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Abstract 
tee is a compiler that provides efficient and high-level access to 

dynamic code generation. It implements the ‘C (“Tick-C”) program- 
ming language, an extension of ANSI C that supports dynamic code 
generation [ 151. ‘C gives power and flexibility in specifying dynam- 
ically generated code: whereas most other systems use annotations 
to denote run-time invariants. ‘C allows the programmer to specify 
and compose arbitrary expressions and statements at run time. This 
degree of control is needed to efficiently implement some of the 
most important applications of dynamic code generation, such as 
“just in time” compilers [ 171 and efficient simulators [ 10, 48, 461. 

The paper focuses on the techniques that allow tee to provide 
‘C’s flexibility and expressiveness without sacrificing run-timecode 
generation efficiency. These techniques include fast register alloca- 
tion, efficient creation and composition of dynamic code specifica- 
tions, and link-time analysis to reduce the size of dynamic code gen- 
erators. tee also implements two different dynamic code generation 
strategies, designed to address the tradeoff of dynamic compilation 
speed versus generated code quality. To characterize the effects of 
dynamic compilation, we present performance measurements for 
eleven programs compiled using tee. On these applications, we 
measured performance improvements of up to one order of magni- 
tude. 

To encourage further experimentation and use of dynamic code 
generation, we are making the tee compiler available in the public 
domain. This is, to our knowledge, the first high-level dynamic 
compilation system to be made available. 

1 Introduction 

Dynamic code generation has recently attracted considerable 
interest. Unlike tee, current systems generally do not provide an 
interface to dynamic code generation that is both flexible and easy 
to use. On one side, annotation-driven approaches allow the pro- 
grammer to communicate high-level hints about run-time invariants 
to the compiler, but provide relatively limited code specification 
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flexibility [ 1, 11, 321. On the other, library-based approaches al- 
low flexible specification of code, but require programmers to work 
with a low-level representation [14. 191. 

This code specification flexibility is necessary to efficiently im- 
plement some of the most profitable applications of dynamic code 
generation, such as “just in time” compilers [ 171 aud efficient simu- 
lators [ 10,48.46], which require the composition of arbitrary state- 
ments and expressions and the creation of routines with statically- 
unknown type signatures. tee aims to provide the ease of specifying 
dynamic cc& at a high level while retaining the flexibility and ex- 
pressiveness of low-level systems. 

tee compiles the ‘C programming language, an extension of 
ANSI C that provides mechanisms for specifying and dynamically 
composing arbitrary ANSI C expressions and statements. Although 
code composition is powerful and relatively easy to use, it trun- 
cates control flow information, reducing the opportunity for static 
analysis. Hence, implementing ‘C! efficiently is challenging. tee ad- 
dresses this problem with several techniques, including algorithms 
for fast dynamic register allocation, efficient creation and analysis of 
dynamic code specifications. and a link-time analysis to reduce the 
size of dynamic code generators. In addition, tee implements two 
different dynamic compilation strategies, designed to accommodate 
the tradeoff between the speed of code generation and the quality 
of generated code. When compilation time must be minimized, dy- 
namic code generation and register allocation are performed in one 
pass; when code quality is most important, the system dynamically 
constructs and optimizes an intermediate representation prior to 
generating code. 

These solutions are interesting in the context of dynamic com- 
pilation. Furthermore, some, such as a fast global register allocation 
algorithm, are also applicable to traditional, static compilers. 

To characterize the effects of these techniques, we present per- 
formance results for eleven programs compiled using tee. Our mea- 
surements show that ‘C programs employing dynamic code gener- 
ation are up to an order of magnitude faster than their static ANSI 
C counterparts. 

Dynamic code generation has existed for a long time [7, 10, 
12, 16, 26, 29, 30, 36.40, 48.45, 461. Unfortunately, despite its 
utility, programmers have never had portable, high-level access to 
it, so it has remained a curiosity rather than a popular technique. One 
goal of the ‘C project is to provide a real system that can be used in 
day-to-day development and for further research on dynamic code 
generation. This objective has determined many of our tradeoffs. 
In terms of language design, it led us to base our work on ANSI 
C and to keep our extensions within “‘the spirit of C.” In terms of 
implementation, it required that the compiler be publicly available 
and that it run on a variety of different architectures. Attention to 
these constraints has allowed us to produce a robust, efficient, and 
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high-level dynamic code generation system available for public use. 
The following section describes how our compiler relates to 

other systems. Section 3 gives a concise overview of tee’s input 
language, ‘C. We discuss the basic architecture of tee in Section 4, 
details of its code generation strategies in Section 5, and experi- 
mental results in Section 6. 

2 Related Work 
Dynamic code generation has a long history [29]. It has been 

used to increase the performance of operating systems [2, 16, 39, 
401, windowing operations [36], dynamically typed languages [7, 
12, 261, and simulators [48, 461. 

Many languages, such as most Lisp dialects [41. 431, Tel [35], 
and Per1 [47], provide an “eval” operation that allows code to be 
generated dynamically. This approach is extremely flexible but, 
unfortunately, comes at a high price: since these languages are 
dynamically typed, little code generation cost can be pushed to 
compile time. 

Keppel addressed some issues relevant to retargeting dynamic 
code generation in [28]. He developed a portable system for modi- 
fying instruction spaces on a variety of machines. His system dealt 
with the difficulties presented by caches and operating system re- 
strictions, but it did not address how to select and emit actual bi- 
nary instructions. Keppel, Eggers, and Henry [30] demonstrated 
that dynamic code generation can be effective for several different 
applications. 

Leone and Lee [3 l] use programmer-supplied hints to perform 
compile-time specialization in a simple functional language. Re- 
cently, they have extended their compiler, FABIUS, to accept a 
functional subset of ML [32]. They achieve low code generation 
costs using some of the techniques we independently derived for 
tee. ‘C. however, provides the programmer with a wider range of 
mechanisms for dynamic code generation. Additionally, ‘C pro- 
vides support for dynamic code generation in the context of ANSI 
C. a complex imperative language. 

Another interesting automatic code generation system is Tempo 
[ 111, a general-purpose dynamic specializer for C. Like other au- 
tomatic systems, it can be less flexible than ‘C. For example, the 
scope of Tempo’s optimizations is limited by the usual challenges 
C presents to optimizing compilers (e.g., unrestricted aliasing). No 
performance data is provided for Tempo, so it is difficult to compare 
the two implementations. 

The dynamic compilation project at the University of Wash- 
ington also uses automatic compiler support for detecting run-time 
constants [ 11. Their compiler employs programmer annotations to 
indicate some run-time constants; the compiler computes what vari- 
ables are derived run-time constants. Published results seem to indi- 
cate that it dynamically generates code up to an order of magnitude 
more slowly than tee but, since it is integrated with the Multiflow 
optimizing compiler [33], we assume that the code it generates is 
superior in quality. 

In theory, the three systems described above can generate good 
code with relatively low overhead by moving almost all the work 
to static compilation. In such systems, the static compiler emits 
templates that at run time are filled with appropriate values, opti- 
mized in relatively simple but effective ways, and emitted directly. 
In practice, however, only Leone and Lee [32] appear to generate 
code more quickly than tee. Furthermore, improving performance 
in this way has a usability cost: no existing template-based system 
gives the programmer as much freedom and expressive power as 
‘C. ‘C allows the user to dynamically compose pieces of code in 
arbitrary ways, and can thus provide functionality not present in 
plain C. Existing template-based systems, by contrast, use dynamic 
compilation solely for its performance advantages, extending to 

run-time the applicability of traditional optimizations such as copy 
propagation and dead code elimination. 

We build on work done by Engler, Hsieh, and Kaashoek [15]. 
They describe the ‘C language and a prototype compiler for it. We 
provide the first real, high-performance implementation of ‘C. Our 
implementation uses an extension of VCODE [14], a fast, portable 
dynamic code generation system, as its target machine. 

3 Language Overview 
This section briefly describes ‘C in enough detail to provide con- 

text for the tee compiler; a more complete discussion can be found 
in [ 15, 181. ‘C extends ANSI C to support dynamic code generation. 
It introduces two unary operators, ’ and f, and two postfix-declared 
type constructors. Programmers use these extensions to denote code 
that should be generated at run time. The units of code specification 
are ANSI C expressions, statements and variables. These specifica- 
tions, created dynamically at specification time, can be composed to 
build larger specifications or instantiated, compiled at run time, to 
produce executable code. Just like ANSI C, ‘C is lexically scoped 
and statically typed. 

Dynamic code is specified using the ’ (backquote, or “tick”) op- 
erator. Backquote. applied to an expression or compound statement 
indicates that code corresponding to that expression or statement 
should be generated at run time. We refer to the resulting expression 
as a “tick-expression.” For example, the tick-expression ‘4 speci- 
fies code to generate the integer constant 4. The type of a specified 
expression or statement is a cspec type (for code specijication); the 
evaluation type of the CSP~C is the type of the dynamic value of 
the code. For example, the type of the expression ‘4 is int cspec. 
Applying ’ to a compound statement produces an object of type 
void cspec. An evaluation type allows dynamic code to be stati- 
cally typed, enabling the compiler to do all type checking and some 
instruction selection at static compile time. Dynamically generated 
lvalues are of VSpeC type (variable specificafion); their evaluation 
type is the type of the lvalue. 

When flow of control passes a tick-expression, that expression 
is said to be specified. However, before the code can be executed, 
it must be compiled, or instantiated. This operation is performed 
by the compile special form, which takes a cspec and a type as an 

argument and returns a function pointer having the corresponding 
return type. The following code fragment dynamically specifies and 
then instantiates a “hello world” procedure: 

void cspec hello = ‘1 printf(“hello world\n”); 1; 
/* Compile and call the result */ 

(*compile(hello, void))O; 

Dynamic code composition is central to ‘C. References to ob- 
jects of cspec or vspec type appearing in the body of a tick- 
expression are automatically converted to their corresponding eval- 
uation types and incorporated into the code of the cspec in which 
they occur. For example, in the code below, compiling c has the 
same effect as compiling the cspec ‘(4+5). 

/* Compose cl and c2. Compiling c yields code ‘4+5’ */ 
int cspec cl = ‘4, cspec c2 = ‘5; 
int cspec c = ‘(cl + c2); 

The $ operator allows run-time constants to be incorporated 
into dynamic code. $ can appear only within a tick-expression; it 
evaluates its operand at specification time, and the resulting value 
is incorporated as a run-time constant into the containing cspec. 
0 may be applied to any expression within dynamic code that is 
not of type cspec or vspec. The use of S is illustrated in the code 
fragment below. 
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void (*fp)(void); 
int x = 1; 

/* Compile simple function to demonstrate binding via $ */ 

fp = compile(‘{ printf(“Sx = %d, x = %d\n”, Sx, x); I, void); 

x = 14; 

(+fp)(); /* Invoke function: will print “$x = I. x = 14”. */ 

‘C has many other features, including facilities to create local 
variables and parameters at run time, generate function calls with 
run-time determined numbers of arguments, and dynamically create 
labels and jumps. These are implemented as special forms which the 
compiler translates to calls to a small library, reducing the number of 
actual language changes necessary for ‘C. and facilitating changes 
in implementation and functionality. These and other features of ‘C 
are described in depth in [ 15, 181. 

4 Architecture 
The design of tee has been driven by three goals: providing 

flexibility to the programmer, minimizing the overhead of dynamic 
compilation, and generating high-quality code. Since many opti- 
mizations on dynamic code can be profitably performed only at run 
time, improvements in code quality are generally obtained at the 
expense of greater code generation time. One way to generate good 
code with low overhead is to structure the system so that most opti- 
mizations can be performed statically [ 1, 11, 321, but in all existing 
systems this ability comes at the expense of language flexibility and 
expressiveness (furthermore, in practice, only Leone and Lee [32] 
appear to generate code more quickly than tee). ‘C, by contrast, 
allows the user to dynamically compose arbitrary pieces of code, 
which makes static analysis of the dynamic code problematic. 

The following subsections give an overview of tee and discuss 
how tee achieves its goal of performance and flexibility. We de- 
scribe three important code generation phases: static compile time, 
dynamic specification time, and dynamic compile time. The sub- 
sequent section looks in detail at several of the optimizations and 
techniques we have developed to improve the performance of both 
dynamic code and the dynamic code generation process. 

4.1 Overview 

The tee compiler is based on ICC [23, 221, a terse and portable com- 
piler for ANSI C. ICC performs common sub-expression elimination 
within extended basic blocks and uses lburg [38] to find the lowest- 
cost implementation of a certain IR-level construct, but it performs 
few other optimizations. 

All parsing and semantic checking of dynamic expressions oc- 
curs at static compile time. Semantic checks are performed at the 
level of dynamically generated expressions. For each cspec, tee 
performs type checking similarly to a traditional C compiler. It also 
tracks goto statements and labels to ensure that a goto does not 
transfer control outside the body of the containing cspec. 

Unlike traditional static compilers, tee uses two types of back 
ends to generate code. One is the static back end, which compiles the 
non-dynamic parts of ‘C programs, and emits either native assembly 
code or C code suitable for compilation by a highly optimizing 
compiler. The other, referred to as the dynamic back end, emits C 
code to generate dynamic code. Once produced by the dynamic 
back end, this code is in turn compiled by the static back end. This 
process is illustrated in Figure 1. 

Since the tradeoff between code generation speed and code 
quality is so important, tee provides two dynamic back ends and 
corresponding run-time systems: the first emphasizes code genera- 
tion speed over code quality, while the second inverts this tradeoff. 

I I c PW4-= 

tccbackend 

for dynamic cock 

tahckend 

fw stadc cc& 
1 

Assembly or C 

Figure 1: Overview of the tee static compilation process. 

4.2 Static compilation 

During static compilation, every tick-expression is compiled to a 
code generating function (CGF), which is invoked at run time to 
generate code for dynamic expressions. This subsection briefly de- 
scribes the static compilation process and the abstract machine that 
tee uses for dynamic code generation. 

Generating CGFs and Closures. All information necessary for 
dynamic compilation is maintained in CGFs and in dynamically- 
created closures. For each tick-expression, tee statically generates 
both its code generating function and the code to allocate and ini- 
tialize the corresponding closure. 

CGFs and closures are used to support tee’s two-step approach 
to code generation. First, at specification time, the state of each 
tick-expression (i.e., addresses of free variables and values of run- 
time constants created using S) is captured in a closure. Second, 
at dynamic compilation time, the code generating functions for 
each tick-expression process the closures and produce executable 
code. Closures are necessary to reason about composition and out- 
of-order specification of dynamic code. Eliminating closures would 
require generating code as soon as a dynamic expression is specified. 
This is a poor solution, since it does not solve the problem of 
propagating information across cspecs, and it may require that code 
fragments be copied to contiguous memory. 

Cspecs are implemented by pointers to closures correspond- 
ing to tick-expressions. Objects of type cspec are therefore im- 
plemented just like pointers: they have the same size, alignment 
requirements, etc.. Closures are heap-allocated, but their allocation 
cost is greatly reduced (down to a pointer increment, in the normal 
case) by using arenas [20]. 

For example, consider the following code: 

int j, k; 
int apec i = ‘5; 

void cspec c = ‘1 return i+$j*k; 1; 

tee implements the assignments to these cspecs by assignments 
to corresponding pointers to closures: 

Acapec-t i = ((-closure0 = (~dosureO~t)-alloc~closure(4~~. 

(AosureO-tcgf = qfO), /* code gen func */ 
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-tc-cspec-t c = ((-closure1 = (~closurelA)~alloc~closure(l6)), 
(-closurel-+cgf = qfl), /* code gen func */ 

(-closurel+cs-i = i), /* nested cspec */ 
(rlosurel+rcj = j), /* run-time const */ 

(-closurel+fv-k = &k),/* free variable */ 
(AC-cspec-tLclosure1); 

i’s closure contains only a pointer to its code generating function. 
c, on the other hand, has more dependencies on its environment: 
its closure also stores run-time constants, pointers to free variables, 
and other information. 

tee’s abstract machines. tee compiles dynamic code to two ab- 
stract machines based on the VCODE dynamic code generation sys- 
tem [14]. Using abstract machines rather than machine-specific 
back ends significantly simplifies the structure of tee, allowing it to 
ignore many machine-specific details of dynamic code generation 
and to compile dynamic code in essentially the same way for all 
the machines to which VCODE is ported (currently MIPS, SPARC, 
Alpha, and x86). While abstraction at this level implies some degra- 
dation in code quality, it has allowed us to build, with relatively little 
effort, a system that works on two different architectures (SPARC 
and MIPS) and is being ported to the x86 (a complete port to the 
Alpha would require more significant changes to the internals of 
the static compilation portion of tee). As tee matures, we may add 
machine-specific back ends. Since tee preserves the features that 
make ICC retargetable, this process should not be difficult. 

The first of tee’s abstract machines is the VCODE system it- 
self [ 141. VCODE provides an interface resembling that of an ideal- 
ized load/store RISC architecture; each instruction in this interface 
is a C macro which emits the corresponding instruction (or series 
of instructions) for the target architecture. VCODE'S key feature is 
that it generates code with low run-time overhead: as few as ten in- 
structions per generated instruction in the best case. While VCODE 
generates code quickly, it only has access to local information (i.e., 
just information about one tick-expression), so the quality of the 
resulting code can frequently be improved. The second abstract 
machine, ICODE, addresses this problem: it provides an extended 
instruction set and, prior to emitting code, builds up and then opti- 
mizes an intermediate representation of all code for a dynamically 
specified function. 

Section 5 discusses these abstract machines in detail. The fol- 
lowing example, however, may help to visualize the contents of the 
CGFs and the interface to the abstract machines. The two func- 
tions below are the CGFs for the cspecs introduced in the previous 
section, for the case of the ICODE back end: 

unsigned int qf0 (closureO-t c) ( 
-tc-vspec-t itmp0 = -tc-local (1-l); /* int temporary */ 

Lseti(itmpO.5); /* set it to 5 */ 
return itmp0; /* return the location */ 

void qfl (closurel-t +c) ( 
Atcvspec-t itmp0 = ~tchcal (I-1); /* some temporaries */ 

-tc-vspec-t itmpl = ~tchal (I-1); 
i-ldii (itmpl ,zero.c+fv-k); /* addr of k */ 
imulii (itmpl .itmpl ,c-+rc& /* run-time const j */ 

/* now apply i’s CC? to i’s closure: cspec composition! */ 
itmp0 = (*c+cs-i+cgf)(c+cs-i); 

i-addi (itmpl ,itmpO,itmpl); 
i-reti (itmpl); it emit a return (not return a value) */ 

I 

-cgK) is very simple: it allocates a temporary storage location, 
generates code to store the value 5 into it, and returns the location. 
This is exactly the meaning of ‘5. On the other hand, -@I must 
do a little more work: the code that it generates (1) loads the value 
stored at the address of free variable k into a register, (2) multiplies 
it by the value of the run-time constant j, (3) adds this to the dynamic 
value of i, and (4) returns the result. Note that since i is a cspec, the 
code for “the dynamic value of i” is generated by calling i’s code 
generating function. 

Static phases of dynamic code generation. Fast dynamic code 
generation requires that most compilation work be done at static 
compile time. Thus, when optimizing code generation speed over 
quality of generated code, tee performs as much instruction se- 
lection as possible statically. Both instruction selection based on 
operand types and register allocation for temporaries and variables 
not live across the reference to a cspec are done statically. Ad- 
ditionally, the intermediate representation of each tick-expression 
is processed by the common subexpression elimination and other 
local optimizations performed by the ICC front end. tee also uses 
copt [Zl] to statically perform peephole optimizations on the code 
generating macros used by CGFs. 

However, not all register allocation and instruction selection can 
occur statically. For instance, it is not possible in general to stati- 
cally determine which vspecs or cspecs will be incorporated into 
another cspec when the program is executed. Hence, allocation of 
user-defined dynamic lvalues (vspecs) and of results of composed 
cspecs must be performed dynamically. The same is true of vari- 
ables or temporaries that live across references to other cspecs. 

Each read or write to one of these dynamically determined lvalues 
is enclosed in a conditional in the CGF: different code is emitted at 
run time depending on whether the object is dynamically allocated 
to a register or to memory. Since the process of instruction selection 
is encoded in the body of the code generating function, it is quite 
inexpensive. 

Optimizing for code quality, on the other hand, involves a more 
significant dynamic code generation cost. In this case, the CGFs 
contain ICODE, instead of VCODE, macros, and tee does not pre- 
compute much statically. Rather than emitting code directly, the 
KODE macros first build up a simple intermediate representation; 
the ICODE run-time system then makes two passes over this rep- 
resentation to allocate registers and perform other optimizations 
before emitting code. Both ICODE and VCODE are discussed further 
in subsequent sections. 

Engineering: tee’s two static back ends. ICC is not an optimiz- 
ing compiler. The assembly code emitted by its traditional static 
back ends is usually significantly slower (even three or more times 
slower) than that emitted by optimizing compilers such as gee or 
vendor C compilers. To improve the quality of static code emitted 
by tee, we have implemented a static back end that generates ANSI 
C from ‘C source; this code can then be compiled by any optimizing 
compiler. ICC’S traditional back ends can thus be used when static 
compilation must be fast (i.e., during development), and the C back 
end can be used when the performance of the code is critical. 

4.3 Dynamic specification time 

At dynamic specification time, the ‘C run-time system collects in- 
formation about the environment of each tick-expression. This is 
a simple process, in which relevant portions of a tick-expression’s 
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environment are captured in a closure. An example appears in Sec- 
tion 4.2. The closure is heap-allocated and used to store four main 
types of information: (1) a function pointer to the statically gener- 
ated CGF for the tick-expression; (2) the values of run-time con- 
stants bound via the $ operator; (3) the addresses of free variables; 
(4) pointers to objects representing the code and variable specitica- 
tions composed inside the tick-expression. This information is used 
to create code during dynamic compilation. 

4.4 Dynamic compilation 

Dynamic compilation, or instantiation, involves processing the pro- 
grammer’s dynamic code specifications and producing executable 
code. We outline the mechanics of this process, and pay special 
attention to some partial evaluation mechanisms employed by the 
code generating functions. 

Generating dynamic code. Dynamic compilation (or instantia- 
tion) for ‘C is initiated by invoking the compile special form on a 
cspec. Compile then invokes the code-generating function for the 
cspec on the cspec’s closure, and the CGF performs most of the 
actual code generation. In terms of the previous example, the code 
int (‘f)() = compile(j, int); causes the run-time system to invoke 
closure1 -@(closure1 1. 

When the CGF returns, compile links the resulting code, resets 
the information regarding dynamically generated locals and param- 
eters, and returns a pointer to the generated code. We attempt to 
minimize poor cache behavior by choosing the address of the be- 
ginning of the dynamic code randomly modulo the cache size. In 
the case when multiple dynamic functions are generated and used 
together, it would not be very expensive to track the placement of 
dynamic code to attempt to improve cache performance. 

Dynamic compilation performs the composition of cspecs (in- 
clusion of cspec b into the body of cspec a) into one final piece of 
code. This is implemented simply by invoking b's CGF from within 
a’s CGF. If b returns a value, the value’s location is returned by its 
CGF, and can then be used by operations within the calling CGF. 

The problem of generating efficient code from composed cspecs 
is analogous to function inlining and inter-procedural optimization 
when all function calls occur through pointers. Performing some op- 
timizations on the dynamic code after the order of composition of 
cspecs has been determined can significantly improve code qual- 
ity. tee’s ICODE back end addresses this issue by building up an 
intermediate representation and performing some analyses prior to 
generating executable code. The VCODE back end, by contrast, opti- 
mizes for code generation speed: it generates code in just one pass, 
but can make poor spill decisions when there is significant register 
pressure. We describe both these systems in detail in Section 5. 

Automatic dynamic partial evaluation. Partial evaluation is the 
key optimization that makes dynamic compilation profitable. tee 
applies partial evaluation in three main ways. First, it folds run- 
time constants at instantiation time. The code generating functions 
contain code to evaluate any parts of an expression consisting of 
static and run-time constants. The dynamically emitted instructions 
can then encode these values as immediates. 

Similarly, tee performs strength reduction based on run-time 
constants: if an operand of an expensive operation (e.g., multi- 
plication or division) is a run-time constant, the CGF contains a 
fancier code-generation macro than usual: rather than emitting a 
fixed sequence of instructions, it first checks the value of its immedi- 
ate operand, emitting different machine instructions at instantiation 
time depending on the value of this argument. 

Lastly, the code generating functions automatically perform 
some dynamic loop unrolling and dead code elimination based on 
run-time constants. For example, if the test of a loop or conditional 
is run-time invariant, or if a loop is bounded by run-time invariants, 
then the actual control flow can be performed only once, at instan- 
tiation time, producing straight-line code and often leading to dead 
code elimination. In addition, run-time constant information prop- 
agates down loop nesting levels: for example, if a loop induction 
variable is bounded by run-time constants, and it is in turn used 
to bound a nested loop, then the induction variable of the nested 
loop is considered run-time constant too (for any given iteration of 
the nested loop). Our current implementation does not propagate 
run-time constant information to discover additional run-time con- 
stants in a fully general manner, as done in [ 11. This restriction is 
mostly an engineering problem, since there is little framework for 
performing relaxation analyses at static compile time within ICC. 

As an example of these optimizations, consider writing code that 
computes the dot-product of a vector col with a run-time constant 
vector row. In this case, it is possible to generate straight-line code in 
which the contents of row are hard-wired into the instruction stream. 
One way to do this is to use ‘C’s facilities for code composition: 

void opec code; 
int cspec sum = ‘0; 

for (k = 0; k c n; k++) 

if (row[kl) 

sum = ‘(sum + colI$kl*$row[kl); 
code = ‘( return sum; ); /* sum is “a*b+c*d+...” */ 

Alternatively, one can leverage the dynamic loop unrolling pro- 
vided by tee: 

‘{ int k, sum = 0; 
for (k = 0; k c $n; k++) 

if (Prowlkl) 
sum = sum + colIkl*$row[k]; 

return sum; 
I. 
1. 

k is bounded by run-time constants and is never assigned outside 
of the control expressions of the for-statement, so it becomes a 
derived run-time constant. The resulting optimized code generating 
function appears below: 

@dosure-t c) ( 
int k; 
-tc-vspec-t itmp0 = -tc-local (1-l); /* int temporary */ 
for (k = 0; k -z c-htcl; k++) ( 

If ((*((int*)c+rK!+k))) ( /* skip if row[&]==O */ 

addpi(tmp0, c+coI, 4*k); 
Idi(tmp0, zero, tmp0); 

mulii(tmp0, tmp0, (*((int*)c+rW+k))); 
addi(c+sum, c+sum, tmp0); 

HI 

In this case, the loop overhead is paid only once, at dynamic 
compile time. The resulting dynamic code has fewer instructions 
than the original, no branches, and no loop induction variable. Un- 
less it is made too large, and hence acquires poor memory locality 
and incurs a high code generation cost, it will easily outperform its 
static counterpart. 

This style of optimization, hard-coded at static compile time and 
then performed dynamically, helps to produce better code without 
incurring high dynamic compilation overhead. The code transfor- 
mations are encoded in the CGF and depend on no run-time data 
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structures. Furthermore, dynamic code that is unreachable due to a 
run-time constant need never be generated, sometimes even result- 
ing in faster code generation than in the unoptimized case. 

5 Dynamic Back Ends 

The tension between dynamic code generation speed and code 
quality has led us to build two dynamic back ends for tee: ICODE 
builds up an intermediate representation at run time before emit- 
ting executable code, whereas VCODE emits code directly, without 
any form of analysis. The main motivation behind this difference is 
inter-cspec optimization, particularly register allocation. Dynamic 
register allocation in ‘C is a complex problem, equivalent to effi- 
cient inter-procedural register allocation when function calls are via 
pointers. Without an intermediate representation, register allocation 
lacks any notion of how tick-expressions are dynamically composed 
and so can only use information in a single tick-expression; using an 
intermediate representation, tee is able to perform effective inter- 
cspec register allocation. 

These two methods are provided because the appropriate level 
of run-time optimization is application-specific, since it depends on 
the number of times the code will be used (i.e., it must be used 
enough to amortize the cost of run-time optimization) and on the 
size and structure of the dynamic code (e.g., loop nesting depth, 
number of nested cspecs, etc.). To account for this, tee allows the 
user to select the dynamic back end. This section explores the 
implementation details of both back ends. 

5.1 VCODE-based code generation 

When optimizing for code generation speed, the code generating 
functions use VCODE macros to emit code in one pass. Register 
allocation in this case is fast and simple. VCODE provides getreg 
and putreg operations: the former allocates a machine register, the 
latter frees it. If there are no unallocated registers when getreg 
is invoked, it returns a spilled location designated by a negative 
number; VCODE macros recognize this number as a stack offset, 
and emit the necessary loads and stores. Clients that find these per- 
instruction if-statements too expensive can disable them: getreg 
is then guaranteed to return only physical register names and, if 
it cannot satisfy a request. it terminates the program with a run- 
time error. This methodology is quite workable in situations where 
register pressure is not data dependent (i.e., it is known in advance), 
and the improvement in code generation speed (roughly a factor of 
two) can make it worthwhile. 

tee statically emits getreg and putreg operations together with 
other VCODE macros in the code-generating functions: this ensures 
that the register assignments of one cspec do not conflict with those 
of another cspec dynamically composed with it. As mentioned, 
however, efficient inter-cspec register allocation is hard, and unsur- 
prisingly, the placement of these register management operations 
can greatly affect code quality. Consider the statement { s = '1; 

}, followed by a loop containing {s = ‘(x+9; } (where x is some 
free or dynamic variable). The code generated by iterating through 
the loop n times corresponds to an expression tree of depth n, as 
in Figure 2. When compiled statically, the expression can be com- 
puted using two registers. With a naive dynamic register allocation 
strategy, however, a new register is allocated every time the code- 
generating function for the cspec in the loop is called, requiring 
spilling after only a few iterations. 

To help improve code quality, tee follows some simple heuris- 
tics. First, expression trees are rearranged so that cspec operands 
of instructions are evaluated before non-cspec operands. This min- 
imizes the number of temporaries which span cspec references, 
and hence the number of registers allocated by the CGF of one 

r4 + 
A 

X I 

Figure 2: Register allocation problem. 

cspec during the execution of the code-generating function of a 
nested cspec. Secondly no registers are allocated for the return 
value of non-void cspecs: the code-generating function for a refer- 
enced cspec allocates the register for storing its result, and simply 
returns this register name to the CGF for the enclosing cspec. 

Obtaining and freeing a register are relatively inexpensive op- 
erations. Furthermore, tee reduces the number of run-time register 
allocations that occur by “reserving” a limited number of physical 
registers. These registers are not allocated by getreg. hut instead 
are managed at static compile time by tee’s dynamic back end. 
They can only be used for values whose live ranges do not span 
composition with a cspec and are typically employed for expres- 
sion temporaries. As a result, dynamic register allocation using the 
VCODE dynamic back end is only slightly slower than in template- 
based systems, where it can occur entirely statically. Since most 
VCODE macros simply perform bit manipulations (shifts, ors, ands) 
on their arguments (constants and physical register names) and 
write the resulting machine instruction to memory, VCODE achieves 
an amortized code generation cost of ten instructions per generated 
instruction. 

Clearly, however, the emitted code is good only in cases when 
few variables need to be spilled. If the dynamic cede contains large 
basic blocks with high register pressure, or if cspecs are dynam- 
ically combined in a way that forces many spills, code quality 
suffers. 

The quality of emitted code can be improved without sacrificing 
the performance of VCODE very much by extending the code gen- 
erating functions to perform two passes. On the first pass, no code 
is emitted: each CGF simply returns to its calling CGF (if any) the 
number of registers that it and its children (if any) require to avoid 
poor spilling. On the second pass, the CGFs and the VCODE macros 
they contain are executed almost as usual, generating code in one 
pass. However, if immediately prior to a call to a nested CGF the 
number of available registers is less than that previously requested 
by the nested CGF, the calling CGF spills and reloads registers as 
necessary. This is a promising technique, since it gives the CGFs 
a more global view of register allocation (e.g., potentially pulling 
spills out of loop bodies) without incurring much cost (one traversal 
of the CGF call tree). However, at the time of this writing we have 
not finished implementing and evaluating it. 

5.2 ICODE-based code generation 

In cases where dynamically generated code is used frequently or 
runs for a long time, it may be preferable to trade additional dynamic 
compilation time for improved code quality. In this situation, t&s 

dynamic back end emits code-generating functions which contain 
ICODE (rather than VCODE) macros. 

ICODE was inspired by VCODE and the difficulty of using the 
getreg/putreg mechanism to effectively allocate registers in the 
presence of multiple code-generating functions. ICODE provides an 
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interface similar to that of VCODE, with two main extensions: (1) an 
infinite number of registers, and (2) primitives to express changes 
in estimated usage frequency of code. The first extension allows 
ICODE clients to emit code that assumes no spills, leaving the work 
of global, inter-cspec register allocation to ICODE. The second al- 
lows ICODE to obtain estimates of variable use without expensive 
analysis: changes in expected usage frequency due to conditionals 
or loops can be expressed explicitly by the ICODE client. 

Functionally, ICODE differs from VCODE in that it builds and 
consumes an intermediate representation at run time rather than im- 
mediately translating instructions to machine code. This intermedi- 
ate representation is designed to be compact (two 4-byte machine 
words per ICODE instruction) and easy to parse in order to reduce the 
overhead of subsequent passes. By having access to the entire body 
of dynamic code resulting from cspec-composition, ICODE can per- 
form good register allocation and global optimization. After calling 
the last code macro, the KODE client can invoke ICODE run-time 
library functions to perform various forms of register allocation and 
code optimizations prior to generating executable code. 

When compile is invoked in ICODE mode, ICODE builds a Row 
graph, identifies live ranges, employs a linear-time algorithm to 
perform register allocation, and performs some peephole optimiza- 
tions. Finally, it translates the intermediate representation to the 
target machine’s binary format. We have attempted to minimize the 
cost of each of these operations. We briefly discuss each of these 
functions in turn. 

Building a flow graph. ICODE builds a flow graph in one pass 
after all CGFs have been invoked, and hence after all the ICODE 
macros have been executed to lay out the intermediate representa- 
tion in memory. The flow graph is a single array that uses pointers 
for indexing. In order to allocate all required memory in a single 
allocation, ICODE computes an upper bound on the number of basic 
blocks by summing the numbers of labels and jumps emitted by 
ICODE macros. After allocating space for an an array of this size, it 
traverses the buffer of ICODE instructions and adds basic blocks to 
the array in the same order in which they exist in the list of instruc- 
tions. Forward references are initially stored in an array of pairs 
of basic block addresses; when all the basic blocks are built, the 
forward references are resolved by traversing this array and linking 
the pairs of blocks listed in it. ICODE has full information about con- 
trol flow at indirect jumps. In addition to constructing control flow 
information, ICODE collects a minimal amount of local data flow 
information (def and use sets for each basic block). All memory 
management occurs through arenas [20], ensuring low amortized 
cost for memory allocation and essentially free deallocation. 

Finding live intervals. In the interest of fast code generation, 
ICODE does not compute precise live range information, but instead 
uses a coarse approximation that we call live intervals. An inlend 
[i, j] of instructions is simply all the instructions between the ith 
and jth instructions in the instruction stream, inclusive. Then a five 
intendof a variables is the interval [m, n], where m is the first in- 
struction at which 21 is ever live, and R. is the last instruction at which 
it is ever live. This interval information is only an approximation 
of the real live range information (in which ranges may be split): 
there may be large portions of [m, n] in which 2, is not live, but we 
simply ignore them. In practice this has not been a problem: the 
quality of register allocation IS quite good. Importantly, this scheme 
is quite efficient: given live variable information, creating a list of 
live intervals sorted by start or end point is accomplished in one 
pass over the code, and register allocation (described below) simply 
requires one pass over the interval list. There may also be room for 
improvement. We currently use a traditional relaxation algorithm 

for computing exact live variable information; since much of this 
information is lost when using live intervals, it may be possible to 
perform a much less expensive approximate live variable analysis. 
We are currently studying ways of doing this. 

Fast “Iinear-scan” register allocation. Given a set of live in- 
tervals, our global register allocation algorithm is simple and fast. 
Variants have been considered in the literature [22, 24, 271 in the 
context of local register allocation and for spill-code minimization 
within a single basic block [42]. 

Given R available registers and a list of live intervals, allocating 
registers so as to minimize the number of spilled intervals involves 
removing the smallest number of live intervals so that no more than 
R live intervals overlap any one instruction. Since the number of 
overlapping intervals changes only at the start and end points of 
intervals, and the intervals appear in a list sorted in order of increas- 
ing end point, the algorithm traverses the list of intervals in reverse 
order, “jumping” from end point to end point while maintaining a 
list, active, of intervals live at the current point. When the number 
of these intervals exceeds R, the longest interval (the one with the 
earliest start point) is spilled. The active list is maintained in or- 
der of increasing start point. As a result, spilling the longest interval 
simply means removing the first element, and expiring intervals that 
are no longer active just involves a short search backwards from the 
end of the list. The details of the algorithm appear in Figure 3. 

The length of active is bounded by R. As a result, given the 
live interval information from the previous section, the asymptotic 
running time of the algorithm is O(I . R), where I is the total 
number of live intervals (in general, one per variable). 

In addition to this register allocator, we also provide a Chaitin- 
style graph-coloring register allocator [6]. This register allocation 
technique is not new: it has been studied and optimized exten- 
sively [5, 8, 25, 341, performs well in many cases, and is simple to 
implement. As a result, it is a good means of evaluating our simpler 
and faster register allocation algorithm. 

Emitting code. The final phase of code generation involves trans- 
lating the register-allocated, optimized ICODE instructions to the 
host machine’s binary format. The code emitter simply makes one 
pass through the buffer of ICODE instructions. For each ICODE in- 
struction, it invokes the VCODE macro corresponding to the given 
instruction, prepending and appending spill code as necessary, and 
performing some peephole optimizations and strength reduction. 

The main problem with this scheme is that the code emitter can 
be quite large. ICODE has several hundred instructions (the cross 
product of operation kinds and operand types), and the code to 
translate and peephole-optimize each instruction is on the order of 
100 instructions, about half of which are executed on a typical run. 
Always emitting a code generator for the full ICODE instruction set 
therefore generates unduly large executables, especially considering 
that most ‘C programs use a small subset of a11 ICODE instructions. 
tee therefore keeps track of the ICODE instructions used by an ap- 
plication, and automatically creates a customized ICODE back end 
containing code to only translate the required instructions. The com- 
piler encodes the ICODE usage information for a given ‘C source file 
in dummy symbol names in the corresponding object file. A pre- 
linking pass then scans all the files about to be linked and emits 
an additional object file containing an ICODE-to-binary translator 
tailored specifically to the ICODE macros present in the executable. 
This simple trick cuts the size of the ICODE library by up to an order 
of magnitude for most programs, reducing them to approximately 
the. size of equivalent C programs. 
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GREEDYREGISTERALLOCATION 
active t {} 
foreach live interval i, from last to first 

EXPIREOLDINTERVALS(~) 
% R is the available number of registers 
if length(ucrive) = R then 

T t SPZLL,ONGE~TINTERVAL(~) 
else 

T t a register from pool of free registers 
if T is a valid register then 

register[i] t r 
add i to active, sorted by start point 

else 
locurion[i] t new stack location 

EXPIREOLDINTERVALS(~) 
foreach interval j in uctive, from last to first 

if stmtpoint[j] 5 endpoiflt[i] then 
return 

remove j from active 
put registerfj] into pool of free registers 

SPILLL~NOE~TI~~ERVAL(~) 
foreach interval j in uctive, from first to last 

if endpoint[j] > efdpoint[i] then 
break 

if stuarrpoiflt[j] < starrpoint[i] then 
T t regisfer[j] 
locution[j] t new stack location 
remove j from active 
return T 

else 
return null 

Figure 3: Register allocation in one scan. 

6 Benchmarks 

This section evaluates the tee compiler. We outline our exper- 
imental methodology, describe the benchmarks we have used, and 
then present and discuss our performance data. 

6.1 Experimental Methodology 

Each of our benchmarks was written both in ‘C and in static C. The 
‘C programs were compiled both with the VCODE and the ICODE- 
based tee backends. The static C programs were compiled both 
with the ICC compiler and with the GNU C compiler. The code 
generating functions used for dynamic code generation are created 
from the ICC intermediate representation, using that compiler’s code 
generation strategies. As a result, the performance of ICC-generated 
code should be considered as the baseline to measure the impact of 
dynamic code generation. Measurements collected using the GNU 
C compiler serve to compare tee to an optimizing compiler of rea- 
sonable quality. We are working on improving ICC’S static code 
generation, since optimizing the IR for dynamic code before emit- 
ting the code-generating functions will clearly result in dynamic 
code of significantly superior quality. 

Times were derived by measuring a large number of trials 
(enough to provide several seconds worth of granularity, with negli- 
gible standard deviations) on a lightly-loaded SparcStation 5 using 

1 Benchmark 1 VCODE 1 ICODE 1 
] One lame csoec. dvnamic locals 1 96.8 1 1019.7 ] 

One large cspec; free variables 
Many small cspecs, dynamic locals 

1 Many small cspecs, free variables 1 260.1 1 1261.9 ] 

Table 1: Code generation overhead, cycles per generated instruction. 

the Unix getrusage system call. These times were then divided by 
the number of iterations to obtain the average overhead of a single 
run. This form of measurement ignores the effects of cache refill 
misses, but is representative of how these applications would likely 
be used (ie., in tight inner loops). 

For the ‘C versions of the benchmarks, we separate the cost of 
dynamic code generation from the run time of the dynamic code. 
This separation allows us to calculate the “cross-over” point at 
which dynamic code generation becomes profitable. We further 
break down the cost of dynamic compilation, in units of processor 
cycles (our test machine runs at 70MHz) per generated instruction. 
In the case of VCODE, this cost consists of manipulating closures and 
other meta-data, and actually generating binary code. For ICODE, we 
also measure two additional phases: building the intermediate rep- 
resentation, and allocating registers. We present register allocation 
costs for both the linear scan algorithm described in this paper and 
for the Chaitin-style register allocator which we used as a baseline. 

Several of the benchmarks are data-dependent (usually increas- 
ing in run time and, sometimes, size of dynamic code, as the size of 
the input data increases). Due to space constraints, we picked a sin- 
gle reasonable input size. Specifics about each benchmark appear 
in Section 6.2. 

We also compare the cost of our two different dynamic code 
generation systems (ICODE and VCODE) in two situations which we 
consider significant extremes of dynamic code style: a very large 
tick-expression (approximately 1000 instructions) compiled alone, 
and a very small tick-expression (one cspec composition and one 
addition) composed many times with other tick-expressions (in our 
measurements, it is composed 100 times with itself). For both of 
these cases, we wrote two versions of code, one accessing free 
variables in the containing function’s scope, and the other making 
use of dynamic locals. Much cspec composition and many free 
variables both exacerbate the cost of manipulating closures. The 
results appear in Table 1. Predictably, ICODE is approximately an 
order of magnitude slower than VCODE, due to the overhead of 
manipulating an intermediate representation and then translating 
this to binary code. Section 6.3, however, illustrates that this extra 
cost is often amortized by superior dynamic code quality. 

Our evaluation has not been “SPECmark-driven”: we have not 
tweaked tee in any way to make individual benchmarks run faster. 
Complete data from these experiments appears in Section 6.3, be- 
low. 

6.2 Benchmarks 

This subsection describes the benchmarks we used to evaluate the 
tee compiler. They have been chosen to highlight different styles 
of dynamic code generation use. Many of them are fully described 
(but not measured) in [15]. We also describe modifications made 
to xv [4], a relatively sophisticated share-ware image manipula- 
tion package, to exploit dynamic code generation, and the resulting 
performance benefits. 
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Run-time constants. Dynamic code generation can be used to 
hardwire infrequently changing values into the instruction stream. 
This optimization is beneficial because the values need not be loaded 
from memory, and expensive operations (such as multiplication 
and division) that use these values can be strength-reduced. It is 
increasingly profitable on modem architectures, where cache misses 
are very expensive and division and multiplication are frequently 
provided only in software. 

An example is a generic hash function, where the table size is 
determined at run time, and where the function uses a run-time value 
to help its hash. Such a hash function can be faster than an equivalent 
C version, since a ‘C compiler can exploit run-time constants to 
scatter and normalize key values both by hard-coding them into the 
instruction stream and by strength-reducing the multiplication and 
division. The hash experiment measures the time to repeatedly look 
up two values in a hash table; the first value is in the table, the second 
is not. No bucket has more than one element. If the hash table were 
rarely modified, ‘C could also be used to dynamically construct a 
perfect (or near-perfect) hash function at run time, possibly further 
improving performance. 

A second benchmark we provide for this case is ms, in which 
we repeatedly scale a 100x100 matrix of integers by a run-time 
constant. 

Parameterized functions. Many library routines are parameter- 
ized via function pointers. Examples include the standard C library 
quicksort and heapsort routines, and many mathematical library 
routines. Unfortunately, indirect function calls eliminate many po- 
tential optimizations, since the function cannot be integrated with 
the library code. Since cspecs can be composed with each other 
arbitrarily, ‘C could be used to parametetize library functions with 
cspecs rather than function pointers, potentially leading to large 
gains in efficiency. 

We provide two benchmarks that fit in this class. The first is a 
simple heapsort function, heap, that is parameterized with a code 
fragment to swap the contents of two memory regions of arbitrary 
size. It considerably outperforms static versions by specializing 
itself with respect to the size of the array elements that it sorts. 
Our experiment measures the time to heapsort a 500-entry array 
of 1Zbyte structures. The static code copies the structures using 
memcpy. 

The second example is a Newton-Raphson root solver, ntn. The 
function and its derivative are provided by code fragments that are, 
again, incorporated into the function at run time. The experiment 
computes the root of the function f(z) = (Z + 1)’ to a tolerance 
of lo-‘. The static code uses Newton’s method parameterized via 
two functions: one to compute f, the other to compute f’. 

Function composition. Similarly, ‘C allows modular function 
composition: composed code specifications can be integrated to- 
gether by tee into straight-line code. This functionality is analogous 
to being able to dynamically inline the code referenced by arbitrary 
function pointers. 

Networking code is one important application of this type of 
composition. The networking community has long aimed to mod- 
ularly compose protocol layers [9]. Each protocol layer frequently 
involves data manipulation operations (e.g., checksumming, byte- 
swapping, etc.). Since performing multiple data manipulation passes 
is expensive, it is desirable to compose the layers so that all the data 
handling occurs in one phase 191. This modular composition of data 
operations is an active research area. The two main limitations of 
current approaches to this problem are that they use specialized lan- 
guages and, with the exception of work using VCODE [ 141, they are 

static, in that passes cannot be built at run time. A more powerful ap- 
proach is to use ‘C to compose functions dynamically; programmers 
can use a language they are accustomed to, and data manipulation 
steps can be flexibly composed at run time. 

This benchmark is called cmp. The experiment measures the 
time to copy a 4096-byte message buffer while computing both a 
checksum and a byteswap operation. The static code performs these 
operations using function pointers while the ‘C code represents 
checksum and byteswap as code specifications that are dynamically 
incorporated into the data-copying loop. 

Small language compilation. Many small, primitive languages 
are both time-critical and amenable to dynamic compilation. The 
query languages used to interrogate data bases are well-known tar- 
gets for dynamic code generation [30]; since databases are large, 
dynamically compiled queries will be applied many times. 

We have developed a small query language and benchmarked 
a dynamic query compiler for it, query. Each query is a boolean 
expression formed by accessing record fields and comparing them to 
other fields or to constant values. The experiment performs a query 
on a database with 2000 entries and selects those entries matching a 
query expression composed of five binary comparisons. The static 
code interprets queries using a pair of switch statements, while the 
‘C version dynamically compiles the query to machine code. 

Dynamic function call construction. ‘C allows programmers to 
generate functions and calls with statically unknown numbers and 
types of arguments. This is a powerful feature. For instance, it 
allows the construction of code to marshal and unmarshal arguments 
stored in a byte vector, operations frequently performed to support 
remote procedure call [3]. By generating specialized code for the 
most active functions it is possible to gain substantial performance 
benefits [44]. Our two benchmarks, mshl and umshl, dynamically 
generate marshaling and unmarshaling code, respectively, given a 
printf-style format string specifying the types of arguments. This 
ability goes beyond mere performance: ANSI C simply does not 
provide mechanisms for dynamically constructing function calls 
with varying numbers of arguments. 

The mshl experiment measures the time required to construct 
and run a function that takes five arguments and marshals them 
into a byte vector. It is not possible to write equivalent C code in 
ANSI C. If the interface is exposed to the client, it is possible to 
crudely emulate this functionality using C’s varargs facilities, but 
not without requiring that the caller always provide information 
about the number and types of arguments. 

The umshl experiment measures the time to unmarshal a byte 
vector and call a function taking five arguments. It is impossible to 
write code that performs an equivalent function in ANSI C, since 
doing so requires the ability to generate function calls with varying 
number of arguments. Therefore, to give some feel for the speed of 
the generated code, we compare to statically compiled C code that 
handles the specific case of five arguments. 

Dynamic partial evaluation. Partial evaluation specializes afunc- 
tion with respect to some number of arguments. ‘C can be used to 
implement partial evaluation in the context of C. An example from 
computer graphics ([ 131) is partial evaluation of the exponentiation 
function with respect to a given exponent. This is very useful, be- 
cause. it reduces the exponentiation algorithm to a minimum number 
of multiplication and squaring operations. The benchmark pow dy- 
namically generates a specialized function that raises its argument 
to the power 13. The static version uses a general integer power 
function. 
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Code construction. ‘C can be used to perform unusual code con- 
struction tasks, such as creating “executable data structures.” The 
benchmark binary takes a sorted integer array as input and creates 
code that implements a binary search on that array. The values from 
the array are hardwired into the instruction stream, and the mini- 
mum number of conditionals and jumps are performed during the 
search. Thus, lookup into the array involves neither memory loads 
nor looping overhead: the code is a series of nested if statements 
that compare the value to be found to constants. As a result, the 
dynamically constructed code is an order of magnitude more efli- 
cient that its static counterpart. The benchmark measures the time to 
repeatedly look up two entries (one present, one not) in a 16-entry 

Putting it all together. To validate our system on a larger exam- 
ple, we have modified xv, a large and popular image manipulation 
package. Specifically, we picked one of its image processing algo- 
rithms (we deemed this sufficient, since most of the algorithms are 
implemented very similarly) and changed it to make use of run-time 
information. The algorithm, Blur, applies a convolution matrix of 
user-specified size and consisting of all l’s to the source image. 
The original algorithm was implemented very efficiently: since the 
values in the convolution matrix are known statically to be all l’s, 
convolution at a point is simply the average of the image values 
of neighboring points. Nonetheless, the inner loop contains image- 
boundary checks based on run-time constants, and is bounded by a 
run-time constant, the size of the convolution matrix. By unrolling 
this loop and exploiting the run-time constant checks, tee produces 
code that runs in 1.08 seconds (on a 640x480 image and 3x3 con- 
volution matrix), with a dynamic compilation time of only 0.01 
seconds (using our more expensive dynamic back end, ICODE). By 
contrast, code generated hy ICC runs in 1.96 seconds, almost two 
times more slowly. Code emitted by GNU CC with all optimiza- 
tions turned on runs in 1.04 seconds. All results are best of 5 runs, 
on an unloaded SparcStation 5. As mentioned earlier, the basis for 
comparison of the performance of dynamic code should be ICC, 
since the dynamic back ends are generated by an ICC-style back 
end, without further static optimizations. xv is an example of the 
profitability of dynamic code generation in the context of a well- 
known application program. We are confident that additional work 
on static optimization of the code-generating functions will make 
tee’s dynamic code superror even to that of aggressive optimizing 
compilers, without penalizing dynamic compilation times. 

Other uses. The benefits of dynamic code generation extend be- 
yond efficiency. For instance, ‘C-enabled currying can be used to 
associate functions with state that is not visible to the caller. This 
technique is implemented by dynamically generating a wrapper 
function that calls the original function with internally bound state, 
thereby providing information hiding while allowing functions to 
be parameterized with data. 

6.3 Results 

This section discusses the performance of dynamic code versus 
static code measured for our benchmarks, as well as the break down 
of dynamic compilation costs. 

In both Figure 4 and Figure 5, the legend indicates which static 
and dynamic compilers are being compared. icode-lee compares 
dynamic code created with ICODE to static code compiled with ICC, 
vcode-gee compares dynamic code created with VCODE to static 
code compiled with GNU CC, and so forth. 

Figure 4 illustrates the ratio of run time of static code to run 
time of dynamic code: a ratio greater than one means that dynamic 

code generation is profitable. In general, this ratio is considerably 
greater than one: in some cases, dynamically generated code is up 
to an order of magnitude faster than static code. In three cases, 
however, dynamic code generation does not pay off. In the case of 
umshl, as mentioned, we are providing dynamically a functionality 
that does not really exist in C: the static code we created specifically 
for this example is very well tuned. In the case of hash and ms, 
[CODE provides some advantage over static code (specifically, in the 
case of ms, we see a six-fold speed-up), but the code generated with 
VCODE is slower. We attribute this to the fact that VCODE does not 
perform any significant optimization other than strength-reduction 
of run-time constants. 

Figure 5 gives an indication of the relative costs of dynamic 
code generation. The “cross-over” point on the vertical axis is the 
number of times that a piece of dynamic code must be. executed in 
order for the sum of the cost of its invocations and its compilation to 
be less than or equal to the cost of the same number of invocations of 
static code. This is a measure of how quickly dynamic code “pays for 
itself.” In 3 cases (umshl, and hash and ms using VCODE) there are 
no vertical bars: this is because the dynamic code is slower than the 
static one, so the cross-over point never occurs. Usually, however, 
the performance benefit of dynamic code generation occurs after a 
few hundred or fewer invocations. In some cases (ms using ICODE, 
cmp, and query) the dynamic code even pays for itself after only 
one run. 

These graphs confirm the central (and predictable) tradeoff in- 
herent to the design of tee. Improvements in dynamic code quality 
come at the cost of additional dynamic compilation time. Using 
VCODE to perform fast, in-place dynamic code generation is very 
cheap, and can thus often be effective when the dynamic code is not 
used very much. But there are some cases when the code quality is 
not sufficiently good; ICODE then provides a good alternative, even 
though its code-generating costs can be up to an order of magnitude 
larger than those of VCODE. Interestingly, incurring the extra cost of 
code optimization can sometimes improve code quality sufficiently 
to make dynamic compilation pay off sooner than in the unopti- 
mized case. This occurs for the ntn benchmark, in the icode-gee 
and vcode-gee cases. Although the VCODE back end generates code 
six times more quickly than ICODE, the dynamic code generated by 
ICODE pays for itself in approximately two thirds the number of runs 
required for the VCODE-generated code to pay off (see Figure 5). 

Figures 6 and 7 analyze these code generation costs in more 
detail. Figure 6 shows that the VCODE back end generates code at 
between 100 and 500 cycles per generated instruction. The cost of 
manipulating closures and other meta-data is negligible: almost all 
the time is spent actually emitting binary code. Figure 7 presents 
similar breakdowns in the case of ICODE. For each benchmark, the 
left column displays code generation costs when using the linear 
scan register allocation, and the right column displays costs when 
using graph coloring register allocation. The ICODE back end gen- 
erates code at a speed between approximately 1000 and 2500 cycles 
per generated instruction. The costs of manipulating closures and 
building the intermediate representation are small, as is the time 
spent translating the ICODE opcodes to machine code. Approxi- 
mately 70-80% of the ICODE code generation cost is due to register 
allocation and related operations, such as computing live variables 
and building live ranges. The linear scan register allocation algo- 
rithm outperforms the graph coloring allocator in all cases but one, 
sometimes by up to a factor of two (in the case of dp). The perfor- 
mance of the two allocators depends very much on the structure of 
the code. When the code contains many variables (as is the case, for 
example with dp), scanning live ranges is superior to graph color- 
ing. By contrast, when there is a lot of code but very few variables 
(as in binary, the only benchmark where the linear scan performs 
more poorly than graph coloring), it is cheaper to color the (small) 
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interference graph than to set up the live ranges for the linear scan. 

7 Conclusion 
Dynamic code generation is a powerful and useful technique 

which has not been widely exploited so far because of inadequate 
language and compiler support. 

This paper has described and evaluated tee, the first full imple- 
mentation of ‘C. ‘C is a superset of ANSI C, designed to expose the 
dynamic code generation process to the programmer at the level of 
C expressions and statements. Unlike previous systems for dynamic 
code generation, it gives the programmer full control of the code 
creation process while remaining expressive and portable. 

tee is a solid and valuable tool for exploiting dynamic code 
generation in day-to-day programming and exploring techniques 
and tradeoffs of dynamic code generation itself. A release of the 
software, which currently runs on MIPS and SPARC processors, is 
available. 

Measurements on sample code from a variety of application ar- 
eas reveal that an efficient and easy-to-use implementation of a dy- 
namic code generation system can provide significant performance 
improvements. We have reported measurements of running times 
for both dynamically generated code and equivalent static C code, 
and have compared these running times to those of code compiled 
by a widely-used optimizing compiler, GNU CC. Performance gen- 
erally improved, increasing by up to an order of magnitude in the 
best cases. For several applications, the cost of dynamic code gen- 
eration was amortized after just one execution of the dynamically 
generated code. 
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