Efficiently Computing the Static Single
Information Form

Jeremy Singer

September 27, 2002

1 Introduction

The static single assignment (SSA) form [CFR™91] is now an established com-
piler intermediate representation. Sun’s HotSpot [Sun99] and Microsoft’s Mar-
mot [FKRT00] are two recent examples of SSA-based compilers. The beauty of
SSA form is that each variable has only one definition site in the program. This
eliminates unrelated uses of the same variable name from the original source
code, which simplifies dataflow analyses and optimisations

The most notable feature of SSA form is the ¢-node, a pseudo-assignment
function which is used to combine multiple incoming variable definitions at
control flow merge points, thus (albeit rather artificially) preserving the property
that each variable has a unique definition site.

Construction of SSA form typically proceeds in two phases:

1. identification of the points where ¢-nodes are needed.
2. variable renaming to create a unique name for each definition point.

The static single information (SSI) form [Ana99] builds upon SSA form,
with the addition of a single construct, the o-node, which is used to separate
variables at control flow split points. In this way we differentiate between uses of
a variable in separate arms of a conditional branch. SSI form allows us to store
data flow information in a sparse manner, i.e. once per variable, rather than once
per point in program where a variable is used. This is justified since information
can only be gleaned about a variable at certain places in the program:

1. from assignments (where we are creating new facts about the value held
by a variable)

2. from control flow merges (where we are obtaining a disjunction of possible
facts about the value held by a variable)

3. from conditional tests (where we are attempting to discover facts about
the value held by a variable).

ag >0

a a Ha'a
a0 > 0 1,02 0)

s N N
N
‘boﬁl—ao‘ ‘b1<—1+a0‘ ‘b0<—1—a1‘ ‘b1<—1+a2‘

‘b«—l—a‘ ‘b«—l—i—a‘ \ / \ /
\ / b — é(bo, by) bo — ¢(bo, by)

2 e

(a) Control flow graph (b) SSA form (c) SSI form

Figure 1: One program, three representations

¢-nodes deal with item 2. o-nodes deal with item 3 .

SSI form was originally described by Ananian [Ana99]. He states that “the
principal benefits of using SSI form are the ability to do predicated and backward
dataflow analyses efficiently.” He gives several examples including very busy
expressions analysis and sparse predicated typed constant propagation. Indeed,
SSI form can be applied to a wide range of problems, [RR00, SBA0O].

By its very nature, SSI form is naturally suited to compilers for instruction
set architectures that support predicated execution. Two of these architectures
(TA-64 and StrongARM) are rapidly gaining popularity.

Minimal and pruned SSI forms parallel their SSA counterparts. They are
clearly defined in [Ana99]. Minimal SSI form has the smallest number of ¢- and
o-nodes such that the conditions for SSI form are satisfied. Pruned SSI form is
the minimal form with any unused ¢- and o-nodes deleted.

Construction of SSI form takes place in two phases, in the same manner as
for SSA form:

1. identification of the points where ¢- and o-nodes are needed.
2. variable renaming to create a valid SSI form program.

In this paper, we concentrate on the placement algorithm, rather than the re-
naming algorithm. Ananian presents a linear-time renaming algorithm in his
thesis [Ana99].

2 Related Work

The MIT Flex compiler [Fle98] is based upon the SSI algorithms invented by
Ananian [Ana99]. The Flex compiler is a compiler for Java, written in Java. As
far as we are aware, this is the only compiler that uses SSI as its intermediate
representation.

The Dependence Flow Graph (DFG) of Johnson and Pingali [JP93] is very
similar to SSI form. DFG merge nodes correspond to the ¢-nodes of SSA (as
noted in [JP93]) and DFG switch nodes correspond to the o-nodes of SSI
Ananian’s SSI construction algorithm owes a great deal to the work of Johnson
and Pingali.

The Program Dependence Web (PDW) of Ballance, Maccabe and Otten-
stein [BMO90] is another intermediate representation which is similar to SSI
form. PDW ~-, p- and n-nodes correspond to various kinds of SSA ¢-nodes.
PDW switch nodes correspond to the o-nodes of SSI.

The papers on the DFG [JP93] and the PDW [BMO90] both claim to have
linear time construction algorithms. It should be possible to translate from ei-
ther of the representations into SSI form, however we assume that Ananian’s
method (which is also linear according to [Ana99]) should be better than ei-
ther of the other two, since it computes SSI directly rather than via another
intermediate form.

3 Original Method

Ananian describes his algorithm for calculating SSI form in great detail, in
[Ana99]. However, his description contains slightly bemusing statements such
as: “Our algorithm for placing ¢- and o-functions in SSI form is pessimistic;
that is, we at first assume every node in the control flow graph with input arity
larger than one requires a ¢-function for every variable and every node with
out-arity larger than one requires a o-function for every variable, and then use
the program structure tree, liveness information, and unused code elimination
to determine safe places to omit ¢- or o-functions.”

3.1 Background

Ananian’s construction algorithm begins with a program structure tree of single-
entry single-exit (SESE) regions, as described by [JPP93, JPP94].

A SESE region in a graph G is an ordered pair (a,b) of distinct control flow
edges a and b where:

1. a dominates b,
2. b postdominates a, and
3. every cycle containing a also contains b and vice-versa.

A program structure tree records the nesting structure of SESE regions in
a control flow graph. Each node in this tree represents a SESE region. The
parent of a node is the closest containing region and the children of a node are
all the regions immediately contained within it.

- —_ — = = - e e e e e e e e e e e = = = ==

\
y |
|
|
I

START

—_— —

topleyel

END

Figure 2: A control flow graph with marked SESE regions

toplevel

Figure 3: A program structure tree of SESE regions

Figure 2 shows a control flow graph with the SESE regions marked in dashed
lines. Figure 3 shows the program structure tree for the same control flow graph.

3.2 Placement algorithm

Ananian’s algorithm is presented in figure 4. It performs a post-order traversal
of the program structure tree for each variable v. That is to say, it visits nested
child SESE regions before visiting a parent region. It determines which regions
require ¢- or o-nodes for variable v. A region requires a ¢-node (or o-node) if it
contains a definition (or use) of variable v or if a ¢- or o-node has already been
placed in a child of this region.

The MaybeLive function should give a conservative approximation to live-
ness. MaybeLive(v,n) should return true when v may possibly be live at node
n. In the simplest case, MaybeLive can be programmed always to return true.
This causes the placement algorithm to produce minimal SSI form. A more
pruned SSI form may be obtained by a more sophisticated implementation of
the MaybeLive function.

3.3 Complexity

Ananian [Ana99] claims that his SSI computation algorithm is linear. Con-
structing the program structure tree takes linear time in the size of the pro-
gram [JPP93, JPP94]. The placement algorithm in figure 4 makes a single pass
through the program structure tree, thus it too is linear.

4 Alternative Method

Our method is, in stark contrast to Ananian’s method, an optimistic approach
to the problem. We initially assume that no ¢- or o-nodes are needed, and
then analyse the control flow graph to determine whether any nodes need to
be inserted. Thus we apply a ¢-node placement pass, followed by a o-node
placement pass, and then iterate to a fixed point. The algorithm is presented
in figure 5.

The iteration is necessary because placing o-nodes may then require extra
¢-nodes to be inserted, and vice versa.

We follow the classical method of using dominance frontiers to discover where
¢- and o-nodes are needed. Thus our place-¢-functions algorithm is identi-
cal to the standard SSA ¢-node placement algorithm [CFR*91]. The place-o-
functions algorithm is the mirror image of place-¢-functions. It has the same
shape but it is exactly the opposite. It tracks variable uses rather than def-
initions, it uses reverse dominance frontiers rather than standard dominance
frontiers, it inserts o-nodes at the end of basic blocks rather than ¢-nodes at
the beginning of basic blocks.

Place(G: CFG) =
let r be the top-level region for G
for each variable v in G
PlaceOne(r, v, false) /* place ¢-functions */
PlaceOne(r, v, true) /* place o-functions */

PlaceOne(r: region, v: variable, ps: boolean): boolean =
/* post-order traversal */
flag «— false
for each child region 7’
if PlaceOne(r’, v, ps)
flag < true

for each node n in region r not contained in a child region
if ps is false and n contains a definition of v
flag «— true
if ps is true and n contains a use of v
flag «— true

/* add ¢-/o-functions to merges/splits where v may be live */
if flag = true
for each node n in region r not contained in a child region
if MaybeLive(v, n) = true
if ps is false and the input arity of n exceeds 1
place a ¢-function for v at n
if ps is true and the output arity of n exceeds 1
place a o-function for v at n

return flag

Figure 4: Ananian’s SSI node placement algorithm

while (change)
change «—— false
place-¢-functions
if (change)
place-o-functions

Figure 5: Alternative SSI node placement algorithm

place-¢-functions =
for each node n
for each variable a € A,i4[n]
defsites[a] «— defsites[a] U {n}
for each variable a
W «—— defsites|al
while W not empty
remove some node n from W
for each y € DF[n]
if y ¢ Ala]
insert statement a «— ¢(a,a, ...,a) at the
top of block y, where the ¢-function has
as many arguments as y has predecessors
Agla] — Agfal U {y)
if a g Aorig [y]
W — Wu{y}

Figure 6: ¢-node placement algorithm

4.1 Explanations

We follow the notational conventions of Appel [App98] for presenting our ¢-
and o-node placement algorithms, in figures 6 and 7 respectively.

Aorig[n] contains the set of variables that are assigned a value at node n.
defsites[a] is initialised to contain the set of nodes that assign a value to variable
a. W is a work-list of nodes that need to be processed. DF[n] is the set of nodes
in the dominance frontier of node n. See [CFR191, App98] for more details.
Agla] is the set of nodes that contain a ¢-node for variable a.

Uorig[n] contains the set of variables that are used at node n. usesites|a] is
initialised to contain the set of nodes that use the value of variable a. RDF[n|
is the set of nodes in the reverse dominance frontier of node n. See [CFR'91,
App98] for more details. A,[a] is the set of nodes that contain a o-node for
variable a.

4.2 Complexity

Cytron et al state that their SSA ¢-node placement algorithm is “linear in prac-
tice.” In fact, there are genuine linear time ¢-node placement algorithms [BP99,
SG95] which we might have used instead. Our fixed-point iteration is bounded
by the size of the control flow graph. Thus, we say that our placement algorithm
is potentially quadratic, however worst-case behaviour is unlikely.

place-o-functions =
for each node n
for each variable a € U,yig[n]
usesites|a] < usesites[a] U {n}
for each variable a
W «—— usesites[a]
while W not empty
remove some node n from W
for each y in RDFn|
if y ¢ A,ld]
insert the statement a,a, ...,a «— o(a)
at the bottom of block y, where the
o-function has as many results
as y has successors
Agla] — As[a] U{y}
if a ¢ Uorig [y]
W — Wu{y}

Figure 7: o-node placement algorithm

5 Implementation

We have implemented both of the placement algorithms outlined above, in C++
using the Machine-SUIF compiler framework from Harvard [Smi96]. It is rel-
atively easy to write Machine-SUIF passes which operate at the control flow
graph level.

We implemented Ananian’s algorithm from scratch. The pass was written in
just over 3.5 kLOC. Our alternative placement algorithm is based on the existing
Machine-SUIF SSA pass [Hol01b]. We only needed to make slight modifications
and extensions to suit our purpose.

One novel feature of our Machine-SUIF passes is that they produce SSI code
in semi-pruned form. The original Machine-SUIF SSA pass had an option to
build semi-pruned form, and we retain this. Semi-pruned form was introduced
by Briggs et al [BCHS98]. It is based on the observation that many of the
variables in a program being converted to SSI form are local to one basic block.
(This is especially true of compiler generated temporary variables.) Such vari-
ables will never require ¢- or o-nodes, so we do not take them into consideration
when generating SSI form. In this way, semi-pruned form avoids many of the
redundant nodes present in minimal form without attempting all the expensive
dataflow analysis necessary for fully pruned form.

program size/KB original alternative
time/s) o time/s) o
164.gzip 1936 7.98 6145 10246 7.07 1526 2749
175.vpr 4964 18.01 11470 25240 15.43 5395 8553
176.gcc 72936 || 2336.63 | 2741414 | 5417750 | 650.15 | 258668 | 802049
181.mcf 1124 4.05 1108 2057 3.99 473 720
186.crafty 9072 117.10 85403 169570 55.33 12255 42283
197.parser 3876 16.42 18981 34679 13.19 4815 8638
253.perlbmk 15672 98.29 | 163992 | 310138 72.45 | 37343 | 84411
254.gap 24392 131.87 | 243069 | 382266 81.67 | 38098 | 77647
255.vortex 19568 80.34 47191 | 171993 60.98 | 16702 | 39791
256.bzip2 984 4.06 5342 7439 3.03 1128 1555
300.twolf 11264 81.60 105951 165943 43.14 15841 25465

Table 1: Summary of results obtained from the two SSI placement algorithms

6 Results

We tested our two SSI placement algorithms using the SPEC CINT 2000 bench-
mark [Spe00]. We compiled all the C language programs into Machine-SUIF
control flow graphs. There is one control flow graph for each procedure. (We
were unable to compile a small number of the files, so these are ignored in our
analyses.) Then we ran our two placement algorithms on the control flow graphs.
A breakdown of our results is presented in table 1. In this table, program refers
to the CINT 2000 benchmark test under consideration. The size recorded is the
size of the Machine-SUIF control flow graph files for that program. The original
pass is Ananian’s method, which was described in section 3. The alternative
pass is our new method, which was described in section 4. We measured the
time taken to complete each pass five times, and recorded the median time. ¢ is
the number of ¢-nodes placed by each pass, summed over all control flow graphs
of the program. Similarly, o is the number of o-nodes placed by each pass.
There are a number of interesting observations in our results:

e Our alternative pass is no slower than the Ananian pass in any of the
measured cases. In the best case (176.gcc), our method takes just a quarter
of the time taken by the original method. The programs in the CINT 2000
benchmark are selected to be representative real-life programs that any
respectable optimising compiler should be expected to handle easily.

e Our pass places far fewer ¢- and o-nodes than the Ananian pass. In the
best case (176.gcc), our method places less than 10% of the ¢-nodes placed
by the original method.

e There are approximately half as many o-nodes as ¢-nodes in each case.
This is independent of the placement algorithm used.

6.1 Analysis

We presume that Ananian’s algorithm places more nodes because of its pes-
simistic approach to the problem. This is the main contributor to its observed
sluggish performance. It is significant that the greatest relative time difference
between the two algorithms is in 176.gcc, and this test also produced the greatest
relative ¢-node count difference.

In his thesis [Ana99], Ananian suggests that a dead code elimination pass
should occur after the placement algorithm. This may produce more pruned
SSI form, but it would take even longer to complete.

7 Future Work

At present, the Harvard Machine-SUIF control flow analysis library calculates
dominators using a simple iterative algorithm [HolOla]. The standard Lengaur-
Tarjan dominators algorithm [LT79] would be a more efficient method. We need
to plug this gap in the Machine-SUIF libraries.

Our fixed-point placement algorithm recalculates variable definition and use
sites for each iteration. This could be improved by incrementally updating the
existing information throughout each iteration.

8 Conclusions

We have described an optimistic approach to computing SSI form, which is
quite the opposite to what Ananian initially created. When we compare the two
placement algorithms as they are set loose on typical contemporary programs,
our alternative algorithm is a clear winner in every case.

References

[Ana99] C. Scott Ananian. The static single information form. Master’s
thesis, Massachusetts Institute of Technology, Sep 1999.

[App98] Andrew W. Appel. Modern Compiler Implementation in Java. Cam-
bridge University Press, 1998.

[BCHS98] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Tay-
lor Simpson. Practical improvements to the construction and de-
struction of static single assignment form. Software—Practice and
Ezperience, 28(8):859-881, 1998.

[BMO90] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein.
The program dependence web: a representation supporting control-
, data-, and demand-driven interpretation of imperative languages.
In Proceedings of the Conference on Programming Language Design
and Implementation, pages 257-271, 1990.

10

[BP99] Gianfranco Bilardi and Keshav Pingali. The static single assign-
ment form and its computation. Technical report, Department of
Computer Science, Cornell University, Jul 1999.
http://www.cs.cornell.edu/Info/Projects/Bernoulli/papers/ssa.ps.

[CFR™91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490, October 1991.

[FKR*T00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steens-
gaard, and David Tarditi. Marmot: an optimizing compiler for Java.
Software—Practice and Experience, 30(3):199-232, 2000.

[Fle9g] The Flex compiler infrastructure, 1998.
http://www.flex-compiler.lcs.mit.edu/Harpoon/.

[Hol0la] Glenn Holloway. The Machine-SUIF control flow analysis library,
2001.
http://www.eecs.harvard.edu/hube/software/nci/cfa.pdf.

[Hol01b] Glenn Holloway. The Machine-SUIF static single assignment library,
2001.
http://www.eecs.harvard.edu/hube/software/nci/ssa.pdf.

[JP93] Richard Johnson and Keshav Pingali. Dependence-based program
analysis. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 78-89, 1993.

[JPP93] Richard Johnson, David Pearson, and Keshav Pingali. Finding re-
gions fast: Single entry single exit and control regions in linear time.
Technical Report CTC93TR141, Department of Computer Science,
Cornell University, Jul 1993.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: Computing control regions in linear time. In Pro-
ceedings of the Conference on Programming Language Design and
Implementation, 1994.

[LT79] Thomas Lengauer and Robert E. Tarjan. A fast algorithm for find-
ing dominators in a flowgraph. ACM Transactions on Programming
Languages and Systems, 1(1):121-141, Jul 1979.

[RROO] Radu Rugina and Martin Rinard. Symbolic bounds analysis of point-
ers, array indices and accessed memory regions. In Proceedings of the
Conference on Programming Language Design and Implementation,
pages 182-195, 2000.

11

[SBAOO]

[SG95]

[Smi96]

[Spe00]
[Sun99]

Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bid-
width analysis with application to silicon compilation. In Proceedings
of the Conference on Programming Language Design and Implemen-
tation, pages 108-120, 2000.

Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm
for placing ¢-nodes. In Proceedings of the Symposium on Principles
of Programming Languages, pages 62—73, Jan 1995.

Michael D. Smith. Extending SUIF for machine-dependent optimiza-
tions. In Proceedings of the First SUIF Compiler Workshop, pages
14-25, Jan 1996. http://www.eecs.harvard.edu/machsuif/.

SPEC CPU2000 benchmark, 2000. http://www.spec.org.

Java hotspot, 1999. http://java.sun.com/products/hotspot/.

12

