
Partial Evaluation, Whole-Program Compilation

CHRIS FALLIN∗, F5, USA
MAXWELL BERNSTEIN, Recurse Center, USA

There is a tension in dynamic language runtime design between speed and correctness. State-of-the-art JIT

compilation, the result of enormous industrial investment and significant research, achieves heroic speedups at

the cost of complexity. This complexity leads to subtle and sometimes catastrophic correctness bugs. Much of

this complexity comes from the existence of multiple tiers and the need to maintain correspondence between

these separate definitions of the language’s semantics; it also comes from the indirect nature of the semantics

implicitly encoded in a compiler backend. One way to address this complexity is to automatically derive, as

much as possible, the compiled code from a single source-of-truth, such as the interpreter tier. In this work,

we introduce a partial evaluator that can compile a whole guest-language function ahead-of-time, without

tracing or profiling, “for free.” This transform unrolls an interpreter function expressed in a standard compiler

intermediate representation (static single assignment or SSA) and uses partial evaluation of the interpreter

function and its regular control flow to drive the guest-language compilation. The effect of this is that the

transform is applicable to almost unmodified existing interpreters in systems languages such as C or C++,

producing ahead-of-time guest-language compilers. We show the effectiveness of this new tool by applying

it to the interpreter tier of an existing industrial JavaScript engine, SpiderMonkey, yielding 2.17× speedups,

and the PUC-Rio Lua interpreter, yielding 1.84× speedups. Finally, we outline an approach to carry this work

further, deriving more of the capabilities of a JIT backend from first principles while retaining correctness.

CCS Concepts: • Software and its engineering→ Compilers; Interpreters; Translator writing systems
and compiler generators.

Additional Key Words and Phrases: partial evaluation, ahead-of-time compilation, WebAssembly

ACM Reference Format:
Chris Fallin and Maxwell Bernstein. 2025. Partial Evaluation, Whole-Program Compilation. Proc. ACM Program.

Lang. 9, PLDI, Article 160 (June 2025), 24 pages. https://doi.org/10.1145/3729259

1 Introduction
Most dynamic language runtimes start as interpreters, for their numerous initial advantages:

interpreters are easier to develop and extend than compilers; they are likewise easier to debug; and

they are usually more portable, relying less on platform- or ISA-specific details to generate and

execute code. Over time, dynamic language runtimes tend to build run-time type profiling and

code specialization features, and, going further with more engineering investment, some develop

just-in-time (JIT) compiler backends to remove interpretation overhead. A JIT is effective but

not free: it is a second implementation of language semantics that may diverge in hard-to-debug

ways from the interpreter, it generates specialized code that may depend on invariants that can be

invalidated at run-time, and this generated code is ephemeral and thus harder to audit or debug. It

also requires warmup: the engine must observe execution before producing specialized code.

∗
Work done while at Fastly.

Authors’ Contact Information: Chris Fallin, F5, San Jose, California, USA, chris@cfallin.org; Maxwell Bernstein, Recurse

Center, Boston, Massachusetts, USA, acm@bernsteinbear.com.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART160

https://doi.org/10.1145/3729259

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-6733-1803
HTTPS://ORCID.ORG/0000-0003-3130-7059
https://doi.org/10.1145/3729259
https://orcid.org/0000-0002-6733-1803
https://orcid.org/0000-0003-3130-7059
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3729259

160:2 Chris Fallin and Maxwell Bernstein

This complexity can result in serious issues. The three major JavaScript engines (V8, SpiderMon-

key and JSC) regularly have CVEs resulting from subtle JIT bugs (e.g. [3] as one recent example

in V8). Security-conscious platforms often eschew run-time code generation for this reason. For

example, iOS does not permit it outside the built-in web engine (and turns it off in this engine

too in lockdown mode), and the Edge browser has a secure mode that disables JIT [36]. Even

coarse-grained sandboxing, such as V8’s “ubercage” [26], does not protect against correctness bugs

that can violate isolation when multiple server-side tenants share one VM via isolates [10], or

when multiple requests with different users’ data are processed by one engine. The continued

prevalence of JS engines’ security bugs indicates that full language-semantics correctness is difficult

to maintain in a runtime-optimized system with many subtle invariants. Additionally, even if a bug

does not yield a sandbox escape, miscompilations can alter application logic in catastrophic ways.

We thus see a tension between the ever-increasing need for efficient execution of dynamic

languages—manifested in the enormous engineering investments in JIT compilers and language

runtime optimization—and the need for security and correctness. This is especially true as these

languages are used to implement the underpinnings of modern infrastructure.

To achieve better performance without sacrificing correctness, we would first ideally derive

a compiler backend from the language semantics expressed in an interpreter: that is, a single

source of truth, written in a direct way. Second, to best address the security concerns that lead us

away from JIT-based runtimes, we may wish to compile a dynamic language ahead-of-time. This

permits stronger isolation by decoupling compilation from warmup (possibly even in a separate

environment). The lack of warmup may allow separate requests or inputs to be processed by new

program executions. Finally, this approach permits disallowing run-time code loading completely.

Past work has explored many techniques to automatically derive compilers from interpreters.

Most prominently, partial evaluation, as envisioned by Futamura [21, 22] and implemented practi-

cally in Graal/Truffle [47], and metatracing, as implemented in PyPy [11], permit one definition of

a language’s semantics to provide both interpretation and compilation.

The first downside to these systems is that it they require the interpreter to be expressed in terms

of the framework. Though this avoids re-expressing language semantics across interpreter and

compiler tiers, the approach fails the single source of truth implementation principle in a different

way: rewriting an interpreter (especially in a mature language implementation) is also error-prone,

and introduces compatibility and migration concerns for a mature language and library ecosystem.

The second downside is that, for a mixture of fundamental and pragmatic reasons, these existing

approaches work either only as or best as a JIT. Metatracing must identify program paths to

compile, and so cannot compile ahead-of-time at all. Truffle’s design has been optimized for JIT

compilation with warmup, and though it has some provision for ahead-of-time compilation [5], its

usual dynamic-language use-cases require run-time optimization, which we hope to avoid.

In this work, we propose a new partial evaluation algorithm, the weval transform, that addresses

both of these needs. First, weval applies to an interpreter with its existing bytecode input, requiring

only a lightweight annotations to guide the specialization. This allows its application to mature

industrial interpreters, as we evaluate. Second, weval supports ahead-of-time compilation of whole

function bodies, with no need for run-time feedback or profiling.

weval is a partial-evaluation transform that works on a mostly unmodified interpreter body, at

the IR level: it transforms an arbitrary control-flow graph of basic blocks, in SSA form, unrolling an

interpreter loop as a side-effect that falls out of a general “context specialization” mechanism (§3).

Unlike metatracing, the resulting IR has a control-flow graph that replicates the bytecode’s control

flow, including reconvergence points and loops. Thus, weval permits ahead-of-time whole-function

compilation. And, unlike partial evaluation techniques that are explicitly built to unroll interpreter

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:3

loops, our mechanism is general, allowing this “specialization” to nest, or to be used for other kinds

of static code unrolling or specialization, and to adapt to different program representations.

Our tool is an open-source [2], industrial-strength compiler that, in its initial form, processes

interpreters compiled to WebAssembly [27] (Wasm); however, the algorithm could be applied to

any IR that uses basic blocks of SSA, such as LLVM [30], with some minimal requirements (§3.6).

This approach provides several benefits. First, it allows easy, rapid provisioning of a compiler-

based backend for a language runtime, as we show in our case study on Lua (§7) where we managed

to achieve a speedup of 1.84× with a minimal code diff. Many language implementations have only

interpreters and could benefit from this technique. Even established language runtimes can benefit

on new platforms not supported by their existing JIT backends: for example, the SpiderMonkey

JS engine (§6) has no JIT support when running on a server-side Wasm-based platform, whereas

weval allows us to attain a 2.17× speedup on average “for free”—deriving the result from exactly

the same interpreter source. Second, it provides a realistic pathway toward single-source-of-truth

definitions of language semantics. We describe a future path for carrying this approach forward

to include profile feedback in a semantics-preserving way, which could lead to a competitive JIT

derived from language semantics in an interpreter.

2 Futamura Projections and Partial Evaluation
In this work, we observe that we can automatically produce compiled code from an interpreter body

and its interpreted program input. In order to understand this further, we first need to understand

how to automatically produce compiled code from an interpreter: the Futamura projection.

2.1 The Futamura Projection
Futamura [21, 22] introduced the concept of partial evaluation in the context of compilation: by

partially evaluating an interpreter with its interpreted program, we obtain a compiled program.

Consider an interpreted program execution as a function invocation, where the interpreter re-

ceives two inputs, the interpreted program and the input to that program: Interp(Prog, Input). The
key idea of the first Futamura projection is to substitute in a constant 𝐶 for the Prog argument,

yielding a new function that we can consider a compiled form of the user program. Then we

have Compiled(Input) = SubstProg=𝐶 (Interp(Prog, Input)). What we have described so far is the first

Futamura projection: it is the partial evaluation of the interpreter with an interpreted program,

yielding a compiled program. Futamura also defines the second and third projections: the second

projection enhances compilation speed, and the third produces a compiler-compiler tool, but both

are more difficult than the first projection, and we will not describe them further in this section.

2.2 Optimizing Compilation: Interpreted Program to Specialized Code
One could achieve a basic kind of compilation by joining an interpreter with a snapshot of its input

(bytecode), perhaps by linking the interpreter with an additional data section and some startup code.

This fits the definition of a Futamura projection in a trivial sense. However, practically speaking,

this “compilation” lacks many of the properties one usually expects from compiled code. Mainly

this relates to performance: the combined module retains the performance characteristics of the

interpreter, because the interpreter body is unchanged. Let us now state a definition that sets a

minimum bar for a compilation with the desired performance:

Definition 1. A partial evaluator performs bytecode-erased compilation on an interpreter if

the resulting code does not contain the original interpreter loop or opcode-driven dynamic dispatch

and incorporates all bytecode parameters as constants: if a constant value from bytecode determines

a conditional branch or switch, the branch is folded, and if it is used as data, the data is a constant.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:4 Chris Fallin and Maxwell Bernstein

1 void interpret(bytecode_t* pc,

2 Value* stack) {

3 while (true) {

4 switch (*pc++) {

5 case OP_add:

6 Value v1 = *stack ++;

7 Value v2 = *stack ++;

8 *--stack = value_add(v1, v2);

9 break;

10 /* ... other opcodes ... */

11 } } }

Fig. 1. A sketch of an interpreter loop in C.

1 void interpret_specialized_func0(

2 bytecode_t* _pc , Value* stack) {

3 Value v1 = stack [0];

4 Value v2 = stack [1];

5 stack [1] = value_add(v1, v2);

6 return;

7 }

Fig. 2. Compiled code resulting from constant
propagation of interpret from Fig. 1 on one op-
code. Branch folding retains only the relevant
switch-case based on the opcode known at spe-
cialization time.

Fig. 3. An illustration of constant propagation over an interpreter loop: with one iteration, we can
deduce constant values, but multiple iterations cause the analysis to degrade to “unknown” because
all iterations are considered together.

Because this definition requires that the interpreter’s dynamic dispatch must be optimized away,

the compiled code’s control-flow graph (CFG) must correspond to the bytecode’s CFG instead.
1

This elimination of dynamic dispatch is both itself a speedup (in our observations, often 1.5-2×)
and a substrate for further optimizations: because each instance of an opcode becomes its own

static code, we can optimize it both separately and together with the opcodes around it.

2.3 Optimizing an Interpreter with its Input
The key question is: how can we practically expand bytecode to specialized code by partially evaluat-

ing an interpreter loop? As we will see in the rest of this section, there are various design points,

requiring various compromises in the way that the interpreter is expressed.

Above we introduced an algebraic analogy to partial evaluation, namely, substituting a variable

for a constant value and simplifying (optimizing). What happens if we apply the analogous compiler

analysis and transform, namely constant propagation and folding?

Consider the body of the interpreter loop in Fig. 1. If we take a function func0 of a single opcode,
say OP_add, and we take a constant initial stack pointer offset, we might imagine taking the body

of the interpreter and producing code similar to Fig. 2.

This code results because constant propagation can convert the fetch of the opcode to its constant

value OP_add. This in turn works because we are processing a partial evaluator invocation in which

the user has promised that this memory is constant (“specialize this function when this pointer

points to this data”). The specializer can then branch-fold the switch to the one case actually taken
due to the constant selector, and constant-fold the offsets from stack.

1
This concept is very similar to Jones-optimality [28], which specifies that a partial evaluator should “remove all computa-

tional overhead caused by interpretation.”

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:5

However, as soon as we advance to a program of two opcodes—before even considering control

flow within the interpreted program—we run into issues with constant propagation. In fact, we

glossed over the issue in the single-opcode example: how do we handle the interpreter loop

backedge? A classical iterative dataflow analysis, such as constant propagation, computes a Meet-

Over-All-Paths solution [6], meaning that it produces one analysis conclusion per static program

point, merging together all paths that could reach that point. At the top of the interpreter loop (one

program point), what is pc? When we merge all iterations together, we only reach the conclusion

that it is not constant, because we are analyzing all opcodes at once. The rest of the interpreter then

fails to specialize to the bytecode: pc is not constant, so neither is *pc, so we cannot branch-fold

the switch, so the result of specialization is only a copy of the original interpreter, with nothing

changed. This situation is illustrated in Fig. 3.

The heart of the issue is that in order to compile the bytecode to target code, we need to somehow

iterate over the bytecode operators and emit code for each one, and ensure this iteration happens at

compile-time. A constant-folding pass that retains the original CFG, only substituting in constants

where known, will not lead to this output. Can we build an analysis that somehow knows how to

unroll arbitrary interpreter loops over the bytecode?

One possible approach is to unroll all loops by analyzing the interpreter along a trace: in other

words, discarding the Meet-Over-All-Paths principle. This approach is appealing in its simplicity.

However, it can result in unbounded work: thus, it must be limited by trace size or some other

metric, and it can have surprising worst-case cost.

A more targeted approach, taken by PyPy [11], is to detect hot loops that result from loops in the

interpreted program, and trace the interpreted execution of these loops (together with annotations

that identify the interpreter loop itself). PyPy then instantiates and specializes the interpreter loop

once for each opcode in the loop.

This approach resolves the above limits but, as a profile-driven approach, it requires execution

of the interpreted program before compilation can commence. In some settings, we may desire

fully ahead-of-time compilation, or we may not have adequate or representative test inputs for the

interpreted program (or may not be able to run it at all in the compiler’s execution environment, if it

has other dependencies). Additionally, it can suffer from brittle performance cliffs: if the control-flow

path during run-time diverges from that seen during compilation, execution must revert to the

interpreter (possibly ameliorated by attaching “side traces” over time). This behavior of “falling off

the trace” was a well-known failure mode in the TraceMonkey JavaScript JIT [23].

The downside of both of the above options is that, in attempting to specialize an interpreter loop

fully automatically, they rely on heuristics that can fail fairly easily. One alternative is to allow—or

indeed, require—the interpreter author to explicitly denote the interpreter loop and how it should be

specialized. The high-level idea would be to devolve control of the main interpretation loop to a

framework that the partial evaluator is somehow aware of. This framework would understand the

format of the interpreted program (e.g., bytecode or AST nodes), and would take care of dispatching

to implementations of opcode semantics provided by the interpreter author. In this way, the partial

evaluator could directly translate the bytecode or other interpreted program representation to

compiled form by copying over and concatenating the implementations of each opcode.

While this ought to work robustly, because the partial evaluator is co-designed and developed

with the interpreter framework, it has the major disadvantage that it requires the interpreter to be

written in a way specific to this tool. An existing interpreter is likely to be difficult to port to this

framework. Instead, we design a generic partial evaluator that can apply to existing interpreters.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:6 Chris Fallin and Maxwell Bernstein

3 The weval Transform: User-Context-Controlled Constant Propagation
We have argued that to produce a bytecode-erased compilation, we need to somehow unroll the

interpreter loop during partial evaluation, analyzing the loop body separately for each interpreted-

program operator. Furthermore, we wish to do this without rewriting the interpreter to conform to

a framework that understands the structure of the interpreted program. Rather, we want to support

an existing interpreter, with minimal modifications, using its own logic to “parse” the bytecode as

we translate it opcode by opcode. In this section, we will introduce a transform that does exactly

this. We call this the weval transform, short for “WebAssembly [partial] evaluator.”

The transform operates on a function body represented as a control-flow graph (CFG) of basic

blocks in static single assignment (SSA) form. Due to the problem-space that we built this tool to

address (see §6), we build and use a framework that allows for SSA CFG-based Wasm-to-Wasm

compilation. However, without loss of generality, this transform can apply to any IR that is a CFG

of basic blocks, such as LLVM [30] (§3.6). This transform’s implementation is relatively small for

its power, measuring at 5 KLoC of Rust. We introduce this transform with three key ideas.

3.1 Key Idea #1: User Context
Recall that we began our discussion of the Futamura projection by noting how constant propagation

addresses the problem fully in the single-opcode case, but fails as soon as more than one opcode

exists in the interpreted program (Fig. 3). Specifically, when the constant-propagation analysis

follows the interpreter backedge, the “next” value of the interpreter program counter conflicts with

the previous value, and we conclude that nothing is constant at all.

To address this, we allow the interpreter to selectively introduce context specialization via intrinsics

to separate the analysis of each loop iteration of the interpreter (or other loop in the original

program). The intrinsic invocation appears like update_context(pc) at some point before the

loop backedge, as shown in Fig. 4; when performing an iterated dataflow analysis for constant

propagation, this causes analysis to flow to successor blocks in a new context. In other words, the set

of program-point locations analyzed by the iterated dataflow analysis is dynamic and expandable.

This will be illustrated by an example in Fig. 6, described below.

This annotation is lightweight and minimal, yet it unlocks an entire specialization pipeline: it

drives code duplication only where needed to replicate the interpreter body according to the overall

schema of the interpreted bytecode, and the rest of the specialization falls out. By avoiding the

“meet-over-all-paths” trap that we described in §2.3, we achieve a bytecode-erasing compilation that

produces an output CFG that follows the bytecode rather than the interpreter.

Note that context may be nested: we include intrinsics to push and pop context values. This allows

value-specialization or loop unrolling to occur inside of a single opcode case in the interpreter.

The context value (pc here) must be a known constant at specialization time. This will be the case

for bytecode-driven control flow with a fixed CFG, but, e.g., an opcode that computes an arbitrary

bytecode destination would not be compatible with this specialization. (What CFG should result

in the compiled code? Will there be an edge to every block?) To support interpreted control flow

with a known but variable number of destinations, such as switch opcodes, we allow for value

specialization on the selector value (§3.3).

Finally, observe that the context intrinsics are not load-bearing for correctness: they split constant-

propagation context, but the weval transform is sound regardless of whether separate contexts are

used to analyze duplicates of code. The worst that happens is that the analysis cannot derive any

constant values and the transform produces the original interpreter body. Separately, we provide

an intrinsic that asserts compile-time constantness to ensure the intrinsics are working as intended.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:7

1 void interpret(bytecode_t* pc) {

2 while (true) {

3 // Loaded data from `pc` is a

4 // constant , per specialization.

5 switch (*pc++) { /* ... */ }

6 // Update analysis context:

7 // backedge reaches loop header

8 // in a new context , maintaining

9 // constantness of `pc`.
10 update_context(pc);

11 } }

Fig. 4. Annotations to context-specialize analysis
of an interpreter function (§3.1).

1 switch (pc++) {

2 case OP_CONDITIONAL_BRANCH: {

3 pc = targets[specialized_value(

4 stack.pop(), 0, 2)];

5 break;

6 }

7 case OP_SWITCH: {

8 pc = targets[specialized_value(

9 stack.pop(), 0, num_targets);

10 break;

11 } }

Fig. 5. Annotations to value-specialize the inputs
to interpreted control flow (§3.3).

3.2 Key Idea #2: Context-Specialized Code Duplication
Given a generic function to be specialized with a set of constant parameters, we now define the

worklist-driven algorithm that produces the specialized function body, shown in Algorithm 1.

The algorithm operates over the generic (input) function in an SSA-based IR containing basic

blocks, and takes a list of abstract states for arguments: “run-time” (do not specialize), or a constant

value, or a pointer to constant data in memory. As output, it produces IR for another function that

is equivalent to the input whenever the actual arguments are consistent with the constant values

claimed at specialization time.

The algorithm clones both basic blocks and SSA values separately for each context they appear

in, and keeps maps to track the correspondence (lines 10 and 12). It performs constant propagation

as it runs, tracking state per cloned SSA value (line 14) over a standard constant-propagation

lattice type (line 5). As noted above, contexts for cloning are nested sequences of user-specified

values/loop counters (line 6). In practice these are interned to short integer identifiers for efficiency.

The algorithm is driven by a worklist of blocks to specialize (line 8). It does not clone everything

into every context: it only visits reachable code, and visits blocks in new contexts as analysis sees

“update context” intrinsics with context values provided by the co-running constant propagation.

The main worklist loop (line 25) invokes a per-block specializer (line 31) that either creates a

new block or re-specializes a block if it has already been visited in a context. A (context, block)
pair may be processed more than once if the abstract state at its input is updated, as with ordinary

fixpoint analyses; this may happen, for example, with loops. The specialization maps ensure that

we use consistent block and value numbers for a specialization in a given context. As such, when

we re-specialize a block, we clear out and recreate its instructions. (For space reasons, we omit the

details related to reusing value numbers, which essentially consists of map lookups.)

The block specializer transcribes instructions from the block in the input (“generic”) function to

the specialized block, and performs constant propagation. This is the heart of the partial evaluation:

constant values known during specialization (e.g., opcodes and parameters from bytecode) may be

incorporated into the specialization output.

The specializer processes context-update intrinsics during this pass over the block: in effect, the

“current context” is flow-sensitive state, known at the start of the block from the workqueue entry

and possibly updated by the end of the block.

When the pass reaches the end of a block, it processes the terminator (branch instruction) in

light of this context and the constant-propagation state. First, if the input to a two-way conditional

branch or a switch opcode is a known constant, the branch can be folded—simplified to only the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:8 Chris Fallin and Maxwell Bernstein

target that will always be taken. This is essential for partial evaluation of an interpreter loop: the

main switch over opcode should always be folded to only one case.

The algorithm then follows the targets to continue its context-sensitive cloning traversal: given

the (possibly updated) context, it looks up each block in the block-specialization map, enqueuing

this context and block on the worklist if not yet present. In any case, as with ordinary iterative

dataflow analysis, the block parameters (in our formulation of SSA; equivalently, inputs to 𝜙-nodes)

receive the abstract states from the arguments, meeting the lattice values into their existing states.

If the block had already been specialized but this abstract state changes, it is re-enqueued as well.

Note that this slightly simplified algorithm as presented requires a restricted form of SSA that

passes all live values through block parameters at every edge. In §3.4 we address this limitation.

In Fig. 6 we show an example of a specialization of a simple interpreter (supporting ADD, SUB

and GOTO) for a bytecode program that performs ADD and SUB operations in an infinite loop.

The interpreter is annotated with context updates, and the weval transform is invoked with a

specialization argument for the “program counter” argument that indicates the memory it references

is constant (i.e., ConstantMemory(..)). Note, however, that no other knowledge of interpreters, per-se,
is needed: this is a general transform for duplicating and constant-specializing code.

The analysis is worklist-driven and runs until fixpoint, but (as seen in this example) in practice

in most cases, makes one pass over the bytecode, emitting the portion of the interpreter-switch

corresponding to each opcode. That is, the overall scheme of a single-pass template compiler falls

out automatically, without us having to adapt the interpreter or bytecode into a framework that

understands this flow. (Note, however, that unlike a classical template compiler, weval is able to
constant-propagate across opcodes, and then produces IR that can be further optimized.)

The resulting compiled code in Fig. 6 contains a control-flow graph that corresponds to the

interpreted program, with its loop (the JMP backedge), rather than the interpreter. This results

in a bytecode-erased compilation per Definition 1: because loads from the interpreter’s program

representation (the bytecode pointer) are constant-propagated by the partial evaluation, and the

interpreter-switch body is cloned for each separate opcode (PC location) and then branch-folded,

all information from the bytecode is propagated into the resulting IR, and the bytecode is no longer

referenced or needed. This is an instance of a first Futamura projection.

3.3 Key Idea #3: Directed Value-Specialization
Basic block specialization requires compile-time constant context values: otherwise, we cannot

resolve branch targets to blocks in the specialized function statically.

However, an interpreted program will naturally have run-time-data-dependent control flow

in the form of conditional branches. An interpreter will implement these branch opcodes either

with its own branch, conditionally updating its “next PC” value, or with a branchless conditional-

select operator (e.g., condition ? targetPC : fallthroughPC). The issue with both of these is

that control flow reconverges to a single backedge to the next interpreter loop iteration. At the

update_context intrinsic call, what will constant-propagation know about pc? In fact, it will not

have a known constant value.

One possible solution to this dilemma is to write the interpreter control-flow with two backedges,

one for the taken- and one for not-taken case. This way, the next PC is always constant at any given

static program point, and the interpreter’s conditional branch becomes the conditional branch in

the compiled code. However, this approach falls short: it is vulnerable to tail-merging optimizations

when the interpreter itself is compiled
2
, and it does not scale to opcodes with a dynamic number of

2
We considered investigating intrinsics or other optimization directives in the interpreter source to prevent this optimization

from breaking the weval transform, but in the end, we decided this was a philosophical dead-end: it is better for the transform

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:9

Algorithm 1 An abbreviated form of the weval transform, as described in §3.2. Some details

regarding value specialization (§3.3) and SSA (§3.4) are omitted for space.

1: ⊲ Input: A function to specialize (e.g., an interpreter), generic, and special-

ization arguments specarg𝑖 : CPropLattice. ⊳

2: ⊲ Output: A function specialized such that specialized (arg
0
, arg

1
, ...) =

generic (arg
0
, arg

1
, ...) if arg𝑖 is consistent with specarg𝑖 . ⊳

3: ⊲ Omitted IR manipulation routines: NewBlock, ClearBlock, AppendInst,

CloneInst, AddArg and context-list truncation helper Truncate. ⊳

4: ⊲ Blocks are sets of instructions and have .params (SSA block parameters)

and .terminator properties. Instructions have a .args property. ⊳

5: type CPropLattice =

|Top
|Constant (value)
|ConstantMemory (bytes, offset)
|RunTime

6: type Context =
|Root
|Context ∗ Value (value)
|Context ∗ Spec (value)

7: ⊲Worklist of (Context, 𝑏𝑙𝑜𝑐𝑘) tuples to specialize. ⊳

8: worklist ← []
9: ⊲ Map from (Context, 𝑏𝑙𝑜𝑐𝑘) to specialized basic block labels. ⊳

10: blockmap← {}
11: ⊲ Map from (Context, value) to specialized SSA value numbers. ⊳

12: valuemap← {}
13: ⊲ Map from specialized SSA value numbers to CPropLattice elements. ⊳

14: valuestate← {}
15: specialized ← empty function body

16: procedure Specialize(generic, specargs)
17: ⊲ Create arguments in specialized function and initialize their partial-

evaluation state. ⊳
18: for all arg𝑖 ∈ generic.args do
19: newarg ← AddArg(specialized, typeof (arg𝑖))
20: valuemap[(Root, arg𝑖)] ← newarg

21: valuestate[newarg] ← specarg𝑖
22: ⊲ Start processing at the function entry block, in a root (empty) context. ⊳

23: push(worklist, (Root, generic.entry))
24: ⊲ Run the worklist until empty, specializing one block at a time. ⊳

25: while worklist is not empty do
26: (𝑐𝑡𝑥,𝑏𝑙𝑜𝑐𝑘) ← pop (worklist)
27: SpecializeBlock(ctx, block)

28: procedure AbsEval(inst, abstract_values)
29: ⊲ Omitted for space. Standard constant propagation: e.g.,

add (Constant (1),Constant (2)) → Constant (3) . ⊳

30: ⊲ Abstract evaluation of loads at a ConstantMemory address reads the

value at the pointer value’s offset. ⊳

31: procedure SpecializeBlock(ctx, block)
32: if (ctx, block) ∈ blockmap then
33: ⊲ Clear contents of a block that we are re-processing. ⊳

34: 𝑏 ← blockmap[(ctx, block)]
35: ClearBlock(b)

36: else ⊲ Create a new, empty block in the specialized function.

37: 𝑏 ← NewBlock(specialized)

38: blockmap[(ctx, block)] ← 𝑏

39: ⊲ For each instruction in the generic version of this block, partially evalu-

ate and transcribe the results into the specialized block. ⊳

40: for all inst ∈ block do
41: specargs← {valuemap[(ctx, value)] |value ∈ inst.args}
42: argstate← {valuestate[(ctx, value)] or Top |value ∈

inst .args}
43: if inst is push_context then
44: ctx ← ctx ∗ Value (argstate[0])
45: else if inst is pop_context then
46: ⊲ Remove last element of context: e.g., Root ∗Value (..) → Root ⊳

47: ctx ← Truncate(ctx)
48: else if inst is update_context then
49: ctx ← Truncate(ctx) ∗ Value (argstate[0])
50: else
51: abstract_result ← AbsEval(inst, argstate)
52: result ← CloneInst(inst, specargs)
53: AppendInst(𝑏 , result)

54: valuestate[result] ← abstract_result

55: b.terminator ← SpecializeTerm(block.terminator, ctx)
56: procedure SpecializeTerm(terminator, context)

57: Branch-fold terminator according to constant-propagation state in

valuestate.

58: terminator .targets← {SpecializeTarget(context, target) |target ∈
terminator .targets}

59: return terminator

60: procedure SpecializeTarget(context, target)
61: if (context, target.block) ∉ blockmap then
62: 𝑏 ← NewBlock

63: blockmap[(context, target .block)] ← 𝑏

64: else
65: 𝑏 ← blockmap[(context, target .block)]
66: for all (arg, param) ∈ zip (target .args, b.params) do
67: valuestate[param] ← valuestate[param] ⊔ valuestate[arg]
68: if any abstract state input to 𝑏 changed or 𝑏 is new then
69: Append(worklist, (context, target .block))

Fig. 6. An example of a partial evaluation of a simple interpreter on a three-opcode interpreted program. The
optimizer can subsequently merge together the blocks on the right-hand side, creating a compilation output
that is bytecode-erased, with a CFG that corresponds to bytecode rather than the interpreter.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:10 Chris Fallin and Maxwell Bernstein

targets (from switch statements, for example). In essence, we cannot reify all control flow paths as

branches in the interpreter if we do not have a static number of paths for one opcode.

Instead, we introduce another intrinsic to allow splitting context on values (in the partial evaluation

literature, this is known as “The Trick” [29]). The idea is that rather than a scalar context (e.g., an

interpreter PC), we add a sub-context index, so specialization maps are keyed on ⟨ basic block,
context, value ⟩. We add an intrinsic int32_t specialized_value(int32_t value, int32_t
low, int32_t high) that specifies a range of 𝑁 possible values, and passes through a run-time

value. At the intrinsic callsite, the block specialization generates control flow to 𝑁 blocks, branching

at runtime on value, then constant-propagating at compile time in each specialized path. The net

result is that as long as we have a statically-enumerable list of possible values for a “next PC,” we

can support arbitrary control flow operators in bytecode such as switch.
The interpreter uses this intrinsic by passing the input to a conditional branch, or to a switch

opcode, through the intrinsic. We show an example of use in Fig. 5.

3.4 Maintaining Static Single Assignment (SSA) Form
There is one optimization that is critical to grant the weval transform acceptable performance in

practice. An SSA-based IR has the key invariant that a value can be used only in the subtree of the

dominance tree below its definition—that is, in a block that is dominated by the block where it is

defined. This invariant ensures that the value is always defined before it is used during program

execution. Because the result of the weval specialization transform is a control-flow graph that

resembles the interpreted program’s control-flow graph rather than that of the interpreter, the

def-to-use relationships in the IR of the interpreter body may no longer satisfy this invariant when

transcribed over to the specialized function body by Algorithm 1. Thus, we must somehow repair

the SSA, or ensure by construction that we do not violate this invariant.

We noted above one naïve solution: we could process a form of SSA that explicitly passes all live

values across control-flow edges with block parameters (or 𝜙-nodes). This guarantees correctness

because it trivially removes any dependence on inter-block dominance relations. However, this

leads to very high transform cost and overhead: in our experiments, up to a 5x increase in block

parameter count, yielding very slow compilation of the result.

To understand our more efficient solution, let us start from what goes wrong if we process

ordinary SSA (with use-def links across blocks) with Algorithm 1. If a value is defined before a

context update intrinsic, and used afterward (e.g., a loop-carried dependence across interpreter loop

iterations), then when we map uses of this value through specialized SSA value map, we will not

find any definition in the current context. Furthermore, there is no obvious single “previous” context

to fall back to: as described above, context cloning can lead to arbitrary CFGs. Fundamentally, any

value that is live across an edge between blocks in different contexts may need a block parameter

(or 𝜙-node) to merge incoming edges from copies of the predecessor in different contexts. This

corresponds directly to SSA construction over the interpreted bytecode’s CFG.

We implement an analysis and transform that runs before Algorithm 1 and inserts these block

parameters. In its simplest form, it finds blocks that follow context-update intrinsics and adds block

parameters for all values flowing into these blocks. A further optimization finds points at which

context-changes flow across non-dominating edges, e.g., loop backedges, rather than all blocks

following a context-change. There are often fewer of the former.

Finally, note that the transform in Algorithm 1 omitted some dependency management that

is necessary when SSA values are used across blocks: when the constant-propagation state for

to work for any code, optimized in any way (as far as practical). The calls to intrinsics will never be optimized away when

compiling the interpreter, because they are external/imported functions; that is all that is necessary for correctness.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:11

an SSA value is updated, any blocks that use that SSA value must be re-processed as well. In

our implementation we track dependencies at a block level. A simple implementation could also

re-enqueue the whole subtree of the dominance tree when a block is (re-)processed.

3.5 Interface: Semantics-Preserving Specialization
From the point of view of an interpreter and language runtime, how do we integrate a transform

that operates on the interpreter itself, seemingly from outside the system? Furthermore, how do we

reason about what the interface to this fragment of specialized code is, and how we can integrate

it, i.e. invoke it in place of the original interpreter?

The key abstraction we provide is semantics-preserving specialization. The user of the weval tool

can make specialization requests that reference a function (e.g., a generic interpreter) and include

some constant arguments to that function. The request causes the partial evaluator tool to generate

a new, specialized function. Each function argument is named in a specialization request with one

of three modes: RunTime, SpecializedConst(value), or SpecializedMemory(data). RunTime means

the value is not known at compile time, and the latter two specialize on either a constant value

or constant data at the given pointer, respectively. The specialization request makes the promise

that the function parameter or the memory contents will have those values at invocation time,

and weval preserves the function’s semantics as long as this promise holds. In order to retain

function-pointer type compatibility, each specialized function continues to take parameters even

for specialized arguments. The specialized function body simply ignores these parameters.

There are two general ways this API could be integrated into a system: within the execution

universe of the program undergoing specialization, or outside of it. Both are reasonable for different

design points. An interpreter that already has a separable frontend to parse and create bytecode

might prefer to invoke weval “from the outside,” appending new functions to an image of the

runtime. On the other hand, when adapting an existing interpreter with no clear phase separation,

it might make more sense to request a specialization “from the inside,” directly providing data

from the heap and receiving a function pointer in return. This could operate at run-time, with

a JIT-compilation backend, or it could operate in a snapshot workflow: enqueue specialization

requests, snapshot the program with its heap, append new functions to the snapshot, and restart. In

our Wasm-based prototype, we take this latter approach, building on top of the Wizer [19] snapshot

tool. Note, however, that this is not fundamental to the weval transform.

When integrated into a Wasm-snapshot build workflow, the top-level interface to our tool is a

function accessible to the Wasm guest that has a signature like the following (slightly simplified):

template <typename ... Args >

request_t* specialize(func_t* result , func_t generic , Args ... args);

This enqueues the “request” at a well-known location in the Wasm heap so that the weval tool
can find it; when theWasmmodule snapshot is processed, the function pointer at result is updated
to point to the appended function.

The integration into an interpreter then requires one to: (i) enqueue specialization requests when

function bytecode is created; (ii) store a specialized-code function pointer on function objects;

and (iii) check for and invoke this function pointer.
3
We will see objective measures of annotation

overhead, including this “plumbing” to weave the specializations into the language runtime’s

execution, in the following sections.

3
This is usually a conditional, and the original interpreter may still be present if the interpreted language allows, e.g., eval()
at run-time, so not every function may be specialized—but this is outside the scope of the weval tool itself.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:12 Chris Fallin and Maxwell Bernstein

Fig. 7. Partial evaluation by itself removes dispatch overhead, but preserves load/store semantics of interpreter
state data structures, leading to inefficiency.

3.6 Generality Across IRs
We prototyped this transform on WebAssembly for pragmatic reasons (it was the platform that

spawned the need for our tool) but we believe the transform is general. In brief, it will work on any

IR and platform given these requirements:

• The possible control-flow edges need to be explicit—for example, the IR cannot have a

computed-goto feature with “label address” operators. Otherwise, it would not be possible to

resolve block targets in specialization contexts ahead of time.

• The IR needs to support arbitrary, e.g., irreducible, control flow: when driven by specialized-

on bytecode, i.e. user-controlled data, invariants of the original CFG such as reducibility may

be lost. In our prototype on Wasm, where the output format can only represent reducible

CFGs, we implement special lowering for irreducibility.

• The platform and tool interface together need to have a way to expose “constant memory”

to the transform. In our prototype, the interface allows specifying a function argument as

“pointer to these constant bytes” (e.g., bytecode or interpreter configuration data), and this

works from inside the Wasm module, referring to bytes in the Wasm heap snapshot. However,

one could also imagine an externally-driven interface where the data is provided separately.

4 Handling Interpreter State Efficiently
As it stands so far, our partial evaluator can eliminate an interpreter’s dispatch overhead by pasting

together the parts of the interpreter’s main loop that implement each opcode. However, these

opcode implementations will still likely contain dynamic indirection to access the interpreted

program’s state. This is another source of overhead that differentiates interpreted execution from

fully optimized compiled execution, and we wish to eliminate it as well.

As a simple example, consider a bytecode for a virtual register-based interpreter, together with

opcode implementations, in Fig. 7. If we were to take the Futamura projection of this interpreter

over the bytecode, we might obtain a compiled result like that in the figure.

The regs array accesses compile to loads and stores to offsets in the interpreter’s state. A good

alias analysis, combined with redundant load elimination, dead store elimination, and store-to-load

forwarding optimizations,might be able to disambiguate these loads and stores. However, a realistic

interpreter might have other features that interfere with this: for example, calls to other functions.

These functions may not access regs, but this cannot be proven intraprocedurally. Ideally we would

like to inform to the partial evaluator that these values can be stored in true locals (i.e., SSA values

in the weval transform result) rather than memory.

4.1 Virtualized Registers
weval allows the interpreter to communicate which memory reads and writes correspond to

true SSA locals via intrinsics. Specifically, it provides the intrinsics load_register(index) and
store_register(index, value) that are semantically equivalent to loads and stores to a hidden

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:13

array within the specialized function. The index parameter must be a constant (perhaps loaded

from the constant bytecode) during specialization. (See §5 for an example that uses these intrinsics.)

The specialization transform carries a map of indices to SSA values, and translates these intrinsics

appropriately, reconstructing SSA by inserting block parameters at merge points where needed.

4.2 In-Memory State: Locals and Operand Stack
Non-escaping locals provide an important primitive, but interpreters sometimes mutate state that

is visible to the rest of the runtime as well. For example, a language with GC might need to inspect

local-variable values in order to mark them or update them after a compaction.

As above, we wish to lift the original in-memory storage to SSA when possible. However, these

values need to be written back to memory at certain points, and their new values reloaded afterward.

To support this, we provide two state abstractions that build on virtualized registers, but carry

both the value and a canonical in-memory address. This state operates like a write-back cache: the

transform will perform true loads when necessary, and will generate stores at “flush” intrinsics.

For the indexed-local case, weval provides the intrinsics read(index, address), write(index,
address, value), and flush(). Many interpreters also implement a stack VM abstraction with

opcodes that push and pop operands and results. weval thus provides the intrinsics push(address,
value), pop(address), read_stack(depth, address), and write_stack(depth, address,
value). These perform an abstract interpretation of stack state in lieu of explicit local indices.

Note that some care must be taken to ensure that flush() is invoked wherever the in-memory

state might be observed. In our SpiderMonkey adaptation (§6) we built a C++ RAII mechanism to

ensure this (exposing the ability to call the rest of the runtime only after interpreter state is flushed).

Any interpreter that opts into these intrinsics will need to take care that a flush has occurred before

in-memory state may be observed. Other design points might also be possible: for example, a new

intrinsic or mode in our tool could be added that flushes at every callsite, or that tracks escaped

pointers to the state in some other way.

4.3 Discussion: Semantics-Preservation and Polyfills
The locals and stack intrinsics differ from the initial function-specialization transform in §3 in two

ways: (i) they grant the weval tool permission to diverge in semantics in controlled ways (lazy

flushing of in-memory state with user-denoted synchronization points), and (ii) they are not simply

intrinsics that can be removed (“hints”) but must be replaced/polyfilled for ordinary execution of

the original function body to work. This permission to diverge is fundamental for performance: the

memory operations become a severe bottleneck otherwise.

The intrinsic signatures are carefully designed so that polyfills are possible: the in-memory state

intrinsics take address arguments and can thus fall back to true loads and stores. The register

intrinsics (§4.1) could be rewritten to loads and stores to an array. For pragmatic reasons we have

not implemented these polyfills, and instead we generate two separate versions of the interpreter

body function with and without state intrinsics, but this is not fundamental.

5 Case Study: Minimal Toy Interpreter
To give a feel for weval, we integrate it first into a minimal example interpreter—a small 64-bit

register machine namedMin. Min has 10 instructions that operate on a program counter 𝑝𝑐 , an array

of indexed registers 𝑟𝑒𝑔𝑠 , and an accumulator register 𝑎𝑐𝑐𝑢𝑚. Except for the JMPNZ instruction, the

machine reads the instruction, increments the 𝑝𝑐 , executes the instruction, and returns to the top

of the interpreter loop. The interpreter loop is shown in Figure 8.

The first step to wevaling an interpreter is adding a context annotation. To specialize a bytecode

interpreter, we use the program counter—the pc—as the context. As the annotation only has

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:14 Chris Fallin and Maxwell Bernstein

1 uint64_t Execute(uint64_t *program) {

2 uint64_t accum = 0, pc = 0;

3 uint64_t regs [256] = {0};

4 PUSH_CONTEXT(pc); // NEW

5 while (true) {

6 switch (program[pc++]) {

7 case LOAD_IMMEDIATE:

8 accum = program[pc++];

9 break;

10 case STORE_REG: {

11 uint64_t idx = program[pc++];

12 regs[idx] = accum;

13 break; }

14 case LOAD_REG: {

15 uint64_t idx = program[pc++];

16 accum = regs[idx];

17 break; }

18 case PRINT: {

19 const char* msg =

20 (const char*) program[pc++];

21 printf("%s", msg);

22 break; }

23 case PRINT1:

24 printf("%" PRIu64 , accum);

25 break;

26 case HALT: return accum;

27 case JMPNZ: {

28 uint64_t addr = program[pc++];

29 if (SPECIALIZE_VALUE(

30 accum != 0, 0, 2)) // NEW

31 pc = addr;

32 break; }

33 case INC: accum ++; break;

34 case DEC: accum --; break;

35 case ADD: {

36 uint64_t idx1 = program[pc++];

37 uint64_t idx2 = program[pc++];

38 accum = regs[idx1] + regs[idx2];

39 break; }

40 default: abort();

41 } // end switch

42 UPDATE_CONTEXT(pc); // NEW

43 } // end while

44 POP_CONTEXT (); // NEW

45 }

Fig. 8. Min bytecode interpreter in C. Lines
marked NEW are the added weval annotations.

1 #define REG_AT(idx) (IsSpecialized ? \

2 load_register(idx) : \

3 regs[idx])

4

5 #define REG_AT_PUT(idx , val) \

6 if (IsSpecialized) { \

7 store_register(idx , val); \

8 } else { \

9 regs[idx] = val; \

10 }

11

12 template <bool IsSpecialized >

13 uint64_t Execute(uint64_t *program) {

14 // ...

15 REG_AT_PUT(idx , accum);

16 // ...

17 accum = REG_AT(idx);

18 // ...

19 }

Fig. 9. We modify the macros to read and write
registers to conditionally use weval’s register in-
trinsics. For non-fundamental reasons, we cur-
rently don’t polyfill the intrinsics in our tool in
non-specialized versions of the function, so we
need to generate two versions of the interpreter
function: one using the intrinsics, and one with
a conventional register array. In order to create
both alternatives, we use C++ template special-
ization to ensure this choice is made when the
interpreter is compiled. In a pure C-based inter-
preter, one could put the interpret function in
a separate file, redefine the macros twice (once
for intrinsics and once without), and include the
function body in both cases.

Native Compiled C
Native Interpreter

Interpreter on Wasm
+ weval

+ locals opt
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
[s

]

1.00x

8.01x

12.69x

4.53x

1.01x

Min interpreter runtime by execution strategy (lower is better)

Fig. 10. Benchmark of the loop program with dif-
ferent execution strategies.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:15

meaning when the program is being partially evaluated, we invoke the annotations with macros

that are conditionally defined only in a build for weval.
These annotations alone will improve performance: they unroll the interpreter loop into guest

language control flow and allow for weval’s optimizer to “see through” the interpreter into the

guest language. We can, however, do better: we can also use weval’s state optimizations (§4).

To allow weval to optimize 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 and remove loads/stores, in Fig. 9 we replace direct array

accesses like regs[idx] with macros REG_AT(idx) and REG_AT_PUT(idx, val) and define them

to use load_register(idx) and store_register(idx, val) in a variant of Execute passed to

the partial evaluator. Now we can unroll the register bytecode into direct SSA dataflow. This avoids

touching memory and gives more information to the optimizer.

As a benchmark, we write one program in Min that computes the sum of all integers from 0 to 100

million and prints it to stdout. In Fig. 10 we show performance of a Min program running on the C++

interpreter running on the host platform directly (as an x86_64 program), on the interpreter compiled

to Wasm, and on that interpreter processed by weval and with interpreter-state optimizations

applied (all Wasm variants running on Wasmtime), all compared to the equivalent program written

in C.
4
We show that wevaling the interpreter beats native interpreter performance and unrolling

local variables yields still more speedup, coming within 1% of the performance of the equivalent

program written in C and compiled to native code.

6 Case Study: SpiderMonkey JavaScript Interpreter
In this section, we present our most significant real-world use-case: an application of our partial

evaluator to the SpiderMonkey [4] JavaScript engine’s interpreter, in order to derive compiled

code directly from the interpreter semantics. This application of our tool has been merged into

the StarlingMonkey JS runtime [8] which embeds SpiderMonkey to target Wasm-first platforms,

where run-time code generation (JIT) is not supported. weval-based snapshot processing is used to
provide its “ahead-of-time compilation” (AOT) feature.

The SpiderMonkey JavaScript engine, running on a native platform (e.g. x86 or ARM), has

several interpreter tiers and several JIT-compilation tiers. It does not have support for ahead-of-

time compilation. It has been ported to run within a WebAssembly module [15]; in this mode, it

runs only with its interpreter tiers, because Wasm does not support run-time code-generation.

SpiderMonkey supports inline caches (ICs) using a separate bytecode, CacheIR [17], to represent

their logic, and the engine can execute these ICs in an interpreted mode using the Portable Baseline

Interpreter (PBL) [18]. We take this as our baseline.

6.1 Ahead-of-Time Compilation
The StarlingMonkey runtime establishes a build workflow on top of SpiderMonkey that is superfi-

cially ahead-of-time: it loads the source into the engine, translating it to bytecode, then freezes

Wasm execution using the Wizer [19] snapshotting tool. This snapshot, saved as a Wasm module,

starts immediately interpreting bytecode when it is later executed.

In order to build ahead-of-time compilation on top of this, in a way that provides a bytecode-erased

compilation per our definition, we need (i) to ensure all bytecode that will be interpreted at run-

time is present in the snapshot, and (ii) process the snapshot with weval, creating and appending

compiled function bodies to the Wasm module for each bytecode function.

4
We find that a sufficiently advanced optimizer, such as the one present in Clang/LLVM, can completely unroll the loop into

the closed-form 𝑛 (𝑛 + 1)/2. Adding such an optimizer (for example, Binaryen [46]) is future work and not relevant to the

main claims of this paper. To keep the loop and local variables around for the benchmark, we annotate with volatile.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:16 Chris Fallin and Maxwell Bernstein

It would seem that the specialization aspect of dynamic-language compilation is at odds with

AOT compilation: the PBL interpreter executes inline-cache bodies that are generated at run-time

from the particular cases that the interpreter observes. Thus, the bytecode for these ICs is not

available to compile via weval when processing the snapshot.

However, we observe that most possible IC bodies are known ahead-of-time. SpiderMonkey’s set

of possible ICs is technically infinite (up to bytecode length limits), because some ICs contain guard

sequences that depend on user-controlled data structures (e.g. one guard per object in a prototype

chain). But most are small and well-known, because the IC generator includes short handwritten

sequences that directly correspond to the slow-path logic in C++. Note also that SpiderMonkey

separates data parameters from code in ICs already, in order to allow code-sharing: that is, constants,

such as object shape pointers in shape guards, are not baked into the IC but are loaded from a “stub

data” region that is separate for each usage of the IC body.

We collect a corpus of known IC bodies by adding a mode to the interpreter to dump unknown

ICs and running this over the unit-test suite—with the idea that any important ICs will be exercised

in unit tests. We build this corpus into the engine binary, and update the IC attachment logic to

look up generated IC cases in a hashtable of pre-loaded ICs first. This corpus contains the bytecode

and allows weval to “pre-specialize” compiled IC bodies for all ICs in the corpus. We found that a

corpus of 2320 IC bodies (most of them a dozen or fewer opcodes) covered all language features

tested in the testsuite and gave 100% coverage of our benchmarks below.

Stated succinctly, the key insight is: ahead-of-time compilation of JavaScript is possible at this

level because inline caches (ICs) allow dynamism in semantics to be pushed to late-binding run-time

data changes (function pointer updates) rather than code changes.

6.2 Changes to the Interpreter
Next, we had to ensure that weval finds all bytecode JS function bodies and IC bodies in the

snapshot and appends compiled Wasm functions to the module to replace these; we had to ensure

the interpreters were compatible with weval; and we had to ensure that the engine would invoke

these “specialized” functions rather than the interpreter.

In order to permit PBL’s two interpreter loops—for JS and IC bytecode—to be partially evaluated,

several minor changes were necessary. First, we had to ensure that one native function call frame

(in the interpreter’s implementation language, C++) corresponded to one JS function or IC stub

call; this is what allows per-function specialization to work. The interpreter was originally written

to perform JS calls and returns “inline,” by pushing and popping JS stack frames as data without

making C++-level calls. We modified the interpreter to recurse instead.

Second, as in the previous section, we added annotations to update context, and to optimize the

storage of interpreter state. We used weval’s “registers” for CacheIR, which is a register-based IR;

and “locals” and the virtualized operand stack for JS bytecode.

To handle several forms of non-local control flow, our modified interpreter loop tail-calls

(“restarts”) to a non-specialized version of itself—just for the active function frame—in several

control flow situations that are nontrivial or inefficient to handle: async function resumes, which

would imply multiple function entry points
5
, and error cases (including exception throws), to

minimize compiled code size. The engine supports all edge cases and retains 100% compatibility

(continues to pass all tests), and only a negligible fraction of execution time is spent in interpreted

(non-specialized) code in our benchmarks.

5
It should be possible to either include a switch at the beginning of async functions to handle this, or more ambitiously,

define new intrinsics that allow compiling coroutine-like code to WebAssembly’s stack-switching proposal; we have not yet

implemented either approach.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:17

Table 1. Evaluation configurations for SpiderMonkey as a Wasm module.

Configuration Description ICs Dispatch Interpreter State
Generic Interp Default (generic) interpreter No Dynamic Dynamic (memory)

Interp + ICs PBL interpreter Yes Dynamic Dynamic (memory)

wevaled AOT-compiled via wevaled PBL Yes Static Dynamic (memory)

wevaled + state Same, with state optimizations Yes Static Static (Wasm locals)

Table 2. Evaluation configurations for native-JIT SpiderMonkey, as a comparison point to above. Note that
the Optimized configuration does not yet have an equivalent in Table 1; see §9 for Future Work on this point.

Configuration Description ICs Dispatch Interpreter State
Generic Interp Default (generic) interpreter No Dynamic Dynamic (memory)

Interp + ICs PBL interpreter Yes Dynamic Dynamic (memory)

Compiled + ICs Baseline compiler Yes Static Dynamic (memory)

Optimized IonMonkey optimizing backend Inlined Static Static (regalloc)

Our patch to add these annotations and intrinsics amounted to +1045 -2 lines, including a

vendored weval.h. The changes to the interpreter function itself amount to 133 lines of alternate

macro definitions to swap in the intrinsics.

6.3 Performance Results
In Fig. 11, we show the performance of our modified SpiderMonkey engine on the Octane benchmark

suite [37], reporting throughput (inverse run time, i.e., speed) data for the configurations listed in

Table 1, all as Wasm modules running on Wasmtime [7].

weval’s speedup is seen as the delta from Interp + ICs to wevaled + state. This ratio is a 2.17×
speedup; up to 2.93× on the best benchmark (Richards) and above 2× in all cases except RegExp

(which depends heavily on the regular expression engine’s interpreter loop which we have not

modified) and CodeLoad (which tests the engine’s code loading rather than execution speed).

Our use of interpreter state optimizations was motivated by the observation that loads and stores

to locals and the operand stack are quite hot. By making use of these intrinsics, from the wevaled
configuration to wevaled + state, we see a 1.37× speedup. Without this optimization, a number of

benchmarks see almost no speedup at all (Crypto, Mandreel). Across all of Octane, the virtualized

stack intrinsics elide 84% of 639K loads and 76% of 563K stores; the local intrinsics elide 14% of

149K loads and 5% of 74K stores. (Pushes and pops happen at every opcode, while JS locals are

accessed less frequently and so GC safepoints are more likely to flush them to memory first.)

6.4 Comparison to Native Execution
In order to judge the relative speedups attained by weval, and also eventual upper bounds, we

compare Wasm-based execution to analogous configurations in a native-code setting with JIT

backends. Note that we do not intend to compare wevaled code inside a Wasm module directly to

the native code—it encounters some overhead due to theWasm sandbox—but rather, the progressive

ratios of each step on the two platforms.

Fig. 12 shows three of the four configurations from §6.3 on Wasm (skipping plain wevaled
without state optimizations) alongside four configurations running natively on the same system.

The native configurations are designed to be analogous to the configurations running within a

Wasm module (except for the last, Optimized), and are described in Table 2.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:18 Chris Fallin and Maxwell Bernstein

Rich
ard

s

Delt
aB

lue
Cryp

to

Ra
yTr

ace

Ea
rle

yB
oy

er

Re
gE

xp
Sp

lay

Nav
ier

Sto
kes Pd

fJS

Man
dre

el

Gam
eb

oy

Cod
eLo

ad
Box2

D

ge
om

ea
n

0

1

2

3

4

Sp
ee

du
p

SpiderMonkey execution performance by execution strategy (higher is better) Generic Interp
Interp + ICs
wevaled
wevaled + state

Fig. 11. Performance results of Octane benchmark suite on SpiderMonkey engine, with interpreter in a Wasm
module (without and with ICs), and weval-compiled code (without and with interpreter-state optimizations).

Gen
eri

c In
ter

p

Int
erp

+ICs

wev
ale

d +
 st

ate

Gen
eri

c In
ter

p

Int
erp

+ICs

Com
pile

d+
ICs

Opti
mize

d
0.1

1.0

10.0

100.0

Sp
ee

du
p

(lo
g

sc
al

e) Wasm Native

1.17x
2.53x 1.79x

4.60x
9.61x

37.14x

1.17x →
2.17x → 2.57x →

2.09x →
3.86x →

SpiderMonkey execution performance on Wasm vs. native platform (higher is better)

Fig. 12. SpiderMonkey configurations running on top of a Wasm engine vs. SpiderMonkey as a native build on
the same system. This shows how (i) inline-cache fastpaths, (ii) compilation of JS bytecode and inline caches
separately, and (iii) optimized compilation of both together (native only) result in progressive speedups.

We label speedup ratios between each successive pair of configurations. A few interesting

comparisons can be made. First, by observing the second to third bar on each side, this plot shows

that weval attains a similar speedup over the next lower tier (interpreter with ICs) as the native

baseline compiler does. In both cases, we are removing the interpreter overhead but retaining

run-time binding of behavior via IC stubs.

Second, we see that fully optimized native JIT execution is a significant speedup (3.86×) over
baseline compilation. Note that the Optimized configuration “pulls out all the stops” and, in particu-

lar, takes advantage of being a JIT compiler : it type-specializes code. As we argue in §9, we believe

there is a path for our AOT-based approach to adopt profile-guided inlining in a safe, principled

way, possibly closing this gap. Nevertheless, the gap remains today.

Third, however, the overall speedup of the “baseline compiler-like” configurations—first bar to

third bar—is still somewhat behind in weval: 2.53× over the generic interpreter, vs. 5.37× on native.

In principle there is no difference between the optimizations that both configurations are capable

of, and in fact profiling and examination of generated code largely bears this out: both are “baseline

compilation” producing a skeletal compilation of JS bytecode that invokes ICs and plumbs values

between them, and straightline compilations of IC opcodes. We believe the remaining inefficiencies

lie mostly in the IC invocation efficiencies: the native baseline compiler can tightly control ABI and

register allocation, keeping hot values in pinned registers and effectively doing interprocedural

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:19

register allocation between the JS function body and ICs. In contrast, on a Wasm platform, control-

flow integrity (CFI) checks make indirect calls much slower, and the Wasm engine’s compiler does

not otherwise perform any special register allocation or other optimizations.

6.5 Code Size
The Wasm module containing the entire SpiderMonkey JavaScript engine contains 8 MiB of Wasm

bytecode initially, in 18080 functions. After AOT compilation with weval of the entire Octane

benchmark suite (7.5 MiB or 337 KLoC of JS) together with the pre-collected corpus of 2320 ICs,

there is 52 MiB of Wasm bytecode, with 5212 new functions from JS function bodies and 2320

new IC-stub functions. This code size is primarily due to two factors: AOT compilation forces us

to compile all functions, rather than only the hot ones, as a JIT would; and many opcodes still

compile to IC invocation sites, rather than single Wasm opcodes as would be the case with a lower-

level source language. With more optimization work in our tooling, including the Wasm compiler

backend that we use, we believe the size of generated bytecode could be decreased substantially.

6.6 Transform Speed
Compiling the above Wasm module takes, in total, 350 seconds of CPU time (44.16 wall-clock

seconds parallelized over specialization requests on a 12-core machine). This indicates a compilation

speed of slightly under 1 KLoC/second of JavaScript source. We believe this could be improved

with further work: our Wasm compilation backend has not been heavily optimized. In order to

improve compilation times in practice, we have added a cache that keys on input Wasm module

hash plus the function specialization request’s argument data; in practice, this works well to avoid

redundant work for the unchanging AOT IC corpus, and helps with incremental compilation during

development as well.

7 Case Study: PUC-Rio Lua Interpreter
To demonstrate generality of the tool across multiple real-world bytecode interpreters, we ported

the original (PUC-Rio) Lua interpreter to Wasm and applied weval-based partial evaluation. We

split the process into the following chunks:

Support Wasm.We performed a minimalistic port of the interpreter to compile for and run on

a Wasm VM. For simplicity, we stubbed out (i.e. removed the source and added calls to abort())
some Linux-specific OS library functions; we also stubbed out exception handling because it uses

the setjmp and longjmp C functions
6
.

Support Wizer-based snapshotting. Next, we added support for snapshotting of the interpreter

after loading a script and translating it to bytecode. This involves adding approximately 30 lines

of C code near the C main function to expose two functions: wizer_init and wizer_resume.
The initialization function runs the top-level Lua module and finds and saves that module’s main
function (a convention we arbitrarily chose). The resume function then calls this main.

Specialize functions. Supporting function specialization requires adding two pointer-sized fields

to Lua’s function object (Proto) struct: a specialized function pointer 𝑠𝑝𝑒𝑐 and a weval request

pointer 𝑟𝑒𝑞. We create and fill in 𝑟𝑒𝑞 when the function object is created in the parser. It must

exist somewhere in the heap so that weval can find it, and we retain it so that it can be freed

later on function destruction. (It is possible to instead use a side-table, but we chose to keep the

6
Unfortunately, many WebAssembly runtimes do not yet support setjmp and longjmp but support is expected to land soon

with the exception-handling extension [1]. For now, projects such as Emscripten handle exceptions by calling into the host

JavaScript runtime and leaning on JavaScript exceptions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:20 Chris Fallin and Maxwell Bernstein

implementation simple.) When we make the weval request, we also pass it the address of 𝑠𝑝𝑒𝑐 field
for weval to fill in later, after the snapshot is taken and the transform has run.

We tested this step before we added annotations to the interpreter: at this point, weval special-

ization should produce the same interpreter function as output, because no context-specialization

occurs. We also modified the interpreter function (luaV_execute) signature to pass in a bytecode

parameter for specialization.

Annotate interpreter. PUC-Rio Lua uses macros instead of manual code duplication to implement

much of its interpreter control-flow. This makes modifying the interpreter straightforward: we add

a push_context to the top of the interpreter and an update_context to back edges.

Change call path. In order to reap the benefits of our specialized function pointers, we must

call them. Lua has only two ways to call a managed function (outside the interpreter and inside

the interpreter) and we modified both to call 𝑠𝑝𝑒𝑐 if it has been filled in. We also ensured that the

interpreter calls itself for each Lua call, rather than handling the call opcode “inline.”

With these changes, we had a working ahead-of-time compiler for Lua. Some trivial interpreter-

heavy benchmarks produce the expected results, showing a 1.84× speedup. The resulting source
tree has a diff in Lua C/header files (excluding weval’s and Wizer’s headers, and build-system

tweaks) of +173 -57 lines. This includes the initial port to Wasm. Future work includes calling

intrinsics to lift local variables or stack variables to Wasm locals.

8 Related Work
weval exists against a background of many prior partial-evaluation systems, and systems that

derive compilers from interpreters in related ways (e.g., tracing). While this design space is broad,

weval’s primary novelty lies in its combination of ahead-of-time focus and a design that allows

application to existing, almost-unmodified, interpreters in systems languages such as C and C++

without rewriting to use an explicit framework. As we demonstrated in prior sections, this enables

weval to be applied easily to existing, mature industrial language implementations.

Partial Evaluation: There is a rich pre-existing literature on partial evaluation, going back at least

to Futamura [21, 22]. Jones [29] provides a comprehensive overview of the field. Several aspects of

the weval transform, such as constant propagation and branch folding through interpreter dispatch,

and the use of value specialization (“The Trick”), are standard techniques for partial evaluators. We

compare explicitly to several prominent systems in this vein below.

GraalVM and Truffle [47] are a JIT compiler backend and language runtime framework (re-

spectively) that partially evaluate on Java bytecode. The Truffle ecosystem supports Ruby [41, 47],

JavaScript [47], and other languages.

Truffle users rely on a Truffle-provided framework to author AST-walking interpreters. Partial

evaluation unrolls the AST interpreter’s logic by constant-propagating and devirtualizing recursive

calls in each AST node’s execution method. Because of the interprocedural, recursive structure

inherent in such an interpreter, Truffle requires careful attention to inlining and user annotations to

mark an inlining boundary. In general, the interpreter must be developed specifically for Truffle. The

system also supports run-time optimization and de-optimization, which is very useful for dynamic

languages. However, these features also add significant complexity, and require long warmup times.

Truffle has been adapted to bytecode-based inputs, e.g., TruffleWasm [40], but (at least in that work)

via a translation to AST nodes. Truffle also has some support for AOT compilation [5]. However,

many of its features work only in JIT mode, and its design is heavily optimized for JIT. In contrast,

weval (i) is optimized for the ahead-of-time use-case, and (ii) is able to apply to existing mature

industrial interpreters in C/C++, which were not written from scratch for the framework, with

only a few lines of annotation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:21

PyPy [11] implements Python on top of the RPython meta-tracing JIT compiler. Meta-tracing

differs from our approach because it fundamentally requires run-time information to profile and

select hot traces. In some sense, weval’s approach is breadth-first, compiling whole function bodies

ahead of time, while PyPy’s is depth-first, compiling hot traces across function boundaries. PyPy

also requires the interpreter to be written in RPython, a restricted subset of Python.

DyC [24, 25] is a run-time optimization system for C that performs partial evaluation. It provides

annotations to perform control flow and value specialization and performs binding-time analysis.

It can unroll interpreter loops, as we do. However, DyC appears to be significantly more complex

than weval, relying on heuristics and analysis to handle interprocedural specialization, overlapping

specialization regions, caching of specializations, and more. It also requires dynamic information, as

it is a fundamentally run-time optimization. In contrast, our tool (weval) provides more predictable

run-time performance, is applicable ahead-of-time, and does not require a runtime library.

BuildIt [13] is a C++ library for partial evaluation of C++ programs. It provides annotations for

partitioning variables into compile-time constants and run-time data, and generates C++ code;

it can also unroll interpreter loops. However, its use requires care to avoid miscompilation: mis-

classification of variables can lead to semantic differences. Also, practically, the annotation burden is

much heavier: all variable bindings must be classified manually. Finally, the framework is language-

specific. In contrast, weval can process any language that compiles to a CFG of SSA and can call

C-like intrinsics.

Lightweight Modular Staging (LMS) [38, 39] is a library developed by Rompf and Odersky for

partial evaluation of Scala programs. It has been used to great effect to, among other things, compile

SQL queries to efficient code [44]. Using this library requires using Scala as the host language; like

other related work and unlike weval, this language-level approach is difficult to apply to existing

mature language implementations.

Deegen [48] aims to generate a fast interpreter and baseline JIT from language semantics. It

provides a C++ DSL for describing language semantics, and has APIs for defining opcodes, type-

specialized variants of opcodes, inline caches, a type lattice, “slow paths,” and more. Similarly

to PyPy, by design it cannot be used for AOT compilation. Its use requires writing the language

implementation in terms of Deegen abstractions.

Basic Block Versioning (BBV) [14] implements block cloning in a way that is reminiscent of

weval, but for a different purpose: its cloning context is a type context and is used to specialize

code in a JIT for a language such as JavaScript. However, the core idea of mapping context and

block to specialized block and memoizing this mapping remains. One could see BBV and weval as
complementary: weval implements partial evaluation with block cloning to translate the interpreter

body into compiled user code, while BBV can optimize compiled user code by further cloning blocks

on possible type contexts.

SemPy [32] and Static Basic Block Versioning [33] (SBBV) also aim to derive a compiler from

interpretable semantics using context-sensitive dataflow analyses and partial evaluation. SemPy

records language semantics in canonical, interpreter-like form, but this form is developed explicitly

for the purpose, i.e., is not a pre-existing interpreter. SBBV is a complementary technique that finds

a set of type-specialized contexts ahead-of-time for which to generate code. The same downside

applies here as other related work above: these frameworks require new expression of language

semantics, and so unlike weval, are not applicable to existing engines.

LuaAOT [35] is a purpose-built AOT compiler framework that, superficially, works similarly to

weval’s application to the Lua interpreter: it compiles bytecode by pasting together portions of the

interpreter loop. However, its algorithm operates at the source (interpreter in C) level. The work

claims 20–60% speedups (1.25×–2.5×) from a 500-LoC special-purpose implementation; in contrast,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

160:22 Chris Fallin and Maxwell Bernstein

our Lua modification achieves 1.84× speedup (on top of WebAssembly, though in principle weval
is not limited to Wasm, as we noted in §3) with a +173 -57-line diff.
AOT JS Compilers: In this work we adapted SpiderMonkey to compile JavaScript ahead-of-time

with the aid of weval. Several other works also address this problem. Hopc [42, 43], Porffor [31],

Static Hermes [34], and Static TypeScript [9] are all compilers that accept JavaScript, TypeScript, or

some subset thereof, and produce either native code or WebAssembly. The key distinction from our

work is that these compilers are explicit: they are written as code transforms, not executable inter-

preters, and hence are harder to validate, debug or extend than an interpreter-based implementation,

and they do not inherit the full language compatibility of an existing industrial implementation.

9 Future Work
9.1 Profile-Guided Inlining and Semantics-Preserving Optimizations
The level of optimization that the weval transform is able to provide in its current form (as a

processing step on a program snapshot) is limited by its ahead-of-time-only design goal: it cannot

optimize based on types in dynamic languages. To carry the goal of automatically deriving a

compiler further, one ought to be able to derive type-specialization optimizations beyond ICs.

We believe that profile-guided inlining is a principled way to do this. One would start with an

AOT compilation, observe and gather statistics on IC callsite targets, and eventually recompile

indirect-call instructions into guarded inlined functions (if function pointer is X, run inlined body,

else call-indirect). In this way, just as for the basic weval transform, semantics are fully preserved.

The Winliner tool [20] prototypes this optimization strategy. This parallels how SpiderMonkey’s

WarpMonkey [16] backend generates its optimizing compiler input from inlined ICs.

Such inlining removes the IC indirect-call overhead, and it creates further opportunity: it places

IC implementations, including boxing and unboxing operations and dynamic value type-checks,

together in the same function body. Our tool could then incorporate special optimizations that—still

preserving semantics—hoist type-checks upward, and eliminate boxing-unboxing pairs. All of these

operations can be written as generic compiler rewrite rules—for example, SpiderMonkey’s boxing

is a form of NaN-boxing and so a partial-known-bits optimizer that understands known tag bits

and conditional checks on them should achieve this [12, 45]. Overall, this is a further step toward a

goal of safe dynamic-language compilers with correct-by-construction optimizations.

9.2 Specializing at Run-time
While weval today acts as an AOT compiler, we are also interested in JIT applications. Nothing

prevents the weval transform from operating at run-time. Operating at run-time, however, places

additional stresses on the performance of the specialization algorithm. Alternative designs that

require more annotation overhead may allow for generation of a more efficient compiler (i.e., the

second Futamura transform). Though the feasibility of this remains unclear, the efficiency of the

weval transform is an important future goal for this and other reasons.

Acknowledgments
We wish to thank our fellow compiler engineers at Fastly and within the Bytecode Alliance, who

were valuable sources of feedback throughout weval’s development. Luke Wagner, Andrew Brown,

Dan Gohman, Till Schneidereit, Nick Fitzgerald, Jamey Sharp, Trevor Elliott, Jake Champion, Guy

Bedford, and others provided an intellectually stimulating and vibrant environment in which to

develop these ideas while solving real-world problems.

We wish to thank the Recurse Center for providing a place to learn, grow, and explore new ideas,

and the many recursers for discussion, pair programming, walks, and late-night pizza.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

Partial Evaluation, Whole-Program Compilation 160:23

References
[1] [n. d.]. WebAssembly exception-handling proposal. https://github.com/WebAssembly/exception-handling/

[2] [n. d.]. weval GitHub Repository. https://github.com/bytecodealliance/weval/

[3] 2024. CVE-2024-4761. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-4761

[4] 2024. SpiderMonkey JavaScript Engine. https://spidermonkey.dev/.

[5] 2025. Truffle AOT Tutorial. https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-

framework/AOT/

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2006. Compilers: principles, techniques, and tools, 2nd ed. Addison

Wesley.

[7] Bytecode Alliance. [n. d.]. Wasmtime WebAssembly virtual machine. https://wasmtime.dev

[8] Bytecode Alliance. 2024. StarlingMonkey JavaScript Runtime. https://github.com/bytecodealliance/starlingmonkey

[9] Thomas Ball, Peli de Halleux, and Michał Moskal. 2019. Static TypeScript: an implementation of a static compiler for

the TypeScript language. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming

Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York, NY, USA,

105–116. https://doi.org/10.1145/3357390.3361032

[10] Zach Bloom. 2018. Cloud Computing without Containers. https://blog.cloudflare.com/cloud-computing-without-

containers/

[11] C F Bolz, A Cuni, M Fijalkowski, and A Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. ICOOOLPS

(2009). https://doi.org/10.1145/1565824.1565827

[12] CF Bolz-Tereick. 2024. A Knownbits Abstract Domain for the Toy Optimizer, Correctly. https://pypy.org/posts/2024/

08/toy-knownbits.html

[13] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-Based Multi-stage Programming Framework

for Code Generation in C++. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).

39–51. https://doi.org/10.1109/CGO51591.2021.9370333

[14] M. Chevalier-Boisvert and M. Feeley. 2015. Simple and Effective Type Check Removal through Lazy Basic Block

Versioning. ECOOP (2015). https://doi.org/10.4230/LIPIcs.ECOOP.2015.101

[15] L Clark. 2021. Making JavaScript Run Fast on WebAssembly. https://bytecodealliance.org/articles/making-javascript-

run-fast-on-webassembly.

[16] J de Mooij. 2020. Warp: Improved JS performance in Firefox 83. https://hacks.mozilla.org/2020/11/warp-improved-js-

performance-in-firefox-83/

[17] Jan de Mooij, Matthew Gaudet, Iain Ireland, Nathan Henderson, and J. Nelson Amaral. 2023. CacheIR: The Benefits

of a Structured Representation for Inline Caches. In Proceedings of the 20th ACM SIGPLAN International Conference

on Managed Programming Languages and Runtimes (Cascais, Portugal) (MPLR 2023). Association for Computing

Machinery, New York, NY, USA, 34–46. https://doi.org/10.1145/3617651.3622979

[18] C Fallin. 2023. Fast(er) JavaScript on WebAssembly: Portable Baseline Interpreter and Future Plans. https://cfallin.org/

blog/2023/10/11/spidermonkey-pbl/

[19] N Fitzgerald. 2020. Wizer: The WebAssembly Pre-initializer. https://github.com/bytecodealliance/wizer.

[20] N Fitzgerald. 2023. The Winliner WebAssembly indirect call inliner. https://github.com/fitzgen/winliner

[21] Y Futamura. 1971. Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler. Sys-

tems.Computers.Controls 2, 5 (1971).

[22] Y Futamura. 1999. Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler. Higher-Order

and Symbolic Computation 12 (1999). https://doi.org/10.1023/A:1010095604496

[23] A Gal, B Eich, M Shaver, D Anderson, D Mandelin, M R Haghighat, B Kaplan, G Hoare, B Zbarsky, J Orendorff,

J Ruderman, E W Smith, R Reitmaier, M Bebenita, M Chang, and M Franz. 2009. Trace-based just-in-time type

specialization for dynamic languages. PLDI (2009). https://doi.org/10.1145/1542476.1542528

[24] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers. 2000. DyC: an expressive

annotation-directed dynamic compiler for C. Theor. Comput. Sci. 248, 1–2 (Oct. 2000), 147–199. https://doi.org/10.

1016/S0304-3975(00)00051-7

[25] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers. 1999. An evaluation of staged

run-time optimizations in DyC. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design

and Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association for Computing Machinery, New York, NY, USA,

293–304. https://doi.org/10.1145/301618.301683

[26] Samuel Groß. 2021. V8 Sandbox – High-Level Design Doc. https://docs.google.com/document/d/

1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8

[27] A Haas, A Rossberg, D L Schuff, B L Titzer, M Holman, D Gohman, L Wagner, A Zakai, and JF Bastien. 2017. Bringing

the Web Up To Speed with WebAssembly. PLDI (2017). https://doi.org/10.1145/3062341.3062363

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

https://github.com/WebAssembly/exception-handling/
https://github.com/bytecodealliance/weval/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-4761
https://spidermonkey.dev/
https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/AOT/
https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/AOT/
https://wasmtime.dev
https://github.com/bytecodealliance/starlingmonkey
https://doi.org/10.1145/3357390.3361032
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://doi.org/10.1145/1565824.1565827
https://pypy.org/posts/2024/08/toy-knownbits.html
https://pypy.org/posts/2024/08/toy-knownbits.html
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://bytecodealliance.org/articles/making-javascript-run-fast-on-webassembly
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://doi.org/10.1145/3617651.3622979
https://cfallin.org/blog/2023/10/11/spidermonkey-pbl/
https://cfallin.org/blog/2023/10/11/spidermonkey-pbl/
https://github.com/bytecodealliance/wizer
https://github.com/fitzgen/winliner
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1016/S0304-3975(00)00051-7
https://doi.org/10.1016/S0304-3975(00)00051-7
https://doi.org/10.1145/301618.301683
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8
https://doi.org/10.1145/3062341.3062363

160:24 Chris Fallin and Maxwell Bernstein

[28] Neil D. Jones. 1990. Partial evaluation, self-application and types. In Proceedings of the Seventeenth International Collo-

quium on Automata, Languages and Programming (Warwick University, England). Springer-Verlag, Berlin, Heidelberg,

639–659.

[29] N D Jones. 1996. An Introduction to Partial Evaluation. Comput. Surveys 28, 3 (1996). https://doi.org/10.1145/243439.

243447

[30] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. CGO

(2004). https://doi.org/10.1109/CGO.2004.1281665

[31] Oliver Medhurst. [n. d.]. Porffor: A from-scratch experimental AOT JS engine, written in JS. https://github.com/

CanadaHonk/porffor

[32] Olivier Melançon, Marc Feeley, and Manuel Serrano. 2023. An Executable Semantics for Faster Development of

Optimizing Python Compilers. In Proceedings of the 16th ACM SIGPLAN International Conference on Software Language

Engineering (Cascais, Portugal) (SLE 2023). Association for Computing Machinery, New York, NY, USA, 15–28. https:

//doi.org/10.1145/3623476.3623529

[33] Olivier Melançon, Marc Feeley, and Manuel Serrano. 2024. Static Basic Block Versioning. In 38th European Conference

on Object-Oriented Programming (ECOOP 2024) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 313),

Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

28:1–28:27. https://doi.org/10.4230/LIPIcs.ECOOP.2024.28

[34] Tzvetan Mikov. 2023. Static Hermes: How to Speed Up a Micro-benchmark by 300x Without Cheating. https:

//tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html

[35] Hugo Musso Gualandi and Roberto Ierusalimschy. 2021. A Surprisingly Simple Lua Compiler. In Proceedings of the 25th

Brazilian Symposium on Programming Languages (Joinville, Brazil) (SBLP ’21). Association for Computing Machinery,

New York, NY, USA, 1–8. https://doi.org/10.1145/3475061.3475077

[36] Johnathan Norman. 2021. Microsoft Edge: Super Duper Secure Mode. https://microsoftedge.github.io/edgevr/posts/

Super-Duper-Secure-Mode/

[37] V8 Project. [n. d.]. Octane Benchmark Suite. http://chromium.github.io/octane/

[38] Tiark Rompf. 2016. The Essence of Multi-stage Evaluation in LMS. Springer International Publishing, Cham, 318–335.

https://doi.org/10.1007/978-3-319-30936-1_17

[39] Tiark Rompf andMartin Odersky. 2010. Lightweight modular staging: a pragmatic approach to runtime code generation

and compiled DSLs. SIGPLAN Not. 46, 2 (Oct. 2010), 127–136. https://doi.org/10.1145/1942788.1868314

[40] Salim S. Salim, Andy Nisbet, and Mikel Luján. 2020. TruffleWasm: a WebAssembly interpreter on GraalVM. In

Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (Lausanne,

Switzerland) (VEE ’20). Association for Computing Machinery, New York, NY, USA, 88–100. https://doi.org/10.1145/

3381052.3381325

[41] Chris Seaton. 2015. Specialising Dynamic Techniques for Implementing The Ruby Programming Language. PhD

thesis, University of Manchester.

[42] Manuel Serrano. 2018. JavaScript AOT compilation. In Proceedings of the 14th ACM SIGPLAN International Symposium

on Dynamic Languages (Boston, MA, USA) (DLS 2018). Association for Computing Machinery, New York, NY, USA,

50–63. https://doi.org/10.1145/3276945.3276950

[43] Manuel Serrano. 2021. Of JavaScript AOT compilation performance. Proc. ACM Program. Lang. 5, ICFP, Article 70

(Aug. 2021), 30 pages. https://doi.org/10.1145/3473575

[44] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. 2018. Building Efficient Query Engines in a High-Level Language.

ACM Trans. Database Syst. 43, 1, Article 4 (April 2018), 45 pages. https://doi.org/10.1145/3183653

[45] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2022. Sound, Precise, and

Fast Abstract Interpretation with Tristate Numbers. In 2022 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 254–265. https://doi.org/10.1109/CGO53902.2022.9741267

[46] WebAssembly. [n. d.]. Binaryen: optimizer and compiler/toolchain library for WebAssembly. https://github.com/

WebAssembly/binaryen

[47] T Würthinger, C Wimmer, C Humer, A Wöß, L Stadler, C Seaton, G Duboscq, D Simon, and M Grimmer. 2017. Practical

Partial Evaluation for High-Performance Dynamic Language Runtimes. PLDI (2017). https://doi.org/10.1145/3062341.

3062381

[48] Haoran Xu and Fredrik Kjolstad. 2024. Deegen: A JIT-Capable VM Generator for Dynamic Languages. https:

//doi.org/10.48550/arXiv.2411.11469 arXiv:2411.11469 [cs.PL]

Received 2024-11-11; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 160. Publication date: June 2025.

https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/243439.243447
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/CanadaHonk/porffor
https://github.com/CanadaHonk/porffor
https://doi.org/10.1145/3623476.3623529
https://doi.org/10.1145/3623476.3623529
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html
https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html
https://doi.org/10.1145/3475061.3475077
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
http://chromium.github.io/octane/
https://doi.org/10.1007/978-3-319-30936-1_17
https://doi.org/10.1145/1942788.1868314
https://doi.org/10.1145/3381052.3381325
https://doi.org/10.1145/3381052.3381325
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1145/3183653
https://doi.org/10.1109/CGO53902.2022.9741267
https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.48550/arXiv.2411.11469
https://doi.org/10.48550/arXiv.2411.11469
https://arxiv.org/abs/2411.11469

	Abstract
	1 Introduction
	2 Futamura Projections and Partial Evaluation
	2.1 The Futamura Projection
	2.2 Optimizing Compilation: Interpreted Program to Specialized Code
	2.3 Optimizing an Interpreter with its Input

	3 The weval Transform: User-Context-Controlled Constant Propagation
	3.1 Key Idea #1: User Context
	3.2 Key Idea #2: Context-Specialized Code Duplication
	3.3 Key Idea #3: Directed Value-Specialization
	3.4 Maintaining Static Single Assignment (SSA) Form
	3.5 Interface: Semantics-Preserving Specialization
	3.6 Generality Across IRs

	4 Handling Interpreter State Efficiently
	4.1 Virtualized Registers
	4.2 In-Memory State: Locals and Operand Stack
	4.3 Discussion: Semantics-Preservation and Polyfills

	5 Case Study: Minimal Toy Interpreter
	6 Case Study: SpiderMonkey JavaScript Interpreter
	6.1 Ahead-of-Time Compilation
	6.2 Changes to the Interpreter
	6.3 Performance Results
	6.4 Comparison to Native Execution
	6.5 Code Size
	6.6 Transform Speed

	7 Case Study: PUC-Rio Lua Interpreter
	8 Related Work
	9 Future Work
	9.1 Profile-Guided Inlining and Semantics-Preserving Optimizations
	9.2 Specializing at Run-time

	References

