Tieiads
to a loop with two entry points. However, since values flowiimtg
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inactiveuntil it is finally moved tohandled If a register is not avail-
able for the entire lifetime of an interval, this or anotheterval is
split and spilled to a stack slot, leading to new intervaldeatito
theunhandledset during the run of the algorithm. However, the al-
gorithm never backtracks, i.e., all added intervals alvsgg after
the current position.

The main part of the linear scan algorithm is the selection of
a free register if one is available, or the selection of aerirl
to be split and spilled if no register is available. Figureh®ss
fragments of these two algorithms. While the original linsaan
algorithm [22] was designed to have linear runtime compyexi



REsoLVE N\
for each control flow edge from predecessor to successor do ‘ B1 M B2 ‘ ‘ B3 M B4 ‘
for each interval it live at begin of successor do
if it starts atlbegin'of successor then Interval 110 from B2 to B4:
phi = phi function defining it L~ nomove necessary
opd = phi.inputOf(predecessor) i10 4 L/ N
if opd is a constant then 1 EaX e
moveFrom = opd } Interval 110 from B3 to B4:
else move sl->eax
movefFrom = location of intervals[opd] at end of predecessor 112 ebx|——
else ) )
. , Phi Function [..,R12]->R14
moveFrom = location of it at end of predecessor i13 qecx from B3 fo B 4_[ move ]52->ecx
moveTo = location of it at begin of successor ’
if moveFrom # moveTo then i14 ecx

mapping.add(moveFrom, moveTo) \/‘ Phi Function [R13,..]->R14

mapping.orderAndinsertMoves() from B2 to B4: no move necessary

Figure7. Algorithm for resolution and SSA form deconstruction.  Figure 8. Example for resolution and SSA form deconstruction.

the extensions to support lifetime holes and interval Hpgjt[28,
30] introduced non-linear parts. Two of them are highlighie
Figure 6 where the set of inactive intervals is iterated. 3étecan
contain an arbitrary number of intervals since it is not by
the number of physical registers. Testing the current vaiefor
intersection with all of them can therefore be expensive.
When the lifetime intervals are created from code in SSA form

this test is not necessary anymore: All intervalsriactive start
before the current interval, so they do not intersect withdhrrent
interval at their definition. They are inactive and thus haliéetime
hole at the current position, so they do not intersect wighdtirrent
interval at its definition. SSA form therefore guarantees they
never intersect [7], making the entire loop that tests ftersection

unnecessary. 1. the phi function that defined the interval is retrieved,

Unfortunately, splitting of intervals leads to intervatgat no . . .
longer adhere to the SSA form properties because it desB8ys 2. the input o_peran_d of the phi function that belongs to block
predecessois retrieved, and

form. Therefore, the intersection test cannot be omittedpietely;

the beginning obuccessaorlf they are different, a move operation
is inserted. Because all moves must be ordered properly,aie
first added to a mapping and then ordered and inserted afgiswa
This part of the algorithm is not shown because it requireS&8
form specific changes.

Intervals of phi functions o§uccessoare live at the beginning
of successqrbut not at the end gfredecessorSSA form proper-
ties and the block order guarantee that these intervalsatténe
beginning ofsuccessorThis guarantee allows for a simple check
whether an interval is defined by a phi function. Three steps a
necessary to compute the source operand of the move operatio
that resolves the phi function:

it must be performed if the current interval has been spfifrom 3. the interval of this operand is used to add the move operati
another interval. In summary, the highlighted parts of Fégbican . ) . .

be guarded by a check whethmrrrentis the result of an interval If the input operand is a constant, no interval is presenase
split, and need not be executed otherwise. For our set of Javaconstants can be directly used as the source of move opesatio
benchmarks, this still saves 59% to 79% of all intersectémst Figure 8 shows an example for resolution that is necesséng at

edges to blocB4. Block B4 has two predecessoi? andB3. Two

. . intervals are live at the beginning B: 110 andi14. Intervali10

6. Resolution and SSA Form Deconstruction is defined before the beginning B4 (actually it is defined outside
Linear scan register allocation with splitting of lifetinngtervals the scope of our example). During register allocatiarg was split
requires aesolutionphase after the actual allocation. Because the twice. At first, the location is the registefax. In the middle of
control flow graph is reduced to a list of blocks, control flasv i  block B3, it was spilled and thus the location changes to stack slot

possible between blocks that are not adjacent in the lisethe s1. At the beginning of blocIB4, it is reloaded to registerax.
location of an interval is different at the end of the predsce and Interval i14 (with the assigned registescx) is defined at the
at the start of the successor, a move instruction must betéus® beginning of blockd4 by a phi function. Assume that the operands

resolve the conflict. The resolving moves for a control flogeed  of the phi function ar&12 (when coming from blocB3) andR13
have the same semantics as the moves necessary to resolve plfivhen coming from blockd2). The according intervals arel2

functions: They must be treated as parallel copies, i.e.apping andii13, respectively. Interval 12 was split in blockB3 and thus
from source to target locations. The only difference is thaves changes the location there from registex to stack slok2, while
resulting from interval splitting originate from a singletérval, interval 113 is always in registeecx. The scenario depicted is
while moves resulting from phi functions have differenteivals realistic in that a method call inside blog requires all intervals
for the source and the target. In both cases, the moves must beto be spilled.
ordered properly so that registers holding incoming vahresnot First, we look at the control flow edge froBR to B4. The
overwritten with outgoing values. location of intervali 10 at the end oB2 is eax, and at the beginning
Adding SSA form deconstruction requires only small exten- of B4 is alsoeax. Thus, no resolving move is necessary. Interval
sions to the existing resolution algorithm. Figure 7 shdvesdntire i14 starts aB4. Accessing the corresponding phi function, its input
algorithm. It visits every edge of the control flow graph, seot- operand for block82, and the interval for this operand, yields the
ing a block predecessomith a block successqgrand iterates all interval 113. Because the location dft3 andi14 are bothecx,
intervals that are live at the beginning @fccessarThe algorithm again no resolving move is necessary, and the mapping fer thi
compares the location of the interval at the engrrefdecessoand control flow edge remains empty.
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SPECjvm2008 SPECjbb2005 DaCapo SciMark
Baseline SSA Form Baseline SSA Form Baseline SSA Form Baseline SSA Form
Compilation Statistics
Compiled Methods 6,788 6,813 521 520 8,242 8,242 23 24
Compiled Bytecodes [KByte] 1,094 1,098 78 78 2,272 2,275 3.64 3.65
Avg. Method Size [Byte/Method] 165 165 153 153 282 283 162 156
Compilation Time [msec.] 4,250 4,080 -4% 287 275 4% 13390 12,700 -5% 14.8 136  -8%
Back End Time [msec.] 1,170 1,020 -13% 82 71 -13% 2,930 2,460 -16% 48 39 -19%
Machine Code Size [KByte] 4,581 4563 0% 404 401 1% 11,760 11,719 0% 14.5 143 1%
Memory Allocation
Lifetime Analysis [KByte] 65,248 58,877 -10% 5,047 4559 -10% | 171,650 129,794 -24% 270 246 -9%
Allocation and Resolution [KByte] 48171 48,169  -0% 3,255 3239 0% | 89,144 88,879 -0% 180 168  -7%
LIR Before Register Allocation
Moves 203,671 180,640 -11%| 15797 13,644 -14% | 402,678 355936 -12% 908 593 -35%
Phi Functions 0 10,689 0 973 0 20,542 0 168
LIR After Register Allocation
Moves Register to Register 55592 53856 -3% 4,473 4245 5% | 127,318 124,351 -2% 193 177 -8%
Moves Constant to Register 35348 34612 -2% 3,129 3,028 -3%| 71967 70,663 -2% 99 98 1%
Moves Stack to Register 4,537 4550 +0% 335 335 -0% 3,718 3722 +0% 12 12 0%
Moves Register to Stack 38,715 33,650 -13% 2,636 2187 -17%| 65973 56,639 -14% 166 158 -5%
Moves Constant to Stack 0 926 0 105 0 1,386 0 1
Moves Stack to Stack 0 294 0 22 0 647 0 0

Figure9. Comparison of compilation statistics.

The same steps are performed for the control flow edge B®m
to B4. The location of intervai 10 is s1 at the end oB2 andeax
at the beginning 0B84, so a move frons1 to eax is added. The
phi function requires a resolving move from interdal2 to i14,
i.e., from the locatiors2 to ecx. Because the operands of the two
moves are not overlapping, they can be emitted in any order, a
resolving the mapping is trivial in this case.

Linux with kernel version 2.6.28. The results are obtainsthgi
32-bit VMs.

We compare our modified linear scan algorithm that oper-
ates on SSA form with the unmodified baseline version of the
JDK. We evaluate using the following groups of benchmarks: (
SPECjvm2008 [26] excluding the startup benchmarks (becaus
each of these runs in a new VM but we want to accumulate com-

Both the source and target operand of a move can be a stackpilation counters of one VM run) and the SciMark benchmarks

slot. Because one interval is assigned only one stack stotwhen
it is split and spilled multiple times, moves between twdetiént
stack slots can only occur with our added handling for phicfun
tions. Stack-to-stack moves are not supported by mosttaothies

(because we evaluate them separately), (2) SPECjbb20D5 325
the DaCapo benchmarks [2] version 2006-10-MR2, and (4) Sci-
Mark 2.0 [23]. SciMark is available both standalone and at q@fa
SPECjvm2008. It consists of scientific kernels that reqoiy few

and must be emulated with either a load and a store to a registe methods to be compiled. We use the standalone version leettaus

currently not in use, or a push and a pop of a memory location if
no register is free. Our implementation for the Intel x86hétexc-
ture does not reserve a scratch register that is alwaysablailor
such moves. However, the register allocator has exact laugel if
there is a register that is currently unused, and it is alssipte to
use a floating point register for an integer value becauseons c
putations need to be performed. Therefore, a register iabl@ain
nearly all cases. Still, a stack-to-stack moves requiresnachine
instructions, so we try to assign the same stack slot to theceo
and target of a phi function when the according intervals db n
overlap.

7. Evaluation

We modified the client compiler of Sun Microsystems’ Java
HotSpot™ VM, using an early snapshot version of the upcoming
JDK 7 available from the OpenJDK project [27]. All benchneark

are executed on a system with two Intel Xeon X5140 2.33 GHz
processors, 4 cores, and 32 GByte main memory, running Ubunt
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framework infrastructure of SPECjvm2008 would signifidgim-
crease the number of compiled methods.

7.1 Impact on Compile Time

Measuring the compile time is complicated because coniilat
is done in parallel with execution and thus subject to random
noise. In particular, the Java HotSP6tVM does not allow the
recording and replaying of a certain set of compiled methods
Therefore, a slightly different set of methods is compiledew
repeatedly executing the same benchmark. To reduce thég,noi
we limit the benchmarks to one benchmark thread if possible,
disable compilation in a separate thread, and report theageeof
20 executions. The standard deviation of the number of dehpi
methods and the size of compiled bytecodes is less than 0.8%
(relative to the reported mean) for all benchmarks. Neetess,
Figure 9 shows slightly different numbers when comparing th
baseline and our modified version of the client compiler.

The first group of rows in Figure 9 shows the basic compilation
statistics. SPECjvm2008 and DaCapo are large benchmasssui



allocated during lifetime analysis is reduced by 9% to 24%e T

B Resolution
100% - ®Linear Scan memory allocated during the I_inear scan_algorithm and reiswl
g-l O Lifetime Analysis is mostly unchanged, only SciMark requires 7% less memary fo
OLIR Construgtion these phases.

80% The bottom half of Figure 9 shows how our changes affect the
number of move operations. Before register allocationntiraber

of moves is 11% to 35% lower because phi functions are not yet
resolved with moves. But even the sum of the number of moves an
phi functions is lower than the original number of moves hsea
one phi function needs to be resolved to at least two moves.

After register allocation, when all phi functions are attga
resolved, the number of moves is still lower, especiallyrti@ves
from a register to the stack. This benefit is partially ab¢sd by
two new categories of moves introduced by our changes: (¥gmo

60% -

40% -

20% 1

0%

B S B S B S B S from a constant to the stack, and (2) moves between two stack
jym2008  jbb2005 DaCapo SciMark slots. These moves are introduced because the lifetimevaite
of a phi function can have a stack slot assigned at the point of
Figure 10. Compilation time of baselineB) and SSA form §) definition. If a block has more phi functions than the prooess
version of linear scan. has physical registers, this assignment is inevitable usecdhe

intervals for the phi functions all start at the same positio the
old implementation, the phi functions were already reslbg a
series of moves, and spill decisions could be made afterraaghb.
This resulted in cases where, for example, a constant wdedaa
a register and then the register was immediately spilleddtmek
slot. Now, the constant is stored directly into the stack $éading
to fewer moves in total. Because of the lower number of mabhes,
overall machine code size is also reduced, however thisgehemn
rather insignificant (1% or less).

where several thousand methods are compiled, SPECjbb2@05 i
medium size, and SciMark is small and requires only few nagho

to be compiled. The average method size of the DaCapo bench-
marks is significantly larger than for the other benchmaikse
lower compilation speed indicates that the overall contipitetime

does not scale linearly with the method size, which is realsten
because some optimizations of the client compiler do notimun
linear Fime. The average method size of SciMar_k is compqrabl 7.2 Impact on Run Time

SPECjvm2008 and SPECjvm2005, however SciMark consisys onl ) )

of methods with several nested loops. This leads to a higler d ~ The impact of our changes on the run time of the benchmarks

sity of phi functions and thus a different behavior of the pdsr. are low. Because the main allocation algorithm of lineamnsisa
SPECjvm2008 and SPECjbb2005 show roughly the same behaviorunchanged, mostly the same allocation and spilling detssare
for all aspects of the compiler that we measured. made with and without SSA form. The speedups are generally be

Our new register allocator decreases the overall compilati 0w the random noise and therefore not statistically sigafft. The
time by 4% to 8%. The percentage for SciMark is larger conpare  Only exception is the FFT benchmark of SciMark with a speedup
to the other benchmarks because the compiler spends less tim Of 1%, which is statistically significant because of the Iawiance
optimizing the HIR in the front end. The time spent in the back ©f SciMark results. It is caused by fewer moves in the heasily

end optimized by our changes (LIR construction, lifetimalgsis, ecuted innermost computation loop of the benchmark. Tren®i
linear scan register allocation, and resolution) is reduzg 13% slowdown for any benchmark.
to 19%.

Figure 10 shows the detailed numbers for these four compiler 7-3 Impact on Compiler Code Size
phases. For each benchmark, the first Brshows the baseline  Our modifications simplify the code of the client compilerdan
and the second bas) our modified SSA form version of linear  reduce its code size. We measure the impact on the lines of C++
scan. The sizes of the bars are normalized to the baselirfgeof t code, not counting empty lines, comments, assertiongjcation
according benchmark. The numbers shown inside the barb@re t code, debug outputs, and any other code excluded from produc
total time in milliseconds spent in this phase, so they surtoupe builds. The old code for SSA form deconstruction beforegiggi
back end timeow of Figure 9. LIR construction is 19% to 27% allocation is completely unnecessary, eliminating ab@ lnes.
faster because SSA form deconstruction is no longer pegdrm  Only about 20 lines are added to perform SSA form deconsgtruct
The lifetime analysis is 25% to 31% faster because the dlgori during resolution. The old code for initializing the dateustures
described in Section 4 needs no global data flow analysistiiftee and performing the global data flow analysis required ab&at 1
necessary for the linear scan algorithm is mostly unchamged  lines and is now unnecessary. Our new algorithm for building
cause our changes are minor. Only SciMark shows a 13% speedugifetime intervals, which is an extension of code that wasady
due to a high density of phi functions, whose intervals amgpsér present, added about 100 lines. Additionally, a number cfllem
now. The elimination of interval intersection checks déseu in changes both removed and added some lines. In total, theausv ¢
Section 5 does not gain a measurable speedup. The resqihtise is about 200 lines shorter than the old code.
is 1% to 10% slower because it now includes SSA form deconstru
tion. However, the additional time for the resolution phaseuch
smaller than the time saved during LIR construction, bee&8A 8. Related Work
form deconstruction is only a small addition to the resolualgo- Poletto et al. introduced the linear scan algorithm [22}eiT kari-
rithm while it was a complex algorithm during LIR construgti ant does not use lifetime holes and is not able to split iaderv.e.,

The reduced compilation time is also accompanied by a re- an interval has either one register assigned or is spilleiifentire
duced memory consumption. Because no intermediate data str  lifetime. This restricts the allocator but allows for a faibcation
tures for the data flow analysis are necessary, and theriatiter- because it does not require a resolution phase. They already
vals for phi functions have fewer lifetime holes, the totamory tioned that building the lifetime intervals consumes a #rsble

177



amount of the allocation time, and experimented with corsser
tive heuristics for fast building of intervals. Howevertadhat it is
not possible to do without a lifetime analysis. Téecond chance
binpackingalgorithm of Traub et al. added lifetime holes and in-
terval splitting [28]. This makes the linear scan algoritbnitable
for architectures with a low number of registers and few @mnewo
callee-saved registers.

In previous work, we presented additional optimizationat th
improve the quality of linear scan register allocation withim-
pacting compile time overly much [30]. We use register hagsa
lightweight alternative to coalescing of intervals, mopédistores
and loads out of loops, and eliminate redundant spill stofree
implementation for the Java HotSp¥tclient compiler is part of
the product version since Java 6 and the baseline for thiteimp
mentation.

Sarkar et al. claim that theiextended linear scaalgorithm
produces better code than graph coloring algorithms [2hpyT
show that the abstraction of graph coloring introduces cesgary
constraints that can be avoided by a linear scan algorithth wi
aggressive splitting of lifetime intervals. However, thayly cover
spill free register allocation as well as register allomativith total
spills where entire lifetime intervals are spilled. Thisaisevere
restriction especially for register constrained architezs. None of
the previously mentioned versions of linear scan operateéSA
form.

Mossenbock et al. provide an early approach to perform lin
ear scan register allocation directly on SSA form [19]. Hoere
they still deconstruct SSA form before register allocatibming
the construction of the lifetime intervals: They insert ranstruc-
tions into predecessor blocks for phi functions, leadingntervals
that start in the predecessor blocks and extending intoubees-
sor. They only keep the phi functions in the successor black a
placeholder to start a new interval. They use data flow aisatgs
construct the lifetime intervals, pre-order the moves dnidiync-
tions instead of using the parallel copy semantics of thefynin-
tions, and use no structural properties guaranteed by S®# fo

The original graph coloring register allocators (see faarex
ple [5, 8]) are not based on SSA form. Only recently, the pribpe
guaranteed by SSA form were found to be beneficial [6, 12]. The
same properties that we use to simplify linear scan regiteca-
tion, namely that the definition of every value dominatesuaks
and that it is enough to check interference at the definitimntp
of values [7], simplify the construction of the interferengraph
and allow spilling decisions to be decoupled from the actoé
oring phase. Hack et al. present an implementation for biériin
library [14]. Copy coalescing of phi functions and their amgents
is performed via graph recoloring [13].

Pereira et al. use the even more specialigdic single infor-
mation(SSI) form for their register allocation based on puzzlesol
ing [20]. SSI form requires not only phi functions for all iables
at every join point, but alspi functions at every point where con-
trol flow splits. They claim to be faster and better than lingzan
register allocation, however their comparison is perfamgth a
linear scan variant not based on SSA form such as our implemen
tation.

Boissinot et al. present a fast algorithm for liveness check
ing of SSA form programs, using the structural propertieargu
anteed by SSA form [4]. Their algorithm performs only few pre
computations, but still allows fast answers to the questibether a
certain value is live at a certain point in a method. It is netigned
to allow fast answers foall points in the program, therefore it is
not suitable for building lifetime intervals. Our algonithto build
lifetime intervals requires more time than their pre-cotagion,
but then the intervals contain information about the lifegiof all
values for the entire method.
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Boissinot et al. present an algorithm for SSA form decomstru
tion that is provably correct [3]. The complications theysciibe
where previous algorithms failed only arise when criticdges of
the control flow graph cannot be split. However, this is alsvpgs-
sible when compiling from Java bytecodes, so this is not @aeon
for our simple integration of SSA form deconstruction irfte tes-
olution phase of the linear scan algorithm.

Pereira et al. provide an algorithm for SSA form deconstonct
after register allocation [21]. It requires the input pragrto be in
conventional SSACSSA) form. Additionally to the normal SSA
form properties, CSSA form requires that all variables ofta p
function do not interfere. For example, the lifetime intdssof a
phi function’s input parameters must neither overlap thetiine
interval of the phi function, nor themselves. CSSA form can b
obtained from SSA form by splitting life ranges that violakés
property, leading to a higher number of variables. Howelds
then always safe to assign the same stack slot to a phi functio
and all its input parameters when spilling is necessarys atoids
moves between two different stack slots, which sometimesiroc
with our algorithm.

9. Conclusions

Linear scan is a fast algorithm for register allocation e&yly
used by just-in-time compilers. This paper explored howdhe
gorithm benefits from an intermediate representation in 8B.
The dominance property guaranteed by SSA form allows fama si
ple construction of lifetime intervals and eliminates dketor in-
terval intersection during allocation. Additionally, SSérm de-
construction can be easily integrated into the resolutioasp of
the register allocator. Our implementation for the Java3pot™
client compiler shows that the resulting algorithm is bathger
and faster.
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