
ANALYSIS OF A SIMPLE ALGQRITHM

GLOBAL DATA FLOW PROBLEMS?

by

14atkhew S. Hecht

Jeffrey D. Unman

Princeton University

Princeton, New Jersey 08540

Abstract

There is an ordering of the nodes of

a flow graph G which topoloqically sorts

the dominance relation and can be found in

O(edges) steps. This ordering is the re-
verse of the order in which a node is last
visited while growing any depth-first span-

ning tree of G. Moreover, if G is reduc-

ible, then this ordering topologically

sorts the “dag” of Go Thus, for a reduc-
ible flow graph (rfg) there is a simple

algorithm to compute the dominators of

each node in O(edges) bit vector steps.

The main result of this paper relates

two parameters of an rfg. If G is reduc-

ible, d is the largest number of back

edges found in any cycle-free path in G,

and k is the length of the interval de-

rived sequence of G, then k~d. From this

result it follows that there is a very

simple bit propagation algorithm (indeed,

the obvious one) which also uses the above

ordering, and is at least as good as the

interval algorithm for solving all known
global data flow problems such as “avail-

able expressions” and “live variables.”

Key words and Phrases: code optimi-

zation, flow graph, reducibility, interval

analysis, dominance, depth-first spanning

tree, global data flow analysis, available
expressions, live variables.

I. Introduction

when analyzing computer programs for

code improvement [A1] , there is a class of
problems, each of which can be solved in
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GJ-1052.

by NSF grant
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essentially the same manner. These prob-

lems, called “global data flow analysis

problems,” involve the local collection of

information which is distributed throughout

the program. Some examples of global flow

analysis problems are “available expres-

sions” of [c] and [Ul] , “live variables”

[Kc] , “reaching definitions” of [A2] and

[A3], and “very busy variables” [S]. There
are several general algorithms to solve

such problems.

The “interval” approach ([A2], [A3],

[AC], [C], [Ke], [S] and [AU]) collects infor-

mation by partitioning the flow graph of

the program into subgraphs called intervals,
replacing each interval by a single node
containing the local information within
that interval, and continuing to define
such interval partitions until the graph
becomes a single node itself, at which time

global information is propagated locally by

reversing the reduction process.

Another approach ([VI ?’,[U1] and [Kil

propagates information in an obvious manner

until all the required information is

collected; that is, until the process con-

verges. We shall show that this second

approach (with a suitable node ordering) is

no worse than the interval approach!

Prior to presenting the main result

and the algorithm, we review part of the

theory of reducible flow graphs.

T In 1961 v.A. vyssotsky [v] implemented
this kind of flow analysis (and presumably
the obvious algorithm) in a Bell Labora-
tories 7090 FORTRAN II compiler--for strict-

ly diagnostic purposes.
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II. Background

A flow graph is a triple G= (N,E,nO),

where:

(a) N is a finite set of nodes.

(b) E is a subset of NxN called the

=. The edge (x,y) enters node y and

leaves node x. We say that x is a prede-

cessor of y, and y is a successor of x.

A ~ from xl to \ is a sequence of

nodes (x ,. . .
1

,~) such that (Xi,Xi+l) is

in E for l~i<k. The path lenqth of

(xl, . ...\) isk-1. Ifxl=\, the path is

a cycle.

(c) Node nO in N is the initial node.

There is a path from nO to every node.

INTERVALS

Let G be a flow graph and h a node of

G. The interval with header h, denotedby

IJhJ, is

(a)

(b)
m is not

entering

I (h) .

(c)

defined as follows:

Place h in I(h).

If m is a node not yet in I(h),
the initial node, and all edges

m leave nodes in I(h) , add m to

Repeat step (b) until no more
nodes ”can be-added t; I(h).

It should be observed that although m
in (b) above may not be well-defined, I(h)
does not depend on the order in which candi-
dates for m are chosen. A candidate at one
iteration of (b) will, if it is not chosen,
still be a candidate at the next iteration.

It is well known that a flow graph can
be uniquely partitioned into disjoint in-

tervals, and that this process takes time

proportional to the number of edges in the

flow graph [A2].

If G is a flow graph, then the de-

rived flow qraph of G, denoted by ~, is
defined as follows:

(a) The nodes of I(G) are the inter-

vals of G.

(b) There is an edge from the node

representing interval J to that representi-

ng K if there is any edge from a node in

J to the header of K, and J#K.

(c) The initial node of I(G) is
I(nO) .

The sequence G=GO,G1,. ..,Gk is called

the derived sequence for G if G =I(Gi),
i-l-l

‘k-1
#Gk, and I(Gk) =Gk. Gk is called the

limit flow graph of G.

A flow graph G is called reducible

(an rfg) if and only if its limit flow

graph is a single node with no edge (hence-

forth called the trivial flow qraph). Other-
wise, it is called nonreducible.

T~ AND T2

Let G= (N,E,nO) be a flow graph and

let (w,w) be an edge of G. Transformation

T1 is removal of this edge.—

Let y not be the initial node and have

a single predecessor, x. Transformation

~ ~s the replacement of x, y, and (x,y) by

a sxngle node z. Predecessors of x become

predecessors of z. Successors of x or y

become successors of z. There is an edge

(zjz) if and only if there was formerly an

edge (y,x) or (x,x). (Whenever T2 is ap-

plied as described here, we say that x

consumes y.)

There are two results from [HeUl]

which interest us. First, if T1 and T2 are

applied to a flow graph until no longer

poseible, then a unique flow graph results,

independent of the sequence of applications

of T~ and T2 actually chosen. Second, a

flow graph is reducible by intervals if and

only if repeated application of T1 and T2

yields the trivial flow graph.

DOMINANCE AND REGIONS

If x and y are two distinct nodes ina

flow graph G, then x dominates y if every

path in G from its initial node to y con-

tains x ([P] and [LM]).

Let G= (N,E,nO) be a flow graph, let

N1~N, let El~E, and let m be in N1. We

say R= (N1,El,m) is a reqion of G with

header m if in every path xl,...;%, where

X1=nO and ~ is inNl, there is some i <k—

such that

(a) xi=m; and

(b) Xi+l ,...,~ are inN1: and

(c) (xi,xi+l), (xi+1,xi+2) ,...,

(\_l,<) are in El

That is, access to every node in the region

is through the header only.
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As we proceed to apply T1 and T2 to a

flow graph, each edge of an intermediate

graph represents a set of edges and each

node represents a set of nodes and edges in

a natural way.

We say that each node and edge in the

original flow graph represents itself. If

T~ is applied to node w with edge (w,w),

then the resulting node represents what

node w and edge (w,w) represented. If T2
is applied to x and y, with edge (xjy)

eliminated, then the resulting node z

rePresents what X, y, and (x,y) represented.
In addition, if two edges (x,u) and (y,u)

are replaced by a single edge (z,u) , then

(z,u) represents what (x,u) and (Y,u)

represented.

The two lemmas which follow appear in

[U2] .

Lemma 1: (a) Let z be a node con-

structed during the reduction of some flow

graph G. If z represents edge (x,y) of G,

then x and y are represented by z.

(b) Let w and x be (not necessarily

distinct) nodes constructed during the re-

duction of G, and let e be the edge con-

structed from w to x. If e represents

(Y,z) of G, then y is represented by w and

Z by X.

(c) In any graph formed while reduc-

ing G, all nodes and edges represent dis-

joint sets of objects (nodes and edges).

Lemma 2: Let G= (N,E,nO) be an rf9~

and let NICN and E CE be a set of nodes
l–

and edges represented by a single node at

some stage of the reduction of G. Then

there is a (unique) node m in N1 such that

(Nl,E1,m) is a region of G with header m.

PARSES AND BACKWARD EDGES

Since T1 and T2 may be applied to an

rfg in different sequences, it becomes

necessary to discuss specific sequencesof

applications of T1 and T2. Informally, a

“parse” of an rfg is a list of the reduc-

tions made (TI or T2) and the regions to

which they apply.

Formally, a parse n of an rfg

G= (N,E,nO) is a sequence of the form

(T1,u,v,S) or (T2,u,v,w,S), where u, v, and

w are names of nodes and S is a set of

edges. We define the parse of an rfg re-

cursively as follows:

(a) A single node

only the empty sequence

with no edge has
as its parse.

(b) If G’ (which may not be the orig-

inal flow graph in a sequence of reductions)

is reduced to G“ by an application of T1 to

node u, and the resulting node is named v in

G“, then (T1,u,v,S) followed by a parse of

G“ is a parse of G’ , where S is the set of

edges represented by the edge (u,u) elimi-

nated from G’ .

(c) If G’ is reduced to G“ by an ap-

plication of T2 to nodes u and v (with u

consuming v) , and the resulting node is

called w, then (T2,u,v,w,S) followed by a

parse of G“ is a parse of G’ , where S is the

set of edges represented by the edge (u,v)

in G’.

(d) In both (b) and (c) above, “repre-

sentation” in G’ carries over to G“. That

is, whatever an object represents i-n G’ is

also represented by that object in G“, ex-

cept for those changes in representation

caused by the particular transformation

(Tl or T2) currently being applied.

Let G be an rfg and let v be a parse

of G. We say that an edge of G is a back-

ward edqe with respect to n if it appears in

set S of an entry (T1,u,v,S) of n and a

forward edqe otherwise.

The next two results appear in [HeU2].

Lemma 3:

are unique.

Lemma 4:
edge of an rfg
dominates x.

The backward edges of an rfg

Edge (x,y) is a backward

if and only if x=y or y

DEPTH-FIRST SPANNING TREES

A depth-first spanning tree (DFST) of

a flow graph G is a directed, rooted,

ordered spanning tree grown by Algorithm A

[Tl] .

Alqorithm A: DFST of a flow graph.

-: Flow graph G with n nodes.

~: (1) DFST of G. (2) A num-

bering of the nodes from 1 to n (i.e.,

ENDORSER , for each node m) indicating

the order in which each node was last

visited.

Method: Al. The root of the DFST is— —
the initial node of G. Let this node be

the node m which is visited first in StepA2.

i+l.

A2 . [Visit node m.] If node m has a suc-

~ssor x not already on the DFST, select x
as the right-most son of m found so far in

the spanning tree. If this step is success-
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full, node x becomes the node m to be

visited next by repeating Step A2. If

there is no such x, go to Step A3.

~: Let m be the node being visited

ENDORSER e i. i- i + 1.

If m is the root, then halt. Otherwise,
climb down the DFSTone node toward the root

and visit this node again by returning to

Step A2. D

If (u,v) is an edge in a DFST, then u

is the father of v and v is the son of u.

The ancestor and descendant relations are_--—
the transitive closures of the

son relations.

Let G= (N,E,nO) be a flow

let T= (N,E’) be a DFST of G.

E-E’ fall into three classes

(a) Edges which run from

father and

graph and

The edges in

anc~stors to

descendants we call forward edqes.?”

(b) Edges which run from descendants

to ancestors or from a node to itself we

call back edges.

(c) Edges which run between nodes

which are unrelated by the ancestor-de-

scendant relation we call cross edges.

The notion of “to the right” ina DFST

has only been defined for nodes with the

same father. We extend it by saying that
if x is to the right of y, then all of x’s

descendants are to the right of all of y’s

descendants. Thus, if (u,v) is a cross

edge of a DFST, then u is to the right ofv.

Lemma 5: [HeU2] The backward edges

of an rfg G are exactly the back edges of

any DFST for G.

III. Node Ordering and aDominatorAlqorithm

Let T be a DFST of a flow graph G

with n nodes. We consider two orderings

of the nodes of G.

(a) ENDORDER--as defined in Algo-

rithm A.

(b) rENDORDER--where rENDORDER(x) =
n+l-ENDORDER(x) , for each node x. ( rEND-
ORDER is the reverse of ENDORSER. )

We define the daq of an rfq G to be G
minus all of its back edges [HeU2].

T Do not confuse this definition of “for-
ward” edges in a DFST with the previous

one for edges in an rfg. They are not
necessarily the same, and context should

distinguish which one is meant.

Lemma 6: The partial order definedby

the dag of an rfg is a subset of the total
order defined by rENDORDER.

Proof: Let G be an rfg, let G’ be the

dag of G, and let T be any DFST’ of G. It

suffices to show that if there is a path in

G’ from the initial node to node y which

includes node x, with x#y, then

rENDORDER(x) frENDORDER(y).

Suppose, in contradiction, that there

are two distinct nodes x and y such that

there is a path in G’ from the initial

node to y which includes x, and rEND-

ORDER(X) >rENDORDER(y). Then, END-

ORDER(X) KENDORDER(Y). That is, Y is last
visited after x is last visited while grow-

ing T.

Either y is an ancestor of x, or y is

“to the right” of x in T. If y is an an-

cestor of x, then G’ contains a cycle.

This is impossible. Consequently, y is to

the right of x. The path from x to y must

go through a common ancestor of x and y

[Tl], so there would again be a cycle in

G’. u

If i is a predecessor of j in an rfg,

then either (ijj) is a back edge or a for-
ward edge of an rfg. If it is a back edge,

then either j dominates i or i=j (Lemma 4) ,
and thus, i cannot dominate j. If (i,j) is
a forward edge of an rfg, then rENDORD-

ER(i) KrENDORDER(j). This is exactly the

property of rENDORDER which Algorithm B

uses.

Alqorithm B: Computes a set DOM(m) ,

the dominators of m, for each node m.

Reducible flow graph G=

(N,E,=~Nl=n. The nodes are numbered

from 1 to n by rENDORDER according to some
DFST for G. Refer to each node by its
number.

output : Sets DOM(j) l~j~n, where i

is in DOM(j) if and only if I dominates j.

Method: B1. Initia~~y, IX3M(1) ‘1#1,

and DOM(j) +N~r j#l.

B2. For each node j =2,3,. ..,n in turn,

~M(j) is replaced by the intersection of
[(k) lJDOM(k)] over all predecessors k of j

such that k <j. O

Theorem 1: Algorithm B is correct.

That is, after Algorithm B terminates, i is
in @M(j) if and only if i dominates j.

Proof: Let G be an rfg. We proceed
by induction on j.
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Inductive Hypothesis: After process-

ing node j, i is in DOM(j) if and only ifi

dominates j.

Basis: (j=l). Trivially trUe.

Xnduction Step: (j>l). Assume the
inductive hypothesis for all k <j, and con-
sider the case for j.

If i dominates j, then surely i domi-

nates every predecessor of j which is not i

itself. Thus, i is in DOM(j).

Now, suppose i is in ~M(j), but i

does not dominate j. Then there is a cycle-
free path from the initial node to j which

does not pass through i. Let k be the node
on the path immediately before j. By Lemma
4, (k,j) cannot be a back edge, elSe j

would dominate k or k=j, and the path

would have a cycle. Thus, (k,j) is a for-
ward edge, and rENDORDER(k) KrENDORDER(j).

As i#k, and i does not dominate k, we

have by the inductive hypothesis that i is

not in (k) UDOM(k) , and hence, not in

DoM(j). O

If we implement the DOM sets by bit

vectors, then+Algorithm B requires O(e) bit

vector steps. This follows because in a

flow graph with e edges at most e bit vec-

tor intersections are computed in Step B2.
Also, the node ordering (rENDORDER) assum-

ed as input can be computed in O(e) steps

[Tl] .

In [AU] , Aho and Unman present an

O(ne) step algorithm to compute dominators.

Purdom and Moore’s algorithm [PM] has the

same time bound.

Allen and Cocke [AC] suggest breadth-

first ordering of then odes to compute

dominators of an arbitrary graph, but

their algorithm (which is similar to Algo-

rithm B) may require more than one pass

through the nodes.

Earnest et al [EBA] present an algori-

thm which establishes an “interval ordering”
(similar to rENDORDER, but takes more than

O(e) steps. Aho, Hopcroft and Unman [AHU]

have an O(e loge) step algorithm to find

“direct” dominators i.n an rfg. In [T2],

Tarjan presents an algorithm for determini-

ng direct dominators i.n O(e +n logn) steps.

T we shall always distinguish between

“steps” and “bit

ing complexity.
important.

vector steps” when discuss-

This distinction is

Before leaving this section, we prove

another result about rENDORDER.

Lemma 7: If x dominates y, the
rENDORDER(x) < rENDORDER(y).

Proof: Let G be a flow graph in which

x dominates y, and let T be any DFST of G.

Since any path from the initial node to y

must include x, x is reached before y while

growing T. Thus, x is on the backward path
in T from y to the initial node. That is,
ENDORDER(Y) ZENDORDER(X) and rENDORDER(x) <

rENDORDER(y). ~

Note that Lemma 7 is not just a corol-

lary of Lemma 6. Lemma 7 applies to non-
reducible as well as reducible flow graphs.

IV. The Main ReSUlt

Following several lemmas, we establish

the main result of this paper.

Definition: The depth of an rfg G is

the largest number of back edges found in

any cycle-free path in G.

Definition: Let G be a flow graph,

let I(G) be the derived flow graph of G,

and let G’ be G minus all of its self-loops,

where a self-loop is an edge from a node to

itself. We define the lenqth k of the de-

rived sequence of G to be O if G’ is the

trivial flow graph, otherwise that k#O

such that

(a) GO=G’

(b) Gi+l= I(Gi), i~o,

(c) Gk is the limit flow graph of G,

and (d) Gk#Gk_l.

Lemma 8: Let G be an rfg and let G’

be G at some intermediate stage of its re-

duction by T1 and T2. If there is a path

from node u to node v in G’, then there

exist nodes w and x in G such that w and x
are respectively represented by nodes u and

v in G’ and there is a path from w to x inG.

Proof: Let n be any parse of G which
yields G’ at some intermediate stage. The

lemma is an easy induction on the number of

steps of n taken to reach G’ . I’J

Lemma 9: Let G be an rfg. Nodes en-

tered by back edges in G head intervals in

G.

Proof: The lemma is obvious for self-
loops. so, let (m,h) be a back edge in G

,—
and suppose m$h. Thus, h dommates m by
Lemma 4. If h is the initial node, the
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lemma follows. NOW consider where h is not

the initial node.

Suppose, in contradiction, that h does

not head an interval in G. Since h must be

in some interval, let it be in interval K

with header k. First, we note that every

interval is also a region by Lemma 2. If m

is not in K, then K is not a region because

conditions (b) and (c) of the definition of

“region” are violated. Thu S , m is in K.

As (m,h) is an edge, m must be added

to K before h is. But then there is a path

from the initial node to k and thence to m

which does not pass through h. This would

contradict the assumption that h dominates

m. o

Lemma 10: If u dominates v in an rfg

G> u heads an interval in G, J is the inter-
val containing v, and I(u) #J, then I(u)

dominates J in I(G).

Proof: Neither T1 nor T2 creates any

new paths between nodes. Thu S , if I(u) did

not dominate J, then u would not dominate

v. o

The following lemma is essential for

theorem which follows.

Lemma 11: Let d be the depth of an

rfg G, let d’ be the depth of I(G), and sup-

pose G+I(G). Ifd>d’, then d=d’ +1.

Proof: Assume all the hypotheses and

let P be any cycle-free path in G from pl

to pk containing d back edges. We shall

think of P as an ordered sequence of edges

p= ((P1,P2), (P2,P3), . . ..(Pl.Pk)k) ), where

the j-th edge in P is (p.,p. Let
-J ]+1)”

(Xi,Si) be the i-th back edge in P, l~i~d.

That is, (Xl,sl) is the edge with the least

m such that (pm,pm+l) is a back edge, and

if the i-th back edge is (pn,pn+l) , then

the (i+l)-st back edge is the edge with the
least m>n such that (pm,pm+l) is a back

edge. See Figure 1.

Let S=(sil (Xi,Si ) is a back edge inP).

SinCe P is cycle-free, each s in S is dis-

tinct. Thus, lSl=d. Let So=pl.

First we show that Si+l dominates s
i’

for O~i~d-1. Pick your favorite Si+l

from S. We know that s dominates Xi+l
i+l

because (Xi+l,Si+l ) is a back edge (Lemma 4),

and we know that there is a path Q from s
i

06 ‘o
...

●

“.
●

end

~

‘d

&
9

‘k
●

●

●

‘ ‘d-1

●b ‘d
b
●

#*

*
x ●

i+2
b“

●

x. ●

1 ●*

‘2
*

:.

PI

begin –x
1

Fiqure 1. A cycle-free path in an rfg from

PI to pk containing d>O back
edges.

to x in P which does not pass through
i+l

s, Suppose, in contradiction, that s
1+1” i+l

does not dominate si. Then, there is a

path R from the initial node to Si not con-

taining Si+l. But by concatenating paths

R and Q we have a path to x not contain-
i+l

ing s This contradicts the fact that
i+l”

s i+l dominates Xi+l. Thus, Si+l dominates

s ,.
1

Now we claim that all back edges in P,
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except the first one, are represented by

themselves in I(G) and are back edges in

I(G) . That is, an edge in G represented

by an edge in I(G) “still exists” as an

edge in I(G) , whereas an edge in G repre-

sented by a node in I(G) does not. To

show this, it suffices to show that in I(G)

the node representing the interval J (con-

taining s i+l) dominates, and is thus dis-

tinct from, the node representing interval
K (containing Xi+l ), where O~i~d-1, and

that the first back edge is represented by
a node in I(G).

Since P is cycle-free, it follows that
the i-th and (i+l)-st back edges are dis-
tinct and si#si+l. Thus by Lemma 9, Jand

the interval L containing s< are distinct

(x ,s i+l) represents itself in I(G) be-
i+l

cause it is an inter-interval edge. Also ,
it is a back edge in I(G) by Lemma 4.

Finally, if the first back edge repre-

sents itself in I(G) , then d’ =d, which

contradicts the assumption d>d’ . n

Theorem 2: (MAIN THEOREM) If G iS an
rfg with depth d and derived sequence
length k, then k~d.

Proof: By induction on k.

Basis: (k=O). G is the trivial flow

graph. Thus, d=O. Hence, k>d.

Induction Step: (k>O). Assume the

inductive hypothesis for k-1, and consider

an rfg G with derived sequence of length k

and depth d. Let d’ be the depth of I(G).

intervals of G.

in I(G), because

(lemma 10). See

Furthermor&, J dominates
s i+l dominates Si i.n G

Figure 2.
Case 1: d>d’. Thus, d=d’+1 by

Lemma 11. BY the inductive hypothesis,
k-l~d’. Thus, k-l~d-1, or k~d.

back

J

Fiqure 2. Intervals J, K andL of Lemma 11.

If K=L, then (Xi+l,Si+l) represents

itself in I(G) because it is an inter-

interval edge. AIso, it is a back edge in
I(G) by Lemmas 10 and 4.

Now suppose that K+L, that is, Xi+l

is not in L. Certainly, K#J due to the
forward path from Si to Xi+l in P. Thu S,

J dominates K by Lemma 10. Hence,
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Case 2: d=d’. BY the inductive hy-
pothe~-1 ~d’. Thus, k~k-l~d’=d,

or k~d.

Case 3: d<d’. This case cannot occur

because T1 and T2, in their transformation

of G to I(G) , do not create paths between

nodes in I(G) which did not already exist

(Lemma 8). Hence, the back edges of I(G)

are a “subset” of those of G. n

The significance of Theorem 2 is that,

although the interval analysis algorithm

must take about 2ke bit vector steps to

solve a global flow analysis problem for an

rfg with e edges [AU] , there exists an ob-

vious bit propagation algorithm to solve

such problems in about de bit vector steps.

(We pick up the coefficient 2 in the inter-
val approach because, in addition to reduc-

ing the rfg to a single node, known algo-

rithms ([A21, [A31, [AUI, [C],[SI and [Kel)
reverse the interval process to propagate

global information locally.)

Figure 3 shows an rfg with k= 3 and

d=l. Moreover, this rfg can be extended

in an obvious way so that k is arbitrarily

large, yet d remains 1. Thus, there may

be a dramatic decrease in the time required

to solve global data flow analysis problems

using the simple bit propagation algorithm,

when compared to the interval algorithm.
In any event, the algorithm of [Ul] and [Ki]

cannot be worse than interval analysis, and

must be.regarded as superior for its
slmpllclty.



G1=I(GO)

I
G2=I(G1)

o
G3=I(G2)

GO=G

Fiqure 3. Flow graph G with d=l and k=3.

v. Solution of Two Global

Flow Analysis Problems

AVAILABLE EXPRESSIONS (From [C] and [Ul].)

An expression such as A+B is avail-
able at a point p in a flow graph if every

sequence of branches which the program may
take to p causes A+B to have been computed

after the last computation of A or B. If

we can determine the set of available ex-

pressions at entrance to the nodes of a

flow graph, then we know which expressions

have already been computed prior to each

node. Thus, we may be able to eliminate
the redundant computation of some expres-

sions within each node.

Let d be the set of expressions com-
puted in a flow graph G= (N,E,nO).

6
Let ~:N~2 . we interpret %(x) as the

set of expressions which are killed in

node x. Informally, expression AOB is

killed if either A or B is defined within

node x, (The symbol 0 indicates a generic

binary operator.)

d
Let .$:N+2 . If an expression r=A8B

is in A(x) , then we imagine that r is

qenerated within node x, and that neither A

nor B is subsequently defined.

Let AEIN(x) and AEOUT(X), for each

node x, be respectively the set of expres-

sions available at entrance to and at exit

from node x.

The fundamental relationships which

enable us ‘to compute AEIN(x) for each node

x are:

~. AEIN(nO) =0.

~. For x#nO, AEIN(x) is the inter-

section of AEOUT(Y) over all predecessors

y of x.

~. AEOUT(X) = [AEIN(x)-K(x)] ~~(x),

for each node x.

AE4 . Since AEI-3 do not necessarily
have ~nique solution for AEIN(n), we want

the largest solution.

The algorithm which follows is a bit
vector algorithm and similar to those in

[Ul] and [Ki], except for the node ordering.

We distinguish between sets and bit vectors

by using AEIN for sets and AEin for bit— —
vectors.

Alqorithm C: Computes bit vectors

AEin(m) for each node m.

=: (1) F1OW graph G=(N,E,nO),

INI =n. The nodes are numbered from 1 to

n by reversing the time of last visit in a

DFST of G (i.e., rENDORDER). Refer to each

node by its number.

(2) Bit vectors KILL(j) and GEN(j),
l~j~n, where the i-th bit of KILL(j)

(resp. GEN(j)) is 1 if and only if the i-th
expression is in ~(j) (resp. ~(j)) . All

bit vectors have length p, where p is the

number of expressions.

output : Bit vectors AEin(j), l~j~n.

Method: Cl. Initially, AEin(j) +a~l

l’s, for 2~j~=, and AEin(l) +all 0’s.

C2 . Do Step C3 for j =1,2,. ..,n in order.

% any bit changes for any j, repeat Step2.

Otherwise, halt.

C3 . Set AEin(j) equal to the bitwise prod-
~t of [AEin(k) A lKILL(k)] VGEN(k) ,twhere

T Here, the symbols A, vandl stand for the

AND (bitwise product) , OR (bitwise sum) and

NOT (bitwise complement) functions, respec-. .
tlvely.
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k ranges over all predecessors of node j.~

LIVE VARIABLES (From~e]. )

A path in a flow graph is called defi-
niton-clear with respect to a variable V i-f
there is no definition of V on that path.
A variable V is live at a point p in a
flow graph if there is a definition-clear
path for v from I? to a use of V. That is,
V is live if its current value might be
used before V is redefined. Having deter-
mined the set of live variables at exit
from each node in a flow graph, we can use

this information for (among other things)

register allocation --we can determine when

a value should be kept in a register be-

cause of a subsequent use.

Let k be the set of variables occur-
ring in a flow graph G= (N,E,nO).

u
Let ~:N-42 . (3(x), the clear of x,

is the set of variables which are not de-

fined in node x.

u
Let h:N-2 . b(x) is the set of

variables which have exposed uses in node

x, i.e., those variables with a definition-

clear path from the entry of node x to a

use within node x.

Let LVOUT(X) and LVIN(X) , for each

node x, be the set of variables live at

exit from and on entrance to node x.

The fundamental relationships which

enable us to compute LVOUT(X) for each node

x are:

LV1. For each exit node w in G (i.e.,

w has% successors), LVOUT(W) =@.

~. For x not an exit node,

LVOUT(X) is the union of LVIN(y) over all

successors y of x.

LV3. LVIN(X) = [LVOUT(X) fI~(X)] ~h(X),

for e% node x.

LV4. Since LV1-3 do not necessarily
have a unique solution for LVOUT(X) , we

want the smallest such solution.

Let LVout be the bit vector for set LVOO.

(2) Bit vectors CLEAR(j) and XUSE(j),

l~j~n, where the i-th bit of CLEAR(j)

(resp. XUSE(j)) is I if and only if the
i-th variable is in ~(j) (resp. b(j)). All

bit vectors have length q, where q is the

number of variables.

QQ?2?E: Bit vectors LVout(j), l~j~n.

Method: D1. Initially, LVout(j) ‘all
O’s, for l~j~=.

D2. Do Step D3 for j =~,2, . . ..n in order.

~ any bit changes for any j, repeat StepD2.

Otherwise, halt.

D3. Set LVout(j) equal to the bitwise sum

~ [LVout(k) A CLEAR(k)] VXUSE(k) , where k

ranges over all successors of node j. H

VI. Analysis

The termination and correctness of

Algorithms C and D follow directly from

[Ul] and [Ki]. We focus on the complexity.

Lemma 12: Any cycle-free path in an
rfg G beginning with the initial node is

monotonically increasing by rENDORDER.

Proof: Any such path contains no
back edges by the proof of Lemma 11, and,

thus, is a path in the dag of G. rENDORDER

topologically sorts the dag of G (Lemma 6).

o
Theorem 3: Step C2 of Algorithm C is

executed at most d+2 times for an rfg G.

Proof: A O propagates from its point

of “origin’’--a “kill” or the initial node--

to the place where it is needed in d+l

iterations if it must propagate along a

path P of d back edges. It takes one iter-

ation for a O to arrive at the tail of the

first back edge of P. This follows since

all edges to this point are forward or

cross edges. The numbers along the path
must be in increasing sequence by Lemma 12.

After this point, it takes one iteration
for a O to climb up each back edge in P to
the tail of the next back edge, by the

same argument. Hence, we need at most d+l
iterations to propagate information plus

one more to detect that there are no further

changes. D

Alqorithm D: Computes bit vectors Theorem 4: Step D2 of Algorithm D is

LVout(m) for each node m. executed at most d+2 times for an rfg G.

(1) F~OW graph G= (N,E,nO), Proof: A 1 indicating a use propa-,Nl .-’
The nodes are numbered from 1 to gates backward along a cycle-free path to

n by the time of last visit in a DFST ofG a 91ven point in d + 1 iterations if there
(i.e., ENHY3RDER. Refer to each node by are d back edges in the path from the point
its number. to the use. It takes one iteration for al
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to reach the head of the d-th back edge in

such a path. As in Theorem 3, we prove

this by noting that forward and cross

edges under ENDORDER go from higher to low-
er numbered nodes. An additional iteration
enables us to reach the head of each suc-

ceeding back edge. rl

VII. Conclusions

There is an ordering of the nodes of

a flow graph G which (i) topologically

sorts the dominance relation of G,

(ii) topologically sorts the daq of G

if G is reducible, and

(iii) can be found in O(e) steps.

As a direct consequence, we can compute

the dominators of each node in a reducible
flow graph in O(e) bit vector steps.

Also, we have analyzed a simple bit

propagation approach for solving global

data flow analysis problems which is simple

to describe, understand, and program. This

approach requires at most (d+2)e bit vec-
tor steps, whereas the interval approach

requires at most 2ke bit vector steps plus

bookkeeping for intervals, where k and d,

with k>d, are parameters of the rfg.

Moreover, although “node splitting”
is necessary when using the interval ap-
proach on non-reducible flow graphs, the

simple bit propagation approach works on

non-reducible flow graphs directly with no

such modification!

[AHU]
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