On the Uhiversal Relation

Marc H. Graham

University of Toronto

Toronto, Canada

1. Introduction

~70-

tion or IDENTIFIER, DATATYPE, STORAGE LOCATION, ..., for a compiler’s symbol
table. As we are to investigate technical aspects of relational database theory, it
is more convenient t.o use single letters, which we take from the beginning of the
latin alphabet and often subscript: Ay, 4, ..., B, C; as attributes. When neces-
sary we will use capital letters towards the end of the latin alphabet: X, Y, ..., ; to
denote subsets of the universe and following established .custom we write set
union as an operator free expression and deliberately confuse a single attribute

and the set containing only that attribute. Thus A;X should be read as fAj} XL

We now introduce data values which are things such as 12345 and real. Our
first step is to associate with each attribute a set of values called a domain. For
EMPLOYEE NUMBER we might use {"strings of length 5 over 0,1, ..., 9'"1; for DATA-
TYPE: {real, integer, logical, string, ...}. Usually distinct attributes are allowed
to have either distinct or identical domains. We will be drawing no consequences
from t".he nature of the domains; therefore, we are free to assume all attributes
share a single domain, denoted D). In our subseguent examples, D need be no
larger than {0, 1, 2], but our results hold for arbitrary assignments of finite

domains.

Attributes are assigned attribute values in groups. The object which per-
forms this assignment is called a tuple. A tuple is a function from the universe to
the domain. In symbols:

t: 0 - D

We use the letters: ¢, u, v, ..., occasionally subscripted, to denote tuples.

A tuple serves to identify and relate attribute values. So we might have a
tuple, ¢, with {(EMPLOYEE NUMBER) = 12345, £(SALARY) = 20000, ¢{(IDENTIFIER) =
"IDENTIFIER”, ¢{(DATATYPE) = string. It is easier to display tuples as vectors or
"ordered ﬁ-tuples" such as (12345, 20000, "IDENTIFIER", string) by arbitrarily

deciding upon some ordering of the attributes. (Thus the name, tuple.) This

makes the tuples appear to be elements of the Cartesian product of the underly-

ing domain taken with itself and thig was the original definition.

A tuple need not be defined on every attribute in the universe. Let the set of
attributes on which a given tuple, ¢, is defined be called its scheme ang denoted‘
a(t). A set of tuples is uniform if each tuple hés the same scheme, A relation is a
uniform set of tuples. A relation
tuples, Relations are conventionally denoted by subscripted lowercase
7's: TuT2...,Ty,..., occasionally s; relation schemes by subscripted upper caée
R's: RyR,, ..., R, ..., occasionally S; obeying the equation ar;)=R;. {alry) is

just a(t) for ¢ an element of 7, which is fine whenever 7, has any elements. The

that in particular when confronted with an empty relation it can distinguish

which empty relation it is.)

When for some T; we have a(r;)=U, then we Say 7; is an instance of the
universal relation, or merely an instance, An instance is often denoted by an
upper case /. The phrase "the universal relation" reflects the customary misuse
of the term "relation” for "relation schema.” We will continue this custom, rely-
ing on éontext for disambiguation.

A database{is a ;et of relations. These are denoted by an upper-case bold R
as in R={r,,...,7.] for a database of % relations. A databgse schema is a set of

relation schemas and not Surprisingly we write

a(R)=fa(ry),..., (7 3={Ry.....R, =R,

~72-

it is easier to ignore the empty database than it was to iénore the empty rela-
tioh. We also safely ignore databases in which distinct relations have the same
schema.

#e will be concerned with two operators of the relational algebra, projection
and join. Projection forms its result relation by ignoring some of the attributes
of its operand relation. Let £ be a tuple and let X be a subset of a(t). The projec-
tion of £ onto X, written £.X, is a tuple, u, with the properties that af{w)=X and for
each attribute A€X, t{(A y=u(4). The projection of a relation onto a subset of its
sttributes is the set formed by the projections of its tuples onto that set of att‘riﬂ"
butes. Two or more tuples having the same projection are identified in the pro-
jection of the relation. For 7 a relation and X cafr), we write projection as nx(r)
and deﬁné it as

nx(r)=tu|3 terau=tX}

We use different notations for projection of tuples and projection of rela-
tions because the two operétions behave differently. We can illustrate this
difference with the following rule which is obviously sound.

Subset Rule for Projection: Let 74 7g be relations. Let XCa(rynolrs). I
7y (r)=nx(r2) then for every proper subset Y of X, ny(ry)=ny(re).

The same rule holds for projections of tuples. Somewhat surprisingly, the
converse of the subset rule is false for relations even though it is true for tuples.
Figure 1is a counterexample. We leave it to the reader to convince himself that
the projections of the relations in that figure on any subset of their attributes

are equal.

U=i4, B, c}

D=1, 2§
7y To

A B ¢ A B
1 1 3 < 1 1
2 1 1 1 2 1
1 2 1 1 1 2
1 1 2

Figure 1

A counterexample to the
converse of the subset rule

Ti*re={E (It er)(3 tae"'z)(t-ﬁr‘-‘tz)"(t-RFte)}
We can calculate T1*rz by examining the tuples that appear in the projec-

tions of Tiand 7z onto. theijr common attributes: ie., the relations

s1=nu(,,lma(, iB)('r,) and Sa:"a(r,)na(ra)("a) and finding the tuples which appear in

both, namely S8=S1\s2. For each tuple UESy we find the tuples in each of

all the matching tuples of the other relation, In the Special case of
a(rl)ﬁa(’ra):gb. the join is exactly the cross-product: every tuple of r, appears
with every tuple of Tg | In the case a{r1)Ca(ry), the join is the intersection: thﬁée
tuples of 7g whose a‘(\'rlk) Projection appears in r,,

It is not difficult to see that join is an associative ang commutative opera-

tor; in short, that (rl'rg)’“razrl*(rg‘rg) and 7y*ra=rotr, We are justified in

~74-

writing the expression representing the join of a group of k relations as

'rl#lra' PR 'Tk

ne of the implied sequences of binary joins. For con-

meaning the result of any o

k
yenience we abbreviate this to 7’.:11-1 or, when joining all the relations of a data-

base R={ru7a - - 7}, to *R. It can easily be shown, by induction on k, that, for

a(r)=Ri,

PR
*R={t | {“___\1(3%57"&'""-3-1:751);

3. The General Case
We now begin our formal investigation into the difficulty of enforcing the
universal relation assumption as a database constraint. This section summar-

izes the negative results of [HLY] and [L].

A pair of tuples selected from distinct relations of a database are compati-
ble if they agree on the attributes on which both are defined. Thus §, w are com~

patible if £ (a(t) Nalw N=w. (alt) Nalw))-

Proposition 1. (The Compatible Tuples Condition). Let R={ry ... , 7} be a data-
base.‘Select 74 from R and u from 7. An instance of the univeral relation exists

for R if and only if a set of tuples, {vy .- , v} can be found such that for all

1<i,18k

® 'u,-e'r.‘
°® ViTU
» v; and v are compatible

Proof. The necessity is apparent: u is the projection onto a(r4) of some tupie of
1. The »; are the projections of that tuple onto the remaining relation schemes.
Conversely, the v; build a tuple of 1 whose projection onto alry) is v and such &

tuple ean be built for sach tuple of each relation inR.s

complete,

colorabﬂity is given. s

76~

4. Tractable Subproblems

Since it appears that the problem of determining join consisten‘cy is
intractable in general, we turn our attention to subproblems which can be shown
to have efficient algorithms. In particular, we will give characterizations of sub-
problems for which it is sufficient to test the following condition, which is a

weakened form of the compatible tuples condition.

Definition A database R={r,, ..., 7.} satisfies the common intersection property
(CIP) if for all 7; 7;€R, X=al(r) Nalr;), mx(ry)=ny(r;). That is, every pair of rela-

tions agree on their common attributes. [Z, chap 5.]

The test for CIP is polynomial-time bounded for any database. As the com-
patible tuple condition can be shown to imply the common intersection pro-
perty, CIP will hold in any join-consistent database. The insufficiency of CIP can
be demonstrated by the example in figure 3, which also appears in [HLY]. The
reader may verify that the database is not join consistent by forming the join.

We will formalize what "goes wrong" with this example in a later section.

U={AB, C}
71 ‘ Ta 73
A B B C C A
1 1 1 1 1 2
2 2 2 2 2 1
Figure 3

So far we have considered properties defined on the data in a database. We
now seek schema properties which characterize databases in which CIP implies
jain-cmnsi‘siemcy. Specifically we examine the pattern of intersection of the r‘ela—k
tion schemes. Let RE={Ry ..., Ryl bea d’;itabase schema over a universe . An
attribute 4 €f; is said to be common if it appears in some intersection

R;M\E;, for some k#7. As we will be studying intersections, we can ignore any

mﬁ%

g ~-77-
.
§ attribute which 1s not common Consider, in lustification, adding any set of attri-
§ butes, X, to £y in figure 1 No way of assigning values to X will affect the conely-
v g sion that ne universal Instance existg Now assume that for Some distinet
hown § schemes R; R, we have £R;CRy. Then we are safe in studying the schema
sub- | R fR, §, in the Sense that any database satisfying CIP ang having schema R wig
8 have a universal instance just in cage the database resulting from the removal of
a relation T; with schema £ has a umversal instance These observations lead to
serty the follomng algorithm which outputs "yeg" only if its Input is g schema for
rela- databases in which CIp implies join~consistency.
com- Algorithm 1
pré- Input: A schemaf?:{}? ..., R ion universe [J.
’ can Ouput: "yes" op "no"”
The Procedure:
join. Step1: For each ¢ from 1 to % remove from R any non-common attributes,
If R; becomes ernpt-y remove it from R, |
Step2 Find, if Possible, 7, R;in R with R,-QR_,, Remove R from R
Step 3 Repeat steps 1 and 2 until no changes are made. If R ig empty out-
put "yes", otherwise output "no"”,
If the number of relations in R ig & and the nDumber of attributes in Uis n,
then Step1 can be done in time O(kn); step2 in time O(k2n); step3 can cause at
- We most % iterations, Therefore algorithm 1 ig 0 (k3n.).
plies)
rela- ;A necessary"co/pdition
7. An We now apply some techniques of graph theory to our problem. It ig ;
ation Mmed the reader 1s familiar with the eleme E

_78-

For a given family of subsets of a given set, an intersection graph is a graph
is which the subsets play the role of vertices and an edge connects pairs of sub-
sets whose intersection is non-empty. A common attribute graph (CAG) is a
labelled intersection graph in which the label on an edge is the intersection giv-
ing rise to the edge aLnd the label on a vertex is the union of the labels on the

edges incident to the vertex. Formally, if R is a database schema on U, then
CAG(R)=(V,E,l) where

s V=R

o E={(Ry.R;)| RinNR;#$}

o LIVUE-P(U)

where P(U) is the set of all subsets of U and [is defined by

iNE; if zeE and z=(R:i.R;)
Hz)= Ul{{zy)) ifzeV and (z.y)EE
Y
This choice of vertex labelling automatically removes non-common attributes
from our attention. There are examples of CAG graphs in figures 4 and 5.
We can rapidly establish some partial results by considering graphs in
which the edge labels are pairwise disjoint.
Proposition 8 Let the edge labels of CAG(R) be pairwise disjoint. Then R is a
scheme in which CIP implies join consistency if and only if CAG (R) is acyclic.
Proof
If 1t is easy to see that algorithm 1 will output "yes" for any acyclic graph. In
particular, the set of common attributes of any leaf in such a graph is exactly
the label oni the‘édﬁge connecting the leaf to the graph.
Only if |
We construct a counterexample. Let C be any cycle and R; any vertex of C.

Construct a relation for each vertex of CAG{R) other than R; containing two

79~

tuples: one a vector of all 1's, one a vector of all 2's. Let e be an edge of C
tains all 1's except for attributes in I(e) which are assigned 2's. The other tuple

tue of the fact that no attribute appears in more than one edge label.
Now : R; is clearly a relation on all the attributes of the universe and hav-
i#i

ing two tuples: one of all 1’s and one of all 2's. Just as clearly, (_:_Rj)*Rizqﬁ. Thus
‘ i
required. =

be a set of attributes not appearing in R. Consider enlarging the schemas of
some subset of R by adding # to each relation schema in the subset. Let the new
database schema be R'. CAC(R') will in general no longer have all pairwise dis-
joint edge labels; however, if CAG(R) contains cycles, the proof of proposition 3
will go through for R'if the attributes in ¥ are uniformally assigned the value 0.

We have established the following

Corollary For any schema, R, let R' be the result of removing from R any attri-
bute appearing in three or more relations (equivalently, two or more edge
labels). R is a schema for which CIP implies join éonsistency only if CAG(R") is

acyclic . »

6. A complete solution for databases on three relations

g

We are able to characterize all databases with three relations for which CIP
kil’nplies join consistency. (It is obvious that CIP implies join consistency for all
atabases on tw6 '}L_;elations.) In the process we introduce a condition which will

@

ater be seen to be sufficient in the general case.

incident with R;. Construct a two tuple relation for Ry as follows: one tuple con-.

has 2's everywhere except for 1's in {{e). This construction satisfies CIP by vir--

the constructed database state satisfies CIP without being join consistent, as

Let R be a schema with CAG(R) as in the statement of proposition 3. Let

e

-80-

s the CAG-C condition if every cycle of G

Definition We say that a CAG, G, satisfie
contains two edges, say €y €j with 1{e;)2i(e;). e e; are called comparable

edges. G is called a CAG-C graph.

A graph in which every cycle of length 4 or more has a chord is called {ri- A

ce that any CAG-C graph is chordal. The tri-

@g;gglqted or chordal. It is easy tos
ties which are summarized in the

angles of CAG graphs have some useful proper

next proposition.

Prqgosition 4 The Triangle Lemma

(1) In any CAG triangle, the intersection of any two edge labels is contained in

the third edge label.

{2) In any CAG-C triangle, the intersection of any two edge labels is non-empty.

(38) It two edg_és of a CAG-C triangle are incomparable, the third edge label is

their intersection.

Praof
(1) The intersection of two edge labels is the intersection of all three relations

which is certainly contained in the intersection of the two relations forming

the third edge.

(2) Assume otherwise. By the CAG-C property, the third edge is comparable te
one of the two edges whose intersection is empty. By (1), the intersection ©
the two comparable edges, 1.e. the smaller of the two, is contained in th

remaining edge, violating the assumption.

(3) If the third edge contained one of the incomparable edges. (1) would B
violated. Therefpre the third edgeisa lower bound on the two incom]

ound by (1) which is not the

edges and must be the greatest lower b

set by (2). =
gles for CAG-C and now

Figures 4 and 5 give the only possible CAG trian

C triangles respectively. All letters in these figures represent non-empty, dis-

Jjoint sets of attributes except where noted, From the triangle lemma and previ-
Ous considerations, we have

Theorem 2 The Triangle Theorem,

Proof Figure 4 gives the case for CAG(R) a triangle. Inspection of the other

graphs on three points completes the proof.s

7. A technica] result

-trivial CAG graph has a set of
inmal (rnaximal) edges but may or may not have a smallest {largest) edge.

Position 5 Let R be a database schemag with CAG (R) satisfying CAG-C. Then

(R) is complete iff there is'a non-empty set of attributes which appear in
: relation of AR,

82~

Induction Hypothesis Let R={Ryu .- , Rl (n23) and assume CAG (R) is com-~
plete. Let S={Sp -+ > Sp} be the collection of all subsets of R having n—1 ele-
ments. Then for all but at most two values for J, 12jEn

n n-1

«QxR a kqu &
(where S;=tRyy - ,Rjn__lg).
Basis The triangle lemma.
Induction Assume the hypothesis has been proven for nsk. Consider a schema,

R, on k+1 relations with CAG(R) a cofnplete CAG-C graph. Choose a minimal

edge of CAG (R). There are E‘é:é}ﬂc—l subsets of size k which contain both end
points of this edge. By the induction hypothesis this edge 1S smallest for each

subgraph induced by these subsets. But the subsets cover all the relations inR

and all the edges in CAG(R), establishing the induction hypothesis for k+1.®

Note that this proposition applies to any complete CAG graph each of whose

{riangles are CAG-C.

We have introduced proposition 5 in order to comment on the work of
Zaniolo in chapter 9 of [Z]. That work investigates this problem with the help of
hypergraphs and in; particular the representat’we graph of a hypergraph. (See
[Bej for definitions qf hypergraphs.) These representat‘we graphs are CAG
graphs and what are called connection sets in [Z] are CAG edge labels. Zaniolo
shows our result for ”simply—connected hypergraphs” which in our terms are
defined as follows: A CAG graph satifies the CAG—Z property if in each cycle of
the‘graph there is:an“egiig}/e whose label 18 contained in all other labels of the
cycle. it can be shoWwn, as é*consequence of proposi’cion 5, that CAG-Z character-
izes CAG-C graphs each ;)fw;rhose blocks is complete. Therefore this work extends

the result to more schemas.

~-83..

8. CAG—C is sufficient

lefe) - - ean edge of
lTL(G)(e) = U lG((RZ'RJ)) e :(Ri,S)A (R?:‘Rj)an edge of G
RjEVL

that if the relation § already appeqgrs inR, 7(G) is an induced subgraph of

_84-

. It is easy to see that T1(G) is the CAG graph of the schema of T1(R).

A key feature of this transformation is that the edges of By form a complete
subgraph of G on the vertices Vi. In order to see this, consider two edges,
e, f of By with e=(RgyRe2) S ={Ry.R g2). Then all four relations contain all the
attributes in L. Therefore the edge (Ren Ry ,), if it exists (it will not exist pre-
cisely when ¢ and f are incident with R 1=Ry1), has a label which contains L. But

since L is maximal in G, the containment must be improper.

We will need to prove three propositions concerning this transformation.
The first is relatively simple.
Proposition 7 An instance of Ti(R), if it exists, is an instance of R

Proof Since the relation schemes in Vi, each share exactly the attributes in L and
since R satisfies CIP, the compatible tuples condition holds amongst the rela-

tions in Ry, and their join is an instance for them, by propositions 1and 2. =

Before proceeding we need to make an observation. Let R; be a vertex of G
in V-V which is adjacent to some vertex in V. R; appears in T1(G) adjacent to S.
Let ITL(G)((R.;,S))=L X, where L & I, and X is disjoint from L and non-empty. (1t
no vcandidate for R; can be found with these properties, we do not need the

observation.)

Observation There is exactly one R;j€Vy such that XCR;.

Proof Clearly there cannot be two such relations since X¢L Tt remains to show
there is at least one. Leb X=AB - and assume the existence of two distinct
vertices of Vi, Ry B with A€R,, BeR,;. Then the edges (Ry, R;) and (R, R,) are
incomparable.in Ga;ad by the triangle lemma, part 3, 1((Rp,R))=L 18 théi'ri
intersection which is fmp,cssible since L is maximal in G.=
As a conseguence of this observation we have that if an edge (R;,S)in T1(G

has a label containing an attribute not in L, there is exactly one edge incident

|

-85.

R; in G having this 1abel. (The case of S appearing in @ ig Special; however, the
statement holdsg then ag well.) Otherwise all edges between R; and the vertices of
VL have the same label in G; namely, .{va(G)((R.;,S)). The fact that the edges
added to G to form T'1{G) do not have "fat” labels is erucial in the remainder of
the development.

Proposition 8§ T'L(R) satisfies CIP,

Proof Edges not incident to § represent parts of the CIP constraint not affected
by the transformation, The remainder of the proof follows from Proposition 7,

the observation, angd the subset rule for projections, =

to S has the same label as the equivalent edge in G, Let the edges (Re,S), (R;,S),
in C have incomparable labels 7, X, LyY, respectively, with X ang Y disjoint from
L. By the observation we can choose R,, R, in Vi, such that Le((RuRy))=L 1X and
lg((R,-,Rl))=LgY. If X and Y are comparable then we have Ry=R,. Thus C is a.
non-CAG-C cycle of G Ifrx aﬁd Y are incomparable, Ry#R; and the sequence of

edges (R;,R,), (Ri.Ry), (Ry.R;) have incomparable Iabels, Therefore G has a cycle

without adjacent, comparable edges and ig not CAG-C by lemma 6. =

-86-

no edges. Thus R, consists of a set of relations having no common attributes.
Such a database is always join consistent. Since each <R; R;> pair represent &
CAG-C schema and CIP database by propositions 8 and 9, proposition 7 allows us

to deduce the join consistency of R. =

9. Yet another sufficient condition

shows that there is at least some con-

This next, somewhat bizarre result

nection between join consistency and dependency theory.

re S is a set of sets of attributes. A

A join dependency is written *[S]. whe
relation 7 all of whose attributes are in S satisfies *[Slifrisa fixed point of the

" associated with S [BMSU]. I S={Sy .- , Sp}, then 7

"projection—join mapping
satisfies *[S] iff
k 3
* (ns,(r))=T
i=1

See [R2] [F2] for more on join dependencies.

fying CIP and having schema R. 1f each

Proposition 10 Let R be a database satis

relation in R satisfies the join dependency defined by labels of edges incident to

it in CAG(R), then Ris join consistent.

Proof. We show that the compatible tuples condition is satisfied. Assume for

to be satisfied. Let

some tuple £y in relation 71 that the condition fails
(with ¢; from relation 7¢: no more than

S={ty,t} bed maximal set of tuples

one tuple from any relation) within which the requirements of compatibility are
satisfied. We know that relation Tg+1 {from which no tuple appears in S) has
necessarily distinct, such that

tuples wy, . © W not
w;. {o(73) Malrg+1)=t (a(r) Nl +1)). Now these projections are Join con-

sistent, thereforyye their join appears in (the appropriate projection of) Tr+1s by
the join dependency. But this tuple may be added to S, contradicting its maxl

.. mality. =

Ple of [Ni]. Although current design criteria (independent components in norma]

form) do not Produce schemas in which CIP implies join consistency, thisg does

not mean that they may not have easy tests.

‘ @ department in the plan-
Ing stage has no employees’; An important geal of current research must be to
aken the universal relation é(ssumption to deal with these difficulties without

ing the advantages the assumption provides,

[l

[ABU]

[B]

[BB]

[BBG]

[BDB]

[Be]

[BFH]

[BG]

[BMSU]

[C]

-88-

References

Armstrong, W.W.; "Dependency structures of database relationships,”

Proc 1974 IFIP Congress, PP 580-583, 1974

Aho,A_\’.;Beeri,C.;Ulhnan,J.; "The Theory of Joins in Relational Data-

pbases,” TODS 4:3, PP 297-314, 1979

Bernstein,P.A.; "Synthesizing Third Normal Form Relations from Func-

tional Dependencies,” TODS 1:4, pp 277-298, 1976

Beeri,C:Bernstein,P.A.; "Computational Problems Related to the Design

of Normal Form Relational Schemas," TODS 4.1, PP 30-59, 1979

Beeri,C;Bernstein,P.A.;Goodman.N: nA Sophisticate’s Introduction to
Database Normalization Theory,” Proc of 4th VLDB Conf., PP 113-124,

1978

Biskup,J.;Dayal,U.;Bernstein,P.A,; "Synthesizing Independent Database

Schemas,"” Proc. SIGMOD Conf.. PP 143-151, 1979
Berge.C.; Graphs and Hypergraﬁhs, North-Holland, 1973

Bernstein,P,A.;Fag'm,R.;Howard,J H.; "A complete axiomatizaton for func-

tional and multivalued dependencies," Proc SIGMOD Conf, pp47-61, 1977

Bernstein,P.A.;Goodman.N.: "What does Boyce-Codd Normal Form do?"

TR-07-79 Harvard University

Beeri,C;Mendelzon,A.O.;Sagiv,Y;Uﬂman,J .D.; "Eguivalence of Relational
Database Schemes," Proc. 11th ACM Symp. 07 Theory of Comp.. PP 319-

329, 1979

Codd,B.F.; "Further Normalization of the Database Relational Model,"

Data Base Systems, Prentice-Hall, pp 33-64, 1972

[F1]

Fagin, R; "Multivalued dependencies ang & new normal form for rela-

tional databases,” 7078 8:8, pp 201-223, 1978

Fagin,R; "Normal forms and relationa] database operators,” Proc S/G-

MOD Conf., pp 153-160, 1979

Fagin,R; 4 normal form Jor relational databases thot is based on

domains and keys, IBM RJ 2520, May 1979

Garey,M.R.;Johnson,D.S.; Computers and Intractability, W.H.Freeman,

1979
Harary,F, Craph Theory, Addison—Wesley, 1972

Honeyman,P.;Ladner,R.E.;Yannakakis,M; "Testing the Universal Instance

Assumption,” 7Py, 10:1 Feb 80

Ladner,R.E.; private communication

able relations,” Proc. VILDB Conf., pp 360-387, 1978

Rissanen,J: "Independent components of relations,” T0pS 2:4, pp 317-

325, 1977

Zaniolo, C; Analysis and Design, of Relational Schemata Jor Database

Systems, UCIA~ENG~7669, 1978

-90-

Appendix The
The following notation is used in the proof 61’ the next result. If e, f are 20=(R-
edges in a CAG graph, we write <e f> to mean I{e)2l(f) and [e.f] to mean e and f
are comparable; that is, either <ef> or <f,e> holds. We use the symbol — to
mean negation.
Lemma 6 (Only-If Part) A CAG graph containing a cycle in which no adjacent
pair of edges is comparable is not CAG-C.
Proof By contradiction. Let G = CAG(R) for some schema R. Choose | The last
C=RoRy .- - ,Ri-1 @ cycle of G and denote the edge (R¢-1,R¢) as e;. (All index We
arithmetic is done mod k.) Assume Cischosenasa shortest cycle of G satisfying This car
—[ey,6i01] for all 0SiSk—1 | * that at |
Since G is a CAGC graph, we may assume, without loss of generality, the true for
existence of i and j such that <eq e;> and for all ky, kg with 0Sisk 1<kgSjsk—1 subtend
~[er e, unless ki=i and k2=7 (**) fying (*)
In the set of edges from e; to €j inclusive, ei, €j is the only comparable pair. Itis By
by (*) jzi+2. However j=i+2 allows the fol- Therefor

easy to see that j>i+%2. Obviously.
lowing computation

<egei+2> (Ri-1NR) 2 (Ris1NRi2)
= (RgMRes1) 2 (Ri—lﬂRimRH-l) 2 (Rys1MPis2)

- <@411, 81427

which contradicts {(*).
The attack for the remainder of this proof is to choose a sequence of chords
of C which subtend nested intervals of the path from R;_y to Ry. The innermost

chord forms a triangle with two edges of C. The label of this chord is necessarily
by the triangle lemma. It is then shown that the

contained in both these ‘édg'es,
1 of each chord which pre

label on each chord of the sequence contains the labe

cedes it. This leads to a contradiction.

-91-

70=(R;_1,R;). Let q'm-lz(Rkl:sz)~ Then

[Tm-1€p,41] - I = (R 1. Ry)
[Qm—lneka] - 9m=(Rlc1-RI¢2—l)
If both antecedents hold,
the choice is arbitrary,

(see figure A. 1)

The last element of the sequence is gp for p=j—-i-p,

We must now show that each of 9091 - .., 9y is a well Specified edge of Q.

This can be done by induction. 9o is an edge of G by <ey, e;>. It suffices to show

that at least one of the two conditions of (***) holds for 1sm=p. Assume this is

subtends form a cycle which is shorter than C. Since Cis a shortest cycle satis-

fying (*), one of the conditions of (***) must holg.

By the construction in (*s%), o subtends one fewer ed

ges of C than Tm—1.
Therefore 9

subtends J=itl-(p+1)=2 edges of C which we |

abel as e, and Enai.
{That is to sa » =(Rn_1.R, 1)), As advertised, <e,, gp> and <e,,+1,q,,>. We must

'now show <g,,,qyn- 1> for O<m <p. We proceed by induction backwards from p-

There are two cases to consider in the basis.
Casel: B-1=(Rp_1.R, ,p)

Casep: ¥-1=(Rn-2Rp4)

(see figure A. 2)

3

Case 1, [gp_l,en.,,g]‘by the second condition of (*x®), If <gp-1,€n4+2> then
P:€n+2> since p:€n42 @pay = (RnnlaRn-fl)- (Rn+lrﬁn+2): (Rn+21Rn—1) form a trian-
But then <g

n+1:€n12> by the transitivity of <,> violating (*). Therefore

*2.95~1>. But then <@p.9p-1> by the triangle lemma, as required. The

-92-

in case 2 and the induction step is identical, subject to the required

reasoning

subscript changes.
We can now deduce <en+1:90>- But we also have
<eje;> - (Ri-iNR:) 2 (Rj-1NR;)
5 (Ri-1NR;) 2 (RisiNRiNRy) 2 (Rj-1NRy)

- <qo,ej~>

Therefore <e,.1,€;> which violates (**). =

