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Abstract. As register allocation is one of the most important phases
in optimizing compilers, much work has been done to improve its qual-
ity and speed. We present a novel register allocation architecture for
programs in SSA-form which simplifies register allocation significantly.
We investigate certain properties of SSA-programs and their interfer-
ence graphs, showing that they belong to the class of chordal graphs.
This leads to a quadratic-time optimal coloring algorithm and allows for
decoupling the tasks of coloring, spilling and coalescing completely. Af-
ter presenting heuristic methods for spilling and coalescing, we compare
our coalescing heuristic to an optimal method based on integer linear
programming.

1 Introduction

Graph coloring register allocation has been a successful approach for register al-
location, mostly due to its very simple abstraction: Each variable in the program
is mapped to a node in an undirected, so called interference graph. Whenever
the compiler finds out that two variables cannot be held in the same register
(they are simultaneously live), an edge is drawn between the two nodes in the
interference graph representing the two variables. A k-coloring of the interference
graph thus leads to a valid register allocation using at most k registers.

Chaitin [1] showed that for each undirected graph G, there is a program
which has G as its interference graph. Since graph coloring is NP-complete, so
is register allocation. This leads to the well known iterative approach of graph
coloring register allocators (here, we illustrate a simplified version of the allocator
proposed by Briggs [2]):

Build Coalesce Color

Spill

not k-colorable

Since determining the graph’s chromatic number (the minimal number of colors
needed for a valid coloring) is also NP-complete, the impact of a modification
of the graph (spilling and coalescing) on its colorability cannot be determined
efficiently in general. This has two unappealing consequences:



1. Coalescing (the task of eliminating useless copies) may do more harm than
good by increasing the chromatic number of the graph. Consider the example
program P in figure 1(a) and its interference graph G in figure 1(b). G’s
chromatic number χ(G) equals 2. Aggressive coalescing would merge the
nodes d, g, f into one producing the graph G′ (shown in figure 1(c)) which is
not 2-colorable anymore. Thus, the register demand of P is raised by merely
removing some copies and thus possibly introducing spill code.

a ← 1

b ← a + a
c ← a + 1
d ← b + 1
store c
g ← d

e ← 1
f ← a + 1
store e
g ← f

store g

e1 e2

e3
e4
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(c) Interference graph
G′ of coalesced P

Fig. 1. Program P and its interference graph

2. Since it is not clear if the spilling of a node improved the colorability of
the graph, the modifications of the program caused by spilling have to be
materialized, the interference graph has to be rebuilt and coloring has to be
attempted again. Thus, coloring is repeated until k colors suffice. Especially
for a small number of available registers many iterations have to be expected,
since the number of spills will be high. This is costly, since the interference
graph is a large data structure which then has to be rebuilt over and over.

The situation drastically changes if we require the processed program to be
in SSA-form. As we show in section 2, interference graphs of SSA-form programs
are chordal. The two major properties of chordal graphs which make them so
appealing for register allocation are:

1. Their chromatic number is equal to the size of the largest clique in the graph.
2. They can be optimally1 colored in quadratic time (concerning the number

of nodes, cf. Golumbic [3]).

Furthermore, there are several relations between SSA-form programs and their
interference graphs which allow us to circumvent the deficiencies of conventional
graph coloring register allocators as mentioned above:

1 Using as few colors as possible



– Cliques in the interference graph correspond to live sets in the program. This
means after liveness analysis we know how many registers will be needed for
the program in question. If we reduce the amount of variables live at each
point in the program to at most k, the graph will be k-colorable, which
eliminates the iteration. In section 4.1, we present a simple algorithm which
splits the live ranges of the variables so that the register pressure is at most
k at each point in the program.

– Dominance, a fundamental notion for SSA-form programs, induces an order
of the interference graph’s nodes which allows the interference graph G =
(V,E) of a SSA-form program to be colored optimally in O(χ(G) · |V |) as
shown in section 2.

– Finally, as shown in section 4.3, we coalesce useless copies in the shape of
φ-operations not by modifying the graph but by finding a k-coloring which
assigns as many sources and targets of copies the same register. This pre-
serves the chordality of the interference graph and thus does not change its
k-colorability. So coalescing a copy will never cause any additional spill.

This leads to a single pass register allocator architecture looking like

Spill Color Coalesce SSA-Destruction

avoiding any iteration.

2 SSA-form Programs and their Interference Graphs

Before going into algorithmic details, let us discuss basic properties of SSA-
form programs and their connection to relevant terms of register allocation like
liveness and interference.

We consider a program as a standard CFG being a triple (Labels,CF , start).
Each label ` ∈ Labels contains a single instruction

` : (y1, . . . , ym︸ ︷︷ ︸
Dτ

)← τ(x1, . . . , xn︸ ︷︷ ︸
Uτ

)

a set of control flow edges CF between the labels and one designated label start
which has no control flow predecessors. As we only consider SSA-form programs
from now on, each variable v has a unique label where it is defined. We will
denote this label by Dv.

A fundamental notion for SSA-form programs is the one of dominance:

Definition 1 (Dominance). A label ` dominates a label `′ if all paths from
start to `′ contain `. We then write ` � `′.

Essential for all later work is the notion of a strict program which was coined
by Budimlić [4].

Definition 2 (Strict program). A program is strict, if each usage of a vari-
able v is dominated by Dv.



The interference graph G = (V,E) of a program P contains all variables
occurring in P as nodes. Two variables v and w are connected by an edge (we
then write vw ∈ E) in G, iff they interfere:

Definition 3 (Interference). We say, two variables interfere if there exists a
label in the program where they are both live.

In the same paper, Budimlić gave two lemmas which establish a fundamental
relationship between dominance and interference:

Lemma 1. If two variables v, w interfere either Dv � Dw or Dw � Dv.

Lemma 2. If v, w interfere and Dv � Dw, then v is live at Dw.

Based on Budimlić’s lemmas we can prove our first claim of the introduction:2

Theorem 1. For each clique C = {c1, . . . , cn} ⊆ V in the interference graph
G = (V,E) of a SSA-form program P , there exists a label ` ∈ LabelsP where all
c1, . . . , cn are live.

Proof. Since C is a clique, (ci, cj) ∈ E for each 1 ≤ i < j ≤ n. By lemma 1, the
labels {Dc1, . . . ,Dcn} form a totally ordered set. Thus there exists a permutation
σ : C −→ C for which Dσ(c1) � · · · � Dσ(cn). By lemma 2, σ(c1), . . . , σ(cn) are
live at Dσ(cn).

3 Coloring SSA Interference Graphs

Consider the following method to color a graph: Given an order v1, . . . , vn of the
graph’s nodes. Eliminate the vi one by one from the graph. Then, re-insert the
nodes in reverse order and give each vi the first free color not used by its already
re-inserted neighbors.

A well-known result from graph theory states that for each graph G = (V,E)
there is an ordering of all nodes in V for which this procedure leads to an optimal
coloring of G (cf. the textbook of Diestel [6] for example). In general, as graph
coloring is NP-complete, determining such a sequence is also NP-complete.

For the moment, let us consider the following approach to generate such
an ordering: In each elimination step, search a node v whose neighbors form a
clique in the current graph (such a node is also called simplicial). The idea is,
that when the node is re-inserted, all neighbors which are already colored form
a clique, and thus the number of colors used for the coloring is bound by the size
of the largest clique in the graph. Such an elimination order is called a perfect
elimination order (PEO). Consider the following example:

a b c

d e
PEO: a, d, b, e, c

No PEO: b, a, c, d, e

2 Bouchez [5] gave this theorem, independently from us, too.



Of course, not every graph allows to find such a node whose neighbors form
a clique at each step in the elimination process. For instance, the diamond graph

used as an example by Briggs in [2] does not allow for perfect elimination order. It
is a well-known theorem of the theory of perfect graphs, that if a graph possesses
a perfect elimination order, the coloring procedure described above will generate
an optimal coloring of the graph (cf. the textbook of Golumbic [3] for example).

Based on Budimlić’s lemmas, we prove that the dominance relation of a
program in SSA-form induces a perfect elimination order of its interference graph
G = (V,E).

Lemma 3. Let ab, bc ∈ E and ac 6∈ E. If Da � Db, then Db � Dc.

Proof. By contradiction: due to lemma 1, either Db � Dc or Dc � Db. Assume
Dc � Db. Then (by lemma 2), c is live at Db. Since a and b also interfere and
Da � Db, a is also live at Db. So, a and c are live at Db which cannot be by
precondition.

Theorem 2. A variable v can be added to a PEO of G if all variables whose
definitions are dominated by the definition of v have already been added to the
PEO.

Proof. To be added to a PEO, v must be simplicial. Let us assume, v is not
simplicial. Then, by definition, there exist two neighbors a, b of v which are not
connected (va, vb ∈ E and ab 6∈ E). By the proposition, all variables whose
definitions are dominated by Dv have been added to the PEO and removed
from G. Thus, Da � Dv. Then, by lemma 3, Dv � Db which contradicts the
proposition. Thus, v is simplicial.

Thus, a PEO of a SSA interference graph’s nodes can be easily obtained by a
post order walk over the program’s dominance tree. Thus, we can optimally color
the interference graphs of SSA-form programs in quadratic time.

The graphs, for which perfect elimination orders exist are called chordal
graphs or sometimes triangulated or rigid-circuit graphs. Since chordal graphs
are perfect (cf. to [3]) the characteristic property of perfect graphs also applies
to chordal graphs:

Definition 4. A graph H is perfect, iff for each induced subgraph H of G the
chromatic number χ(H) is equal to the size of the largest clique ω(H).

4 A Register Allocator for SSA-form Programs

Before giving a detailed description of spilling and coalescing techniques in the
next subsections let us briefly outline how the theoretical results of the last



section can be exploited to derive a new architecture for register allocators in
general.

Theorem 2 together with definition 4 state that the chromatic number of
a SSA interference graph is determined by the largest clique in the graph. By
theorem 1, for each clique in the interference graph, there is a label in the
program, where all variables in the clique are live. Thus, spilling can make the
interference graph k-colorable by reducing the number of live variables at each
label to k. This enables us to consider the spilling problem separately from the
other tasks of a register allocator since checking how many variables are live
at all labels in the program is easy in contrast to determining the chromatic
number of an arbitrary graph. In section 4.1 we demonstrate how a well known
basic block oriented spilling technique can be extended to serve as a spilling
method for the whole program.

By section 3, obtaining an optimal k-coloring is trivial. All one has to do is to
obey the coloring sequence induced by the dominance relation. Section 4.2 shows
how the φ-operations can be removed to obtain a non-SSA program having a
valid register allocation with k registers.

We consider coalescing as the task of obtaining a good coloring with respect
to φ-operations. Consider a φ-operation y ← φ(x1, . . . , xn). If we can assign as
many of the xi the color of y, we save move operations on the respective edges
to the φ’s block. The advantage over merging the node of y with the nodes of
the xi in the interference graph is, that we do not modify the graph’s structure
(i.e. possibly rendering it non-chordal) which lets us still determine its chromatic
number easily.

4.1 Spilling

In conventional global register allocation (like the register allocator by Briggs [2]),
spilling is not activated until coloring fails. Thus, the spilling decision is tightly
coupled to the way the graph is colored: If a node is popped from the coloring
stack and there is no color left to assign since its neighbors use up all available
colors, one of its neighbors is marked to be spilled, i.e. each use is preceded by
a reload and each definition is succeeded by a store of its value. This breaks the
live range apart making the variable only interfere with the variables live at the
usages and definitions. So the node is spilled only because another one cannot
be colored.

Since the interference graph represents the live ranges of variables, it hides
relevant information concerning spilling:

– How often is a variable used?
– Where is a variable used?
– How far is the next use away from a given point?

Thus spilling in conventional global register allocation is only concerned with
modifying the graph’s structure in order to make it k-colorable. A lot of work
has been done to make these register allocators more sensitive to the program
structure (see e.g. the work by Bergner et al. [7] or by Chow and Hennessy [8]).



However, theorems 1 and 2 and definition 4 allow for using more program-
sensitive, basic block oriented spilling approaches like Hsu et al. [9] and combine
their results to a solution for the whole procedure. Guo et al. [10] describe the
power of Belady’s MIN algorithm [11] for spilling in a basic block. Belady’s
algorithm does not minimize the number of loads or stores in a basic block.
Though, as the measurements of Guo show, it is still a good heuristic. In the
following, we present a method how Belady’s algorithm can be extended to work
on a whole procedure by using the results of section 2.

Belady’s MIN Algorithm The main principle of Belady’s MIN algorithm is
to displace the variables from registers whose next use is farthest in the future
(regarding the number of instructions). The algorithm starts at the entry of a
basic block B and visits each label ` in the block once. Assume, that all operands
of the instruction of ` are read/written from/to registers. If all registers are
occupied, one variable has to be displaced from the registers to make room for
the result of the instruction. If a label is reached whose instruction uses a value
which has been displaced, a reload must be inserted for this variable and, since
the reload loads the value in a register, another variable may have to be displaced
from the register set.

For example, you have 4 registers which are currently occupied by the vari-
ables a, b, c, d. Reaching a label

` : f ← τ(a, e)

one register has to be freed to reload the variable e. The algorithm of Belady
selects the one of b, c, d whose next use is farthest away from `. Two questions
arise immediately:

1. How far away is the next use of a variable v which is live out at the block B
of consideration but not used in that block anymore?
Since v can be used on several different control flow paths from the block, it
is not clear when v will be used next since this depends on the taken control
flow successor of B. Therefore we use an estimation by taking the minimum
of all next use distances.

2. What is the initial occupation of the registers?
Let us consider the set IB containing all values live in at B and the results of
all φ-functions in B. All these values are passed to this block “from outside”.3

If |I| > k, we select k elements from IB with the nearest next uses.
Furthermore, if we find out that a variable v in IB is displaced before it is
used, it is not sensible to hold v in a register at the entry of the block, thus
v is removed from IB .

We record the occupation of the registers after the last instruction in the block
B in the set OB .

3 Note that a φ is just a representative for a control flow dependent live in.



The final step is to combine the results of the algorithm applied to all basic
blocks in the program into a solution for the whole procedure. Since the register
pressure is nowhere larger than k, we only have to assure that all variables in IB

for some block B are in registers on each control flow edge leading to B. Thus
we examine each predecessor block P of B: If M := IB \ OP is not empty, we
have to insert reloads for all variables in M on the control flow edge from P to
B.4

Note that spilling a (SSA-)variable v and reloading it several times actually
destroys the SSA-form of the program, since v has then multiple definitions, i.e.
the reloads v. The SSA-form can be reconstructed by applying a SSA construc-
tion algorithm, e.g. the one by Cytron et al. [12].

4.2 SSA-Destruction

A φ-operation y ← φ(x1, . . . , xn) works like a control flow dependent copy op-
eration assigning xi to y if the φ’s label is reached via the i-th control flow
predecessor. Furthermore, SSA semantics state that all φ-operations in a basic
block have to be executed simultaneously before all other instructions in that
basic block. Thus, all φ-operations

y1 ← φ(x11, . . . , x1n)
. . .

ym ← φ(xm1, . . . , xmn)

in a block work as a “bulk copy” copying the xij to the yi at once if the block
was entered via the j-th edge.

Conventionally, while translating out of the SSA-form, φ-operations are re-
placed by copy instructions. Despite some other problems like the swap-problem
(see Briggs et al. [13]), this kind of φ removal may raise the register demand un-
necessarily as demonstrated by the example program Q in figure 2(a): Replacing
the φ-operations by inserting the copies

i3 ← i2

j3 ← j2

on the edge e4 introduces an interference between i3 and j2 which was not present
in the SSA interference graph shown in figure 2(c). This edge creates the clique
i3, j2, j3 which raises the graph’s chromatic number to 3.

So let us reconsider the bulk copy property of the φ-operations in a basic
block. Consider the register allocation of Q shown in figure 2(d). If the block B
is entered via e1, R1 is assigned R1 and R2 is assigned R2, so the φs do nothing
on this edge. However, if B is reached via e4, R1 is assigned R2 and vice versa,
at once: The registers R1 and R2 are swapped.
4 Instructions can be placed on a control flow edge by eliminating critical edges and

putting the instruction in the respective block.



i1 ← 1
j1 ← 1

i3 ← φ(i1, i2)
j3 ← φ(j1, j2)

if i3 < 100

return j3
j2 ← j3 + i3
i2 ← j3 + 1

e1

e2
e3

e4

B

(a) SSA program Q

i1 ← 1

i3 ← φ(i1, i2)
j3 ← φ(i1, j2)

if i3 < 100

return j3
j2 ← j3 + i3
i2 ← j3 + 1

e1

e2
e3

e4

B

(b) SSA program Q′

i1 j1

i2 j2

i3 j3

(c) Interference Graph of Q

R1 ← 1
R2 ← 1

R1 ← φ(R1, R2)
R2 ← φ(R2, R1)

if R2 < 100

return R2
R1 ← R2 + R1

R2 ← R2 + 1

e1

e2
e3

e4

B

(d) Register allocated Q

Fig. 2. Example programs Q and Q′

So generally φ-operations work like permutations on registers and not like a
set of copies. It depends on the registers allocated for the results of the φ and its
operands how the permutation will look like. Thus, in this setting, coalescing is
the task of finding a register allocation in which the permutations will have as
many fixed points (registers that are mapped to themselves) as possible.

As known from basic linear algebra, each permutation of size n can be writ-
ten as a sequence of transpositions (swaps) and thus is implementable using n
registers, using no extra register. For example, the φ-operations at some label `

R2 ← φ(. . . , R1, . . .)
R3 ← φ(. . . , R2, . . .)
R1 ← φ(. . . , R3, . . .)
R4 ← φ(. . . , R4, . . .)

can be implemented by inserting the sequence

swap R2, R3
swap R1, R2

on the corresponding control flow edge entering `.



If the processor provides a swap instruction (like xchg on the x86), φ-op-
erations can be directly be implemented by a sequence of these. If not, one can
use three exclusive ors. However, if one register is spare at the φs, we can use
it to implement the permutation with moves. Note that due to theorem 1 and
definition 4 we exactly know how many registers are in use at `.

Finally, there is one subtle point: The φ-operations of a basic block can use
a variable multiply concerning the same control flow edge like the φ-operations
in figure 2(b) both use i1 concerning edge e1. So, arriving at B from e1, i1 must
be written to i3 and j3. Thus, a copy from i1 to either i3 or j3 must be inserted
on edge e1. This copy is inevitable since the value of i1 must be present in two
registers upon entering B. The decision which destination the copy has (in this
example either i3 or j3) is deferred to coalescing since at this point in time it is
not clear whether i1 and i3 or i1 and j3 can be assigned the same color.

Note that the same situation also occurs if an operand x of a φ is live-in at
the φ’s block. Then x and the φ’s result interfere and cannot be given the same
color. Thus a copy has to be inserted also.

4.3 Coalescing

As we have seen, we can eliminate φ-operations in a way that no additional
register demand arises. Thus, a coloring of the interference graph of the SSA-
form program is a valid register allocation for the program with φ-operations
removed. In order to lower the number of transpositions needed for a φ-opera-
tion we investigate the problem of maximizing the number of fixed points of
a φ.5

Concerning a coloring f , variable x is a fixed point of a φ-operation y ←
φ(. . . , x, . . .) if x and y have been assigned the same register, i.e. f(y) = f(x).
Clearly, for fixed points no code has to be generated. Even more, if all φ-operands
are fixed points, no code has to be generated for the φ at all.

Given a SSA-form program P , its interference graph G = (V,E) and the set
Φ of all φ-operations in P . For a valid k-coloring f : V −→ {1, . . . , k} of G, we
define the costs of a φ-operation p : y ← φ(x1, . . . , xn) as follows:

cf (p) =
n∑

i=1

costf (y, xi) with costf (a, b) =
{

wab if f(a) 6= f(b)
0 else (1)

where the wab ≥ 0 are costs for copying b to a. The overall costs of the program
under the coloring f are then

cf (P ) =
∑
p∈Φ

cf (p)

5 Note that optimizing fixed points is only an approximation corresponding to the tra-
ditional coalescing paradigm but does not generally minimize the number of trans-
positions.



Definition 5 (SSA-Maximize-Fixed-Points). Given a SSA-form program
P and its interference graph G. Find a coloring f of G for which cf (P ) is
minimal.

Theorem 3. SSA-Maximize-Fixed-Points is NP-complete depending on the
number of Φ-operations. For a proof see [14].

A Heuristic Approach for SSA-Maximize-Fixed-Points In contrast to
existing approaches we do not merge nodes in the interference graph but try to
alter the coloring (as obtained with theorem 2) in order to assign operands of
φ-operations and their results the same color. So, instead of changing the graph’s
structure, we search for a “better” k-coloring wrt. the cost function defined in
equation 1. Thus, it will never happen that additional spill code is caused by
assigning two nodes the same color, in contrast to the example in figure 1. Unlike
other techniques, our method is not limited to the immediate neighborhood of
the node pair to base its decision whether to coalesce or not.

The algorithm considers each φ-operation separately. The aim is to color
as many operands of the φ equally to the φ’s result. Therefore we consider an
excerpt (later called conflict graph) from the interference graph containing the
φ’s result and its operands. Then we try to assign these nodes the same color. As
this may lead to conflicts (as this color may already be in use by neighbors), we
try to resolve these conflicts by recursively adjusting the conflicting nodes’ colors.
If we cannot resolve the conflicts for a node, we mark this node as incompatible.

For each φ-operation, we build an optimization unit (OU) ω = (y, x1, . . . , xm)
consisting of the φ’s result y and the arguments x1, . . . , xm of the φ which do not
interfere with y. An argument interfering with y can trivially never be assigned
y’s color. For each OU a minimization of the costs is then tried separately. The
minimization of an OU is not allowed to touch the results of all already processed
OU. The processing of every ω = (y, x1, . . . , xm) consists of three phases:

Init For each allowed color c for y, we insert an entry Ec = (c, Cc, Sc) into a
priority queue. An entry consists of:
– a color c.
– a conflict graph Cc. Initially, Cc equals to the subgraph of the interfer-

ence graph induced by y, x1, . . . , xm.
– a maximum weighted stable set Sc of Cc.6 Sc represents all nodes in the

conflict graph which shall be assigned the color c. Each xi in the OU is
assigned the weight wyxi

as defined in the cost function in equation 1.
The weight of y is arbitrary, because y is contained in every maximum
stable set by construction. This property is preserved throughout the
optimization process.

The gain of Ec is the sum of the weights of the nodes contained in Sc. The
priority queue is ordered decreasingly by the gain of the entries. Thus, the

6 A weighted stable set is a set of nodes equipped with weights for which no node is
connected to the other.



first entry in the queue represents a coloring which provides the largest gain
(or causes the fewest costs).

Test The first entry Ec is removed from the priority queue. We then attempt to
adjust the coloring of the interference graph in a way, that the nodes in Sc
are assigned the color c. Note, that until the testing phase is not completed
for an OU, color changes are only virtual and rolled back if the optimization
fails for the OU.
We try to change the color for each u ∈ {y, x1, . . . , xm} to c. If a neighbor
n of u is also colored with c, we annotate n with the former color of u. This
may provoke further conflicts which are then resolved recursively. Swapping
the color of a node v originally initiated by changing the color of u to c ends
in one of the three cases:
1. Changing v’s color does not generate new conflicts.
2. v’s color has already been pinned (see phase Apply) by the processing of

another optimization unit. Then, changing v’s color would increase the
costs incurred by this other OU. uu is added to Cc. Thus, u is excluded
from every possible stable set of Cc. Then, Sc is recomputed and the
entry is reinserted into the queue.

3. If v is a pinning candidate for the current OU, u and v are somehow
interdependent. The algorithm cannot assign c to u and v at the same
time. As we require y to be always contained in each Sc, if v = y, we add
the edge uu, otherwise the edge uv to Cc. Afterwards, Sc is recomputed
and the entry is reinserted into the queue.

If all conflicts caused by changing u’s color to c have been resolved (all ended
in case 1), then u is marked as a pinning candidate, else all color annotations
caused by re-coloring u are discarded.
If all y, x1, . . . , xm are marked as pinning candidates, testing ends for this
OU.

Apply If the testing phase produced at least two pinning candidates (some xi

and y could be colored with the same color), the pinning candidates become
pinned and all color changes annotated by the testing phase are applied to G.

Note, that the Test-Phase always terminates, since in each step an edge is
added to the conflict graph, if testing was not successful. Thus, in the worst case,
the stable set will finally consist of the φ-result only and is not re-inserted into
the priority queue. Thus, the whole algorithm terminates.

5 Measurements

We implemented our coalescing heuristic into our research compiler system
Firm [15] and ran the complete C/C++-subset of the SPEC2000 benchmark
suite through it. The architecture compiled for is a virtual RISC machine, to
determine the effect of our approach on different register file sizes. Therefore, we
did not measure the execution times of the compiled programs but investigated
the quality of the heuristic’s solutions in terms of costs of the target function as



defined in equation 1 in section 4.3. The weights wij are determined by the loop
nesting depth to the power of two.

To assess the quality of the heuristic, we implemented an ILP formulation
of SSA-Maximize-Fixed-Points (for details on the implementation, see [14]).
Since ILP solving occasionally takes very long, the ILP solver was stopped after
one minute of computation and thus did sometimes not produce an optimal
solution.7 As this happened in only 7% of all cases, we consider the solutions of
the ILP solver as the best ones we could get and call the remaining costs after
applying the ILP solver unoptimizable.

The measurements were conducted as follows: We compiled all C/C++-
functions in the SPEC2000 benchmark suite for 8, 16 and 32 registers. We mea-
sured the costs incurred by the φ-functions at three stages in the compiler: After
coloring with no coalescing done, after performing the heuristic and after apply-
ing the ILP solver. The solution of the heuristic was fed into the ILP solver as
a start solution.8 The row Non-Opt gives the percentage of functions for which
the ILP solutions were not proven optimal. The results of the three measure-
ments are reflected by the rows Initial, Heuristic and ILP in the table below. The
Elim row shows the quotient (Initial−Heuristic)/(Initial−ILP) representing the
fraction of optimizable costs the heuristic has eliminated. One can see that the
heuristic eliminates always more than 95.0% of all optimizable costs.

Costs
1000

Registers8 16 32
0

100

200

300

Initial Heuristic ILP

Registers 8 16 32
Non-Opt 6.7% 3.7% 1.3%
Initial 394592 342842 213544
Heuristic 60114 63506 46060
ILP 42738 57010 43479
Elim 95.0% 97.7% 98.4%

6 Conclusions and Further Work

SSA-form programs allow for a new architecture of register allocators. Due to the
chordality of their interference graphs, spilling and coalescing can be completely
decoupled, thus avoiding the iterative approach in common graph coloring reg-
ister allocators.

Based on the direct correspondence between the variables live at a label in
the program and the cliques in its interference graph, we showed how an already
7 To be precise, the solver could not prove the optimality of its best known feasible

solution within time.
8 Thus the solution of the ILP solver is always feasible and as good as or better than

the heuristic’s one.



existing, heuristic method for spilling in basic blocks can be extended to work
on a whole procedure. Furthermore, we showed that an optimal coloring of the
interference graph G = (V,E) can be obtained in O(χ(G) · |V |).

We investigated the NP-complete problem of copy coalescing, presented a
heuristic method for its solution and compared its quality to (near-) optimal
solutions computed by an integer linear program. As our measurements show,
the proposed coalescing heuristic eliminated more than 95% of all optimizable
costs for 8, 16 and 32 registers.

Finally, we showed how a k-register allocation of a SSA program can be
immediately turned into a k-register allocation of a non-SSA program. Thus,
optimizing SSA-destruction is no longer necessary since it is handled by the
coalescing phase.

As using SSA-form for register allocation demands a complete new backend
architecture, we only had a prototype implementation running at the point in
time this paper was written. The implementation of conventional register allo-
cators is also work in progress and has not been completed.

As anticipated in section 4.3 optimal copy minimization is not achieved by
maximizing the fixed points of a φ-operation but by minimizing the number of
transpositions of the register permutation the φ stands for. Future work could
investigate this problem.

7 Related Work

The first coalescing technique concerning graph coloring register allocation, called
aggressive coalescing, was given by Chaitin et al. [1]. It recklessly coalesced all
copies if the source and target did not interfere. It thus often introduced addi-
tional spill code by degrading the graph’s colorability. Since then, a lot of work
has been done on developing coalescing techniques which do not degrade the
colorability of the graph, basically by stating criteria under which coalescing
two nodes never will introduce a spill. Briggs et al. [2] introduced conservative
coalescing which refuses to merge two nodes if the merged node will have more
or equal than k neighbors. George and Appel [16] developed iterated coalescing
which is able to remove more copies than conservative coalescing by interleaving
it with the simplification phase of the register allocator. Park and Moon [17]
present optimistic coalescing which adapts aggressive coalescing and integrate
it into the Briggs allocator, allowing to undo coalescing if the coalesced node is
selected to be spilled.

In his inspiring paper [18] Andersson tested a huge amount of interference
graphs from the SML/NJ compiler published by Appel and George for the so
called 1-perfectness property and found for all graphs he investigated, ω(G) was
equal to χ(G). Following Andersson’s work, Pereira and Palsberg [19] tested the
interference graphs of the Java standard library compiled with the JoeQ compiler
for chordality and found that 95% of them were chordal. They propose a register
allocator without iteration for non-SSA programs and give heuristics both for
spilling and coalescing. Since their approach works with non-SSA programs and



even non-chordal interference graphs, they cannot utilize the theoretic properties
presented in section 2.

A more technical proof (without using perfect elimination orders) of the
chordality of SSA interference graphs by one of the authors can be found in [?].
Brisk [20] gives a proof for the perfectness of the interference graphs of SSA-
form programs. Bouchez [5] extensively studies the complexity of the spilling
problem for SSA-form programs. He proves the problem of reducing the number
of live variables for each label to k while minimizing the number of reloads to
be NP-complete wrt. to the chromatic number of the interference graph of the
SSA program.
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