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Dataflow analysis framework based on Static Single As-

signment (SSA) form and Sparse Evaluation Graphs (SEGS)

demand fast computation of program points where data flow

information must be merged, the so-called #-nodes. In this

paper, we present a surprisingly simple algorithm for com-

puting ~-nodes for arbitrary flowgraphs (reducible or irre-

ducible) that runs in linear time. We employ a novel program

representation — the DJ graph — by augmenting the dom-

inator tree of a flowgraph with edges which may lead to a

potential “merge” of dataflow information. In searching for

~-nodes we never visit an edge in the DJ-graph more than

once by guiding the search of nodes by their levels in the

dominator tree.

The algorithm has been implemented and the results are

compared with the well known algorithm due to Cytron et

al. [CFR+ 91]. A consistent and significant speedup has been

observed over a range of 46 Fortran procedures taken from

a number of benchmark programs. We also ran experiments

on increasingly taller ladder graphs and confirmed the linear

time complexity of our algorithm.

1 Introduction

Static Single Assignment (SSA) form [CFR+ 91], Sparse Eval-

uation Graphs (SEGS) [CCF91 ], and other related intermedi-

ate representations have been successfully used for efficient

data flow analysis and program transformations [RWZ88,

AWZ88, WZ85, W0192, WCES94]. The algorithms for com-

puting these intermediate representations have one common

step- computing program points where data flow informa-

tion must be “merged”, the so called q$-nodes. Given a flow-

graph, the original algorithm for computing ~-nodes for an

SEG consists of the following steps [CFR+ 91, CCF91]:

1. Precompute the dominance frontier DF(z) for each

node z. A node v is in DF(z) if x dominates a pre-

decessor of y without strictly dominating y.
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2.

3.

Determine the initial set of ‘sparse’ nodes N. that rep-

resent non-identity transference in a data flow frame-

work. For SSA, such nodes contain definitions of vari-

ables [CFR+ 91].

Compute the iterated dominance frontier IDF(N~)

for the initial set N.. Cytron et al. have shown

that the desired set of ~-nodes for an SEG is same as

the iterated dominance frontier lDF(N.) of the initial

set [CFR+ 91].

The time complexity of the original algorithm depends

on the size of the dominance frontier. Although the size of

the dominance frontier is linear for many programs (as was

noted by Cytron et al.), there are cases in which the size of

the dominance frontier is quadratic in terms of the number

of nodes in a flowgraph. This is true even for some cases of

structured programs, for example, nested repeat –unt i 1

loops [CFR+ 91]. Note that, even though the size of the dom-

inance frontier may be quadratic in terms of the number of

nodes in the flowgraph, the number of #-nodes needed re-

mains linear (for a particular SEG) [CFR+ 91]. As Cytron

and Ferrante pointed out “Since one reason for introducing

~-nodes is to eliminate potentially quadratic behavior when

solving actual data flow problems, such worst case behav-

ior during SEG or SSA construction could be problematic.

Clearly, avoiding such behavior necessitates placing ~-nodes

without computing or using dominance frontiers” [CF93]. To

overcome the potential quadratic behavior of computing @-

nodes using dominance frontiers, Cytron and Ferrante pro-

posed a 0(/3x a(~)) algorithm that does not use dominance

frontiers.* To the best of our knowledge, the problem of find-

ing an algorithm for computing @nodes for an arbitrarySEG

in linear time remains open.z

In this paper, we present a linear time algorithm for com-

puting the desired set of @-nodes for N. without precom-
puting the domtnance frontiers for all the nodes. One key

feature of our linear time algorithm is to order the nodes in

the dominator tree in such a way that when the computation

of dominance frontier DF (y) is performed, the dominance

frontier DF(z) of any its descendant node x, if it is essential

for computing the desired set of #-nodes for No, has already

1CI() is the slowly-growing inverse-Ackerrnann function.
2MOE recently, Johnson and Pingali ~3] have given a linear

time algorithm for constructing an SSA like graph, called the Depen-

dence Flow Graph. We compare our work with theirs in Section 7.
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been computed and is so marked. As a result for any such

z, the computation of DF(v) does not require the traversal

of the dominator sub-tree rooted at z.

To perform the proper node ordering and marking, our

algorithm uses a novel program representation, called the

DJ-graph (Section 3). The skeleton of the DJ-graph of a

program is the dominator tree of its flowgraph (whose edges

are called D-edges in this paper— see Section 3). The tree

skeleton is augmented with join edges (called J-edges in this

paper— see Section 3) from the original flowgraph which

potentially lead to join nodes where data flow information

are merged. The levels of the nodes in the dominator tree

are used to order the computation of dominance frontiers of

those nodes which are essential to compute the final set of

@-nodes in a bottom-up fashion. We show that our algorithm

visits each edge in the DJ-graph at most once, and therefore

the complexity is linear in the size of the input flowgraph?

The algorithm has been implemented on the top of

Parafrase2 compiler [Har85b]. To compare our results, we

also implemented the original algorithm based on iterating

through dominance frontiers [CFR+ 91]. We experimented

on a number of FORTRAN procedures taken from Perfect,

Eispack, and other programs. With our algorithm we were

able to obtain, on average, more than five-fold speedup over

the original algorithm. We also tested our algorithm against

the standard ladder graph example [CF93]. Again our algo-

rithm exhibited a linear behavior compared to the quadratic

behavior of the original algorithm:

The significance of the algorithm presented in this pa-

per goes beyond to merely computing @nodes for SEGS or

SSA form. Our framework can be used for the computa-

tion of guards [Wei92]. More recently we have used iter-

ated dominance frontiers to incrementally update domina-

tor trees [SGL94b]. Finally, our framework is robust enough

to support incremental computation of ~-nodes [SGL94b].

Organization. In the next section, we introduce some stan-

dard notation and definitions that we will use in the rest of

the paper. In Section 3, we introduce the DJ-graph. We also

discuss some of the properties of this graph that are relevant

to our discussion. In Section 4, we give a simple linear time

algorithm for computing #-nodes. We show the correctness

and the complexity of our algorithm in Section 5. In Sec-

tion 6, we present an implementation of our algorithm and

report results for a number of programs. We also report re-

sults for the ladder graph example. In Section 7, we compare

our work with related work and finally, in Section 8, we give

our conclusion.

2 Background and Notation

A flowgraph is a connected directed graph G =

(N, E, START, END), where N is the set of nodes, E is the

set of edges, START c N is a distinguished start node, and

END g N is a distinguished end node. Figure l(a) shows an

sAs we will show later in the paper, the number of edges in the

DJ-graph is no more than IN I + IJ91, where IN I is the number of

nodes in the flowgraph and IE I is the number of edges.
4Due to the complex nature and partial description of @mn and

Ferrante’s almost linear time algorithm we did not implement that
algorithm.

example of a flowgraph. If x + y E E, then z is called the

source node and y is called the destination node of the edge.

We will assume that every node in N is on some path from

START to END.

If S is a set, we will use the notation ]Sl to represent the

number of elements in the set.
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Figure 1: Flowgraph and its dominator tree

In a flowgraph, a node x dominates another node y iff all

paths from START toy pass through z. We write m dom y to

indicate that x dominates y, and write x !dom y if x does not
dominate y. If z dom g and z # y, then z strictly dominates
y. We write z sdom y to indicate z strictly dominates y,
and write z !sdom g if x does not strictly dominate y. The

dominance relation is reflexive and transitive, and can be

represented by a tree, called the dominator tree. If x is a

parent node of v in the dominator tree, then z immediately

dominates y, and we write adorn(y) to denote the immediate

dominator of y. Given a node x in the dominator tree, we

define SubTree(z) to be the dominator sub-tree rooted at

z. Note that the nodes in SuKFree(z ) is simply the set of

all nodes dominated by x. Figure 1(b) shows the dominator

tree for the flowgraph shown in Figure 1(a).

For each node in the dominator tree we associate a level
number that is the depth of the node from the root of the tree.

We write z .levei to indicate the level number of a node z.

For example, for the dominator tree shown in Figure l(b),

START.level = O, 8.level = 2, 9.level = 3, etc.

The dominance frontier DF(z) of a node x is the set of all

Y such that z dominates a predecessor of y, but z does not

strictly dominate y [CFR+ 91]. We can extend the definition

of dominance frontier DF(S) to a set of nodes S:

DF(S) = u DF(Z) (1)

Zes

We define the iterated dominance frontier lDF(S) for a
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set of nodes S as the limit of the increasing sequence:

IDFI(S) = DF(S), (2)

IDF,+I(S) = DF(S u IDFt(s)) (3)

Let N= ~ N be the initial set of “sparse” nodes [CF93].

Cytron et al. have shown that the desired set of ~-nodes

for N. is exactly same as lDF(N~) [CFR+ 91]. Therefore
in the rest this paper we present a linear time algorithm for

computing the iterated dominance frontiers for N. g N.

3 DJ-Graphs and Their Properties

In this section we briefly introduce DJ-graphs and state some

of the properties of DJ-graphs relevant to our discussion. We

also give a simple algorithm for computing the dominance

frontiers for a node using DJ-graphs. We will then show

how to compute the dominance frontiers for a set of nodes

without precomputing the dominance frontiers for all nodes.

In the next section we will show how to extend this simple

algorithm to compute the relevant set of @nodes in linear

time.

A DJ-graph has the same set of nodes as in the flowgraph,

and two types of edges called D-edges and J-edges. D-edges

are dominator tree edges, and we define J-edges as follows:

Definition 3.1 (J-edge) An edgez - yin ajowgraph is named
a join edge (or J-edge) if z !sdom y, Furthermore, y is named

a join node.

Therefore, in order to construct the DJ-graph of a flow-

graph, we first construct the dominator tree of the given

flowgraph. 5 Then, we insert the J-edges into the dominator

tree as follows:

For each join node yin the dominator tree connect

z to y (in the dominator tree) iff z - Y is a join

edge in the original flowgraph.

Figure 2 shows the DJ-graph for the flowgraph of Fig-

ure 1(a). To see how a J-edge is inserted in the dominator

tree, consider join node 2 shown in the flowgraph of Fig-

ure 1(a). This node consists of 1 --+ 2 and 6 a 2 as its

two incoming edges. Of these two incoming edges, node 1

strictly dominates join node 2, and so we do not insert an

edge from 1 to 2 in the corresponding dominator tree; how-

ever 6 does not dominate 2, therefore we insert an edge from

6 to 2 in the dominator tree. We can easily see that the time

complexity for inserting all the J-edges in the dominator tree

is O ( ~). Therefore the time complexity of constructing a

DJ-graph is linear with respect to the size of the flowgraph.G

In the rest of the section we discuss some of the proper-

ties of DJ-graphs. Due to space reason we only outline the

basic properties and direct interested readers to the full pa-

per [SG94] for a more thorough discussion on this.

5Another “ieW of D-edges and J-edges may give a better inti-

ition We mark each edge z + y in the flowgraph as an immediate

dominance edge if x = don(y). The edges that are not marked are

join edges.
6Note that we can construct the dominator tree of a flowgraph in

linear time [Har85a].
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Figure 2: The DJ-graph of the example flowgraph

1.

2.

3.

The number of edges in a DJ-graph is less than the sum

of the number of nodes and the number of edges in the

corresponding flowgraph [SG94]. We will use this re-

sult in the complexity analysis of our ~-node placement

algorithm (Section 5.2).

Let g G DF(z] (and thus is also in lDFI(z)). Then the

level number of Y is always less than or equal to the level

number of z [SG94]. This result is one of the key points

for obtaining our linear time algorithm for placing @-

functions. Intuitively what this result says is that if we

want to find what nodes in a flowgraph could be in the

dominance frontier (or the iterated dominance frontier)

of node x, we only need to look at those nodes whose

level number is no greater than that of z. Other nodes

(whose level number is strictly greater than the level

number of x ) can never be in the dominance frontier of

x.

A node y is in DF(z) iff there is a node z c SubTree(z)

and a J-edge z + y such that the level of v is less than or

equal to the level of x (Lemma 3.1). Using this property

we next give a simple algorithm (Algorithm 3.1) for

computing dominance frontiers.

Computing the Dominance Frontier for a Single

Node

Our algorithm for computing the dominance frontier of a

node is based on Lemma 3.1 which establishes a relation

between a node z c DF(x ), and the nodes in the dominator

sub-tree rooted at z. This relation is captured by a J-edge

y + z, Where y is a node in the SubTree(x).
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Lemma 3.1 A node z c DF(x) if there exists a y c

SubTree(x) with y -+ z as a J-edge and z.level < x.level.

Using Lemma 3.1 we can easily devise a simple algorithm
for computing the dominance frontier of a node as follows:

Algorithm 3.1 Thefollowing algorithm computes the dominance

frontier DF(x) of a node x using D}-graphs.

DomFrontier(z)

{
o DFZ = @

1: foreach y G SubTree(z) do

2 if((y + z == Jedge) and

3: (z.level < z.ievel))

4 DFZ = DF= U Z

}

For example, consider the DJ-graph shown in Figure 2.

Suppose we want to determine the dominance frontier of

node 3. The SubTree(3) = {3,9, 10,11,12,13, 14}. At step

❑wefindth f 11e o owing J-edges: {10 + 12,11 + 12,13 +

3,13 + 15,14 + 12}. Of these J-edges, we see that only

nodes 3 and 15 satisfy the condition at step ~ Therefore

DF(3) = {3, 15}.

Computing the Dominance Frontiers for a Set of

Nodes

We can easily use the Algorithm 3.1 to compute the domi-

nance frontier for a set of nodes S, by first pre-computing the

dominance frontiers for all the nodes, and then using Equa-

tion 1 to proceed with the computation To illustrate this

consider the computation of DF( {9, 12}). By Equation 1,

we know DF({9, 12}) = DF(9) U DF(12). Let us therefore

precompute DF(9) and DF’(12). Using Algorithm 3.1 we

get DF(9) = {3, 15}, and DF(12) == {3, 12, 15}. Therefore

DF({9, 12}) = {3, 12, 15}.

Notice in the above example that we visit the nodes in the

SubTree(12) twice-once during the computation of DI’(9)

and once again during the computation of DF(12). How

can we avoid this redundant visitation of the nodes in the

SuWree(12)? We can avoid this by first computing DF(12)

and marking the node 12 as being processed. Now during

the computation of DF(9) we avoid visiting any nodes in

the SubTree(12) (since node 12 is already processed, and is

so marked) thereby avoiding redundant visitation. Notice

here that we never need to precompute DF(9) and DF(12)

in order to compute DF({9, 12}). Therefore in order to

compute DF({9, 12}), we first compute the DF(12) using

Algorithm 3.1, and also mark node 12 as being processed.

Any candidate nodes that is generated on-the-fly is then

added to the set DF( {9, 12}). Now during the computation

of DF(9) we avoid visiting the nodes in the SubTree(12).

Again we add any candidate nodes that is generates on-the-

fly to DF({9, 12}). Based on this observation we can see

that the ordering of the nodes in the dominator tree is im-

portant to avoid redundant visitation of nodes during the
computation of dominance frontiers.

In the next section, we will show how to extend the above

key observation to compute the relevant set of ~-nodes in

linear time without pre-computing the dominance frontier

for all the nodes in the flowgraph. Notice that one can still

use Algorithm 3.1 for computing the relevant set of @-nodes

by precomputing the dominance frontiers for all the nodes.

But the time complexity of the resulting algorithm will be

quadratic?

4 Algorithm for Placing #-Nodes

In this section, we give a simple linear time algorithm for

computing @-nodes using DJ-graphs (Algorithm 4.1). Given

a set of initial nodes N., the algorithm computes the rel-

evant set of @-nodes by computing the set I.DF(N.), the

iterated dominance frontier of N.. As we indicated in Sec-

tion 3, a direct application of Algorithm 3.1 based on the

inductive definition of iterated dominance frontier can lead

to quadratic behavior. Instead, our linear time algorithm is

based on two key observations:

1.

2.

Let y be an ancestor node of a node x on the dominator

tree. If DF(z) has already been computed before the

computation of DF(y), DF(x) need not be recomputed
when computing D F (y). However, the reverse may

not be true; therefore the order of the computation is

crucial. In Algorithm 4.1 the computation of relevant

set of nodes is ordered in such a way that at the time

when the computation of DF(Y) is performed, DF(z)

of any node z within the dominator sub-tree rooted at y

has already been computed and is so marked, if DF(z)

is essential for computing the set of desired #-nodes for

N.. As a result, the computation of DF(y) need not

traverse the dominator sub-tree of x for all such z.

When computing DF(z) we only need to examine the
J-edges y ~ z, where y is a node-in the dominator sub-

tree rooted at x and z is a node whose level is no greater

than the level of z. Recall that we have previously made

this observation in Lemma 3.1.

We employ a data structure called the PiggyBank to keep
the candidate nodes in the order of their respective levels.
Based on the above observations, levels of the nodes in the

dominator tree will be used in a bottom-up fashion to or-

der the computation of dominance frontiers of those nodes,

z, which are essential to compute the final set of ~-nodes.

Meanwhile, during each computation of DF(x), the descen-
dant nodes of z in the dominator sub-tree rooted at x are
visited in a top-down fashion guided by the D-edges, while
avoiding nodes which have already been marked. During
this top-down visit, the J-edges are used to identify the can-
didate nodes which should be added into the IDF— the set

of final ~-nodes and those to be recursively explored further.
Note that each new candidate generated on-the-fly always
has a level number no greater than that of the node currently
being processed, and we assure that no nodes are inserted

into the PiggyBank more than once. This, and the structure

of the F’iggyl?ank, are the basis of the time linearity of our

algorithm as will be demonstrated later in Section 5.

TAn example of a flowg.aph which exl-dbitquadratic behavior is

the ladder graph. We will discuss more on this later in Section 6.
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The Piggy Bank is like a piggy-bank, where nodes are

temporarily deposited for later withdrawal (See Figure 3).

The Piggy Bank is an array of list of nodes, with index i stor-

ing nodes of level t. Associated with the Pigg yBan k are two

procedures: InsertNodeo and GetNodeo. InsertNodeo in-

serts a node in the PiggyBank at the index corresponding to

the level number of the node. GetNodeo returns the node

whose level number is the maximum of all nodes currently

stored in the Piggy Bank. We first insert the initial set of

nodes N. into the Piggy Bank. Then, we iteratively com-

pute the dominance frontiers of the nodes in the PiggyBank

in the order that GetNodeo returns to obtain the iterated

dominance frontier of the initial set of nodes N.. (A node

is inserted into the PiggyBank if it is either in N~ or in the

iterated dominance frontier of some node in N..) We for-

mally prove the correctness the algorithm in Section 5.1, and

analyze its complexity in Section 5.2.

To simplify the presentation of the algorithm, we use the

following notation and data structures:

● N umLeve/ is the total number of levels in the domina-

tor tree embedded in the DJ-graph.

● Each node z c N has the following attributes:

struct Node Structure{

visited = {Visited, NotVisited}

alpha = {Alpha, NotAlpha}

inphi = {InPhi, NotInPhi}

level = {O... NumLevel – 1}

}

c Each edge x + y c E has an attribute that specifies the

type of the edge: {Dedge, Jedge}.

c The Pigg yBan k is an array of pointers to nodes. Its

structure is defined as follows:

struct Piggy BankStructure{

Node Structure *node

Piggy BankStructure *next

} Piggy Bank[NumLevel]

o CurrentLevel is initially NumLevel — 1,and subse-

quently has a value that corresponds to the level num-

ber of the node that GetNodeo returns.

● current R.o ot always points to the node that GetN-

odeo returns. CurrentRoot is equivalent to root of

the Sv,bTree () whose dominance frontier is currently

being computed.

The first step in the algorithm is to insert all the nodes in

N. into the Piggy Bank structure. This is shown below in the

Main procedure as steps ❑ to ❑. We mark the nodes that

are initially inserted into the PiggyB an k as Alpha to indicate

that they belong to the initial set N.. This is needed to avoid

re-inserting these nodes into the Piggy Ban k again in the

future (a condition that we check in the procedure Visitor at

step ❑ ). We then iteratively invoke the procedure Visito

on the nodes that GetNode( ) returns to compute the iter-

ated dominance frontier. At step ~ we assign the variable

CurrentRoot to point to the node x that GetNodeo returns

in order to keep track of the current root of SubTree(z ). Be-

fore Visit(z) is invoked at step ~ the node z is marked

Visit ed at step ❑ This marking is crucial because we never

visit a node that has been marked Visited. We check for this

condition in the procedure Visito at step ❑ .

Algorithm 4.1 The following algorithm computes N4 =

IDF(Na).

~ Inpuk A DJ graph DJ = (N, E), and the initial set

N. g N of sparse nodes.

4 Output The set IDF = N4 = DF+(Na).

~ Initialization

c IDF = {}

s Vx E N (x. visited = NotVisited ;

x.inphi = NotInPhi ;

x.alpha = Not Alpha ;

/ . Compute the level numbers. /

x.level = Level(z))

● ~urrentLevel = Num Level — ~

~ The Algorithm

Maino

{
/’

1:

2

3:

4

5:

6:

2

8:

9:

Insert N. into the PiggyBank * /

foreach x G No do

x.alpha = Alpha

InsertNode(z)

endfor

/ * repeat until no more nodes

in the PiggyBank * /

while((z = GetNodeo) ! = NULL)

CurrentRoot = z

x.vzstted = Visited

Visit(z)

endwhile

} /’ EndMain ‘/

The procedure Visito, called with the current root

CurrentRoot, essentially traverses the dominator sub-tree

SubTree(CurrentRoot) in a top-down fashion marking all

nodes in the sub-tree as Visited if the nodes are not al-

ready marked Visit ed (a condition checked at step ~.

Notice that the nodes in the dominator sub-tree are con-

nected through D-edges. As it walks down the sub-tree,

the procedure Visito also “peeks” at all nodes that are con-

nected through J-edges, but does not mark them as Vistted.

It only checks the level number of these nodes, and when-

ever it notices that the level number of a node (that it peeked

through a J-edge) is less than or equal to the level number of
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CurrentRoot, it adds the node into the set IDF, if the node

is not already in the set (a condition checked at step ~. It

also marks the node as InPhi whenever the node is added
to the set IDF. This marking is necessary to avoid adding
the node again into IDF whenever it may peek at this node

through some other J-edge in the future. It also inserts the

node into the PiggyBank if the node is not in the set N. (a

condition checked at step ~.

Procedure Visit(x)

{
10 foreach y ~ Succ(z)

11: if(s + y == Jedge)

12 if(y.ievei < currentRoot.ieve~)

/’ Check if y already in N+ ‘/
13 if(y.2nphi ! = InPhi)

14 y.inphi = In Phi /* y in N+ */

/* Compute the set N+ ‘/
15 IDF = IDF U {y}

16 if(y.alpha ! = Alpha)

/’ Do not reinsert if y s N. “/

lZ InsertNode(y)

1s endif

19 endif

20 endif

21: else/* z + y is Dedge */

I* Avoid redundant visit */
22 if(y.visited ! = Visited)

23: y.visited = Visited

24 Visit(y)

25 endif

26 endif

2R end for

} /’ EndVisit ‘/

InsertNodeo inserts a node into the PiggyBank at an

index equal to the level number of the node.

Procedure InsertNode(~)

{
2& z.ned = ~iggyBank[x.level]

29 Piggy Bank[z.levei] = x

} /’ EndInsertNode ‘/

GetNodeo returns a node whose level number is the max-

imum of all the nodes currently in the Piggy Bank. GetN-

odeo also removes this node from the Piggy Bank, and ad-

justs the (?urrentLevel accordingly. CurrentLevel keeps

track of the level number of the node that GetNodeo re-

turns. Note that anode will never be inserted in PiggyBank

at a level number greater than CurrentLevel. As a result,

CurrentLevel monotonically decreases through the level

numbers. That is, the calls to Visit(z) at step ❑ is per-

formed in a bottom-up fashion, in contrast, with each such

call, the traversal of the dominator sub-tree rooted at x is

performed in a top-down fashion. The marking of the nodes

prevents any nodes from being processed more than once in

the algorithm. This is essential to ensure the time linearity

of the algorithm.

Function GetNodeo

{ /* More nodes ‘“ in the current level */

30

31:

32:

33

34

35

36

32

3s

39

40

4k

42

43:

} /* EndGetNode */

if(pzggy~ank[cumentLevei] ! = NULL)

x = Piggy Bank[CurrentLevei]

/’ delete x from PiggyBank */

.PiggyBank[CurrentLevel] = x.ned

return x

endif

for i = CurrentLeve~ downto 1 do

if(PiggyBank[i] ! = NULL)

/ * Update the current level */

CurrentLevel = i

z = Piggy Bank[i]

/’ Delete x from PiggyBank ‘/

Piggy Bank[i] = z.nezt

return x

endif

endfor

/’ No more nodes in PiggyBank */

return NULL

Example Next we illustrate Algorithm 4.1 through an ex-

ample, Consider the DJ-graph shown in Figure 2. Let

N. = {5, 13}. The first step is to deposit the nodes 5 and 13

into the Piggy Bank, and also mark them as Alpha. After

the for loop at step ~ the PiggyBank would look like Fig-

ure 3(a). At step ~ the function GetNodeo returns node 13.

(GetNodeo also removes 13 from the PiggyBank.) At step

~ CurrentRoot is set to node 13. To find the dominance

frontier of node 13 we call Visit(13) at step ~ Prior to this,

we also mark node 13 as Visited at step ❑.

In the procedure Visito, at step ❑ we find that the suc-

cessor nodes of 13 to be nodes 3, 15, and 14. Of these,

13 + 15 and 13 + 3 are J-edges, and 13 + 14 is a D-

edge. Since 15.level = 2 and 3.level = 2 are less than

CurrentRoot.~evel = 13.level = 5,nodes3and15areadded

to IDF (since they are not already in ID F). Also, neither

3 nor 15 is marked Alpha (and hence not in N.), both the

nodes are inserted into the PiggyBank (Step ~. Fig-

ure 3(b) shows the new state of the Piggy Bank.

Next, since the edge 13 + 14 is a D-edge, and node 14 is

not yet visited, we call Visit(14) at step ❑ . Again, before

ca11ingVisit(14), we mark node 14 as Visited (step ~. The

only successcr of 14 is node 12, and 12./eve/ = 4 is less than

CurrentRoot.ievei = 13.level = 5. Ak+o, node 12 is neither

in IDF nor in Nat and so is added to IDF and inserted into

the PiggyBank (step ❑ and @ respectively). The call to

Visit(13) terminates and returns at step ❑.

Now the function GetNodeo is executed at step ❑ and

it returns node 12. Visit(12) is called at step ~ and

CurrentRoot is set to node 12. The only successor of 12

is node 13, and 12 + 13 is a D-edge. Since node 13 is already

marked Visited, the call to Visit(12) terminates and returns

at step H.

GetNodeo is called again, and this time it returns node

5. Visit(5) is called at step ~ and the process continues.

67



Figure 3 shows a partial trace of the PiggyBank for the

example.
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Figure 3: Partial trace of #-node placement algorithm

5 Correctness and Complexity

In this section we establish the correctness of Algorithm 4.1

and analyze its complexity. Due to space reasons, we state

the main theorems (Theorem 5.1 and Theorem 5.2) and only

give intuitive sketch of their proof structures. We also state

all the supporting lemmas needed and state their intuitive

meaning. All proofs can be found in [SG94].

5.1 Correctness

The main theorem which establishes the correctness of Al-

gorithm 4.1 is Theorem 5.1. The theorem states that the algo-

rithm computes the iterated dominance frontiers of the set

N.. The inductive proof of the theorem is based on a major

lemma (Lemma 5.4), which establishes the fact that when the

algorithm calls Visit(z) at step ❑and the call terminates, all

nodes in the dominance frontiers DF(x) are already added

into the set IDF (a fact used both in the induction basis and

induction steps). Let z be the current root of a dominator

SubTree(z) visited by Visit(z) at step ❑. Let z be in DF(z).

Lemma 3.1, introduced earlier in Section 3, guarantees that

there must exist a node g in SubTree(z) such that y ~ z is

a J-edge and level.z ~ level.z. Another lemma, Lemma 5.3,

states that y will already have been marked Vzsited when

Visit(z) returns. There are two cases in the algorithm where

a node can be marked Visited: (1) at step ~ and (2) at

step ❑. The validity of Lemma 5.4 for case 1 is straightfor-

ward. For case 2, y must be marked Vis ite~ by an earlier

call of Visit(v) for a node v in SubTree(z). This fact is made

possible because of the PiggyBank structure and we for-

malize this in Lemma 5.1 and Lemma 5.2. We then make

an inductive argument on the decreasing level of the nodes

to demonstrate that all nodes in DF (v ) should already be

inserted into IDF by this time. The node z should also be

in IDF according to Lemma 3.1. From this the validity of

Theorem 5.1 is established.

In our chain of proofs, we begin with Lemma 5.1, which

states that a node can never be inserted in the PiggyBank

at an index greater than the level number of the current root

node CurrentLevel. We use this fact to prove Lemma 5.2.

Lemma 5.1 A node is never inserted in the PiggyBank at an

index that is greater than cuTTentLevei.

Lemma 5,2 gives an order (based on the level number of

nodes) in which calls to Visitor at step ~ can be performed.

The ordering of nodes is controlled by calls to GetNodeo at

step ❑. Recall that GetNodeo always returns a node whose

level number is the maximum of all nodes currently stored

in the PiggyBank structure.

Lemma 5.2 Let x and y be any two nodes that are inserted

in the Piggy Bank and later removed (and returned) from the

PtggyBank by GetNodeo at step ❑. lf y.level > z.level,

then Visit(y) will be called earlier than Visit(x) at step ❑
The next lemma establishes an important fact that when

a node z is visited by a call of Visit(z) from step ❑ and

returned, that all nodes in the dominator SabT~ee (z) have

been marked Visited. Intuitively this means that when such

a visit returns, none of the nodes in the SubTree (z ) have

been overlooked.

Lemma 5.3 When Visit(z) returns at step ~ all nodes in

subTTee(x) are marked Visited.

It is easy to see from Lemma 5.2 and Lemma 5.3, that calls

to Visito at step ❑ are made in a bottom-up fashion and

while each recursive call at step ❑ the recursive procedure

Visito visits the nodes in the dominator tree in a top-down

fashion.

Lemma 5.4 is the main lemma which shows how the pro-

cedure Visito captures the dominance frontier of a node in

the set IDF. Intuitively the lemma states that when Visit(z)

❑is called and terminated at step S all the nodes in the dom-

inance frontier of x are added to the set IDF.

Lemma 5.4 When Visit(x) is called with x as the current Root

and returned at step@ all the nodes in DP (x ) are also in the set

IDF.

Notice that the above lemma only says that Visit(z), when
—

it returns at step ~ will have added the entire dominance

frontier of x to IDF. It does not specify which of the nodes

in the set IDF belong to DF(x). Notice that the set IDF

can contain nodes that are not in the set DF(x ).

Theorem 5.1 Algorithm 4.1 correctly computes the set of ~-nodes

N+ = IDF(Na).

The proof of the theorem easily follows from the above

lemmas.
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5.2 Complexity

Next we will show that the time complexity of Algorithm 4.1

is O(I El). Recall that the number of edges in the DJ-graph
is less than INf I + IEf 1. Therefore, the time complexity of
Algorithm 4.1 is O(lNf I + lEjl). Since lEf I > lNf I – 1, the

time complexity of the algorithm is 0( IEf I), which is linear

with respect to the number of edges in the flowgraph.
From Algorithm 4.1, readers may have already observed

that for any node x in the DJ-graph, the node maybe pro-

cessed by a call of Visit(z) (which may happen at step ❑
Dor 24 at most once. This observation is a key to the proof

of linearity of the algorithm, and is stated as the following
lemma.

Lemma 5.5 When Algorithm 4.1 terminates, a node x c N may

beprocessedby a call to Visit(x) at most once.

From the above lemma, one can see that a node can never

be marked Visited more than once, and there can be at most
INI calls to Visito. Recall that at each node in the procedure
Visito, we either visit (through a D-edge) or “peek (through

a J-edge) all the successor nodes (step ~ only once. This
means that we have effectively probed all the edges in the DJ-
graph at most once. Hence one can see that the complexity

of the algorithm is 0(1131).

Theorem 5.2 The time complexity ofAlgorithm 4.1 is 0(1111).

An acute reader may ask the following question: What
about the complexity of inserting and deleting nodes
into/from the Piggy Bank? It is easy to see that the com-

plexity of inserting a node in the PiggyBank is O(l). As
for the complexity of getting a node from the Piggy Bank,

it is again easy to see that a node will never be inserted in

the PiggyBank at the index greater than the CumentLevei

(from Lemma 5.1). Each call of GetNodeo will execute

the for loop with a monotonically decreasing Cuneni!Level

from NumLevel– 1 down-to 1during successive calls for the
entire duration of the algorithm (follows from Lemma 5.1).
Hence the overall complexity of deleting nodes from the
PiggyBank is, in the worst case, O(INI).

5.3 Discussion

Recall that one of the key point that makes our algorithm
linear is the PiggyBank structure. If one were to use other

structures such as a linked-list, a stack or a queue, either the

proof of correctness would fail (if we still wish to continue to

mark the nodes as Visited using one color), or the complexity

of the algorithm would not be linear (we will need to mark

the nodes as Visited using more than one color). The second

situation is similar to finding the iterated dominance frontier

by iteratively applying Algorithm 3.1. We can easily show

that the complexity of this method will be quadratic.

To fully understand the above discussion, the readers are

encouraged to apply the algorithm, with No = {O, 2}, to

the “ladder graph example shown in Figure 4(a) whose
DJ-graph is shown in Figure 4(c). Try to use a linked-list

structure to replace the PiggyBank structure, and assume

node O is visited before node 2.
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Figure 4: A ladder flowgraph

6 Implementation and Experimen-

tal Results

In this section we present our experimental results and their

analysis. We implemented our linear time algorithm on top

of the Parafrase compiler [Har85b] and executed on 46 FOR-

TRAN routines taken from Perfect, Eispack, Lapack, Ode,

Opt, and Gator!. We particular chose those procedures

from these suites that are large and have unstructured con-

trol flows. We carried out our experiments on a SPARC-10

workstation. To compare the performance of our algorithm

with the original algorithm, we also implemented the @

node placement algorithm based on iterating through the

dominance frontiers [CFR+ 91]. This implementation also

allowed us to doubly verify the correctness of our algorithm

by matching the results of ~-nodes of the two algorithms.

To be fair, the time measurement shown for the original al-

gorithm does not include the time for pre-computing the

dominance frontiers.

For convenience, we will denote lDF(d~) for iterated

dominance frontier algorithm based on dominance frontiers,

and .IDF(new) for our new linear time algorithm. Figures 5

and 6 shows the results for some typical procedures taken

from Perfect and Lapack programs, respectively. The X-axis

gives the names of the procedure we experimented on. In

Figure 7 we give the performance for all the 46 FORTRAN

procedures we tested. The second column in the table gives

the number of flowgraph nodes for the corresponding pro-

cedure. The time measurements (averaged over 25 runs)

shown for 1.DF(d~) and lDF(new) are for computing ~-

nodes for a single SEG. We randomly chose 15 to so~o of the
nodes to be N., the initial set of sparse nodes; and we chose

the same N. for both .IDF(new) and IDF(df) algorithms.

Originally we implemented the lDF(d~) algorithm using

bit-vectors for encoding the dominance frontiers for each

node. With this implementation our algorithm exhibited a

8E@ck, LaPack, ode, and Opt are available from netlib.att.com.

Gator is a Gas, Aerosol, Transport and Radiation model, and is
available from ftp.cs.berkeley.edu
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speedup ranging from 4.2 to 19.8 over the lDF(d~) algo-

rithm, with average speedup being around 9.0. We then

translated the bit-vector representation to a linked-list rep-

resentation. With this representation our algorithm shows a

speedup ranging from 2.2 to 8.9 over the lDF’(d$) algorithm,

with average speedup being around 5.5. This suggest that

bit-vectors may not be the best representation for encoding

dominance frontiers.

Figure 7 shows the performance of our algorithm over

the lDF(dj) algorithm (using linked-list structure for repre-

senting the dominance frontiers). In particular, the speedup

for routines that we tested from the Perfect suite is ranging

from 2.2 to 8.0, with average speedup being 5.0. For rou-

tines from Lapack speedup range is from 3.9 to 8.1, with

the average speedup being 5.7. For smaller programs (less

than 75 nodes) we found that both the algorithms take scant

time. Clearly from these plots, we can see that our algorithm

performs consistently and significantly faster even for real

programs we tested. Our observation here is somewhat dif-

ferent from [CFR+ 91]: the linear complexity of the algorithm

has demonstrated significant benefit in terms of speedup on

real programs.

We also measured the execution time for both the al-

gorithms on increasingly taller ladder graphs of the form

shown in Figure 4. Recall that for this graph, previous alg~

rithms exhibit non-linear running time because the size of the

dominance frontiers of the left-spine increases quadratically

as the size of the ladder is increased.

For the ladder graphs, we tested our implementation on

a SPARC 20 workstation. We measured the running time

of lDI’(d~) and lDF’(new) algorithms as the size of the

graph is increased. Figure 8 show the performance curve

for both the algorithms on increasingly taller ladder graph.

As expected, IDF(df ) exhibit quadratic running time, while

our new algorithm shows a linear behavior. Notice that the

measurement shown for the IDF (df ) algorithm is in seconds,

while for our algorithm it is in milliseconds. This shows that

our algorithm is not only linear, but is also significantly faster

even for increasingly taller ladder graphs. We observed sim-

ilar trend for the nested repeat –unt i 1 flowgraph.

7 Related Work

The sparse evaluation technique is becoming popular, es-

pecially for analyzing large programs. To this end, many

intermediate representations have been proposed in the lit-

erature for performing sparse evaluation [CFR+ 91, CCF91,

JP93, WCES94]. The algorithms for constructing these in-

termediate representations have one common step- deter-

mining program points where data flow information must

be merged (the so called #-nodes). The notion of d-nodes
dates back to the work of Shapiro and Saint [SS70] (as noted
in [CFR+ 91]). Subsequently, others have proposed sparse
evaluation in one form or another that is related to work of
Shapiro and Saint [RT82, CF87]. Cytron et al. [CFR+ 89] gave
the first algorithm for computing d-nodes for arbitrary flow-

graphs. Tie time comple~ity of”the algorithm depended on

the size of the dominance frontier, which is O(N2). Recently

C@on and Ferrante improved the quadratic behavior of

computing ~-nodes to be almost linear time. The time com-
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graph

plexity of the new algorithm is O(E x a(E)), where ao is

the inverse-Ackermann function [CF93]. It seems that the

algorithm has not been implemented [CF93], and since the

algorithm is not exactly linear, more experimental studies

are needed to evaluate the performance of that algorithm

when applied to real programs. Compared to any of the

previous work, our algorithm reduces the time complexity

of constructing a single SEG to O(E). Also, we can use our

algorithm to construct SSA form or DFG in time O(,E x V),

where V is the number of variables.

Johnson and Pingali recently proposed an algorithm for

constructing SSA-like representation called the Dependence

Flow Graph (DFG) UP93]. To construct DFG they first com-

pute regions of control dependence. Using this information

they determine single-entry-single-exit regions. Then they

perform, for each variable, an inside-out traversal of these

regions, computing dependence information and inserting

switch and merge nodes, whenever dependence cross re-

gions of control dependence. The authors have shown that

the running time of the algorithm for constructing DFG is

O(E). One can easily construct the SSA form from the DFG

by simply eliminating switch nodes in the DFG. Although,

the method of Johnson and Pingali can be used for construct-

ing the SSA form in time O (E x V) (where V is the number

of program variables) UP93], it has the same problem as the

SSA form, i.e. the DFG and the SSA form cannot be used for

solving arbitrary data flow problems (for example, liverress

analysis), as noted in [CF93]. Also, their algorithm can not

be used for computing the iterated dominance frontiers for a
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set of nodes. Iterated dominance frontiers can also used for

applications other than for placing ~-nodes [SGL94b, Wei92].

Recently Johnson et al. use Quick Propagation Graphs

(QPGs) for performing sparse evaluation for arbitrary data

flow problem UPP94]. They give an algorithm for construct-

ing QPGs that runs in linear time. Construction of QPG is

based on first constructing regions of control dependence.

A disadvantage of QPGs is that it is more denser than SEGS.

This means that solving data flow analysis may take more

time on QPGs than on SEGS.

We are not aware of any other algorithm for comput-

ing ~-nodes. There is much related work that uses SSA

like representation, for example, the Program Dependence

Web [BM090] and the Value Dependence Graph [WCES94],

and our algorithm could improve the complexity of con-

structing these related intermediate representations. Also

there are many optimizations that use SSA form for efficient

implementation, for example, constant propagation [WZ85],

value numbering [RWZ88], register allocation [Bri92], code

motion [CLZ86], induction variable recognition [W0192], etc.

Our algorithm could improve the overall running time of

these optimization.

In this paper we have employed a new program

representation— the DJ-graph. Derived from a flowgraph,

the DJ-graph can be viewed as a refinement representing ex-

plicitly and precisely both the dominator relation between

nodes (via D-edges) and the potential program points where

the dataflow information maybe merged (via J-edges). Pre-

viously DJ-graphs have been used indirectly for capturing

control flow properties of a flowgraph. DFt~~~L relation of

Cytron et al. [CFR+ 91] are equivalent to J-edges. An edge

z --A ~ is a join edge iff ~ e DFlo.az(z). In the DJ-graph

we explicitly represent the DFlacal relation with join edges.

CD.START and CD. END relations in [CFS90] are again re-

lated to J-edges. The Algorithm 3.1 for computing domi-

nance frontier is similar to the algorithm given by Cytron et

al., with one difference, we use level information for captur-

ing the dominance frontiers of a node, while Cytron et al.

use CD.START and CD. END relations to do the job.

As demonstrated in this paper, DJ-graphs have facilitated

the development of our algorithm. Furthermore, some prop-

erties of DJ-graphs make much easier the proofs of the cor-

rectness and linearity of our algorithm. The DJ-graphs can

also be applied to program analysis other than computing

$-nodes, but that is beyond the scope of the present paper.

In a recent work, we have used the algorithmic frame-

work described in this paper to solve the problem of in-

crementally maintaining dominator trees for an arbitrary

flowgraphs [SGL94b]. In the same paper we also propose a

method to incrementally update the set of @-nodes of a SEG

when the flowgraph is subjected to incremental changes. We

believe the framework presented here is robust to accommo-

date incremental program analysis based on SEGS, We will

further explore on this in a future paper.

8 Conclusion

In this paper, we have provided a positive answer to the open

problem posted in the introduction: it is indeed possible to

design an algorithm for computing &nodes in linear time.

This is a good news for work which depends on efficient

dataflow analysis — as computing ~-nodes is a key step in

constructing a sparse dataflow evaluation framework. Fur-

thermore, the algorithm presented in this paper is very sim-

ple.

Our algorithm uses the properties of a new program repre-

sentation called the DJ-graph which facilities its design and

analysis. We also benefit from the simplicity of the algorithm

in its implementation. We have constructed a prototype

implementation of the algorithm on the top of Parafrase2

compiler. Our experimental results indicate consistent and

significant speedup even on real benchmark programs. On

increasingly taller ladder graphs our algorithm exhibit linear

behavior.

We have been using DJ-graphs and the algorithmic frame-

work presented here to solve a number of other related flow-

graph problems. We direct interested readers to our compan-

ion papers [SGL94a, SGL94b].
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