
On the Universal Relation

Mare H. Graham

University of Toronto

Toronto, Canada

1. Introduction

At the 1978 Very Large Data Base conference a paper was presented in

which the wisdom of the "universal relation assumption” was questioned and

more research was called for [BBG]. Since then it has been discovered that the

test for the existence of an instance of the universal relation corresponding toa

given database is intractable [HLY]. This paper reviews that work and then

searches for schemas and databases for which efficient tests exist. The outline

of the paper is as follows: After the basic notation is given in Section 2, section 3°

reviews the work of [HLY]. Sections 4 through § investigate a particular test for |

join consistency and situations in which it may be applied. Section 9 briefly pur- |

sues a different course. Section 10 presents open questions for further research...

2. Basic Definitions and Notation

Very rarely in a discussion of databases is it necessary to introduce an

finite object. All the objects to be encountered in this paper are finite. In par-

cular, that which we call the universe, and denote, U is a finite set of tokens

hich are themselves called attributes. In real world examples, attributes are

ch things as EMPLOYEE NUMBER, SALARY, SKILLS, ..., for a personnel applica-
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tion or IDENTIFIER, DATATYPE, STORAGE LOCATION, ..., for a compiler’s symbol

table. As we are to investigate technical aspects of relational database theory, it

is more convenient to use single letters, which we take from the beginning of the

latin alphabet and often subscript: A;, Ag, ..., 8, C; as attributes. When neces-

sary we will use capital letters towards the end of the latin alphabet: X, IY, ..., ; to

denote subsets of the universe and following established custom we write set

union as an operator free expression and deliberately confuse a single attribute

and the set containing only that attribute. Thus A;X should be read as {Aj}U)X.

We now introduce data values which are things such as 12345 and real. Our

first step is to associate with each attribute a set of values called a domain. For

EMPLOYEE NUMBER we might use {"strings of length 5 over 0,1, ..., 93; for DATA-

TYPE: {real, integer, logical, string, ...}. Usually distinct attributes are allowed

to have either distinct or identical domains. We will be drawing no consequences

from the nature of the domains; therefore, we are free to assume all attributes

share a single domain, denoted D. In our subsequent examples, D need be no

larger than {0, 1, 23, but our results hold for arbitrary assignments of finite

domains.

Attributes are assigned attribute values in groups. The object which per-

forms this assignment is called a tuple. A tuple is a function from the universe to

the domain. In symbols:

t:U +D

We use the letters: ¢, u, u,..., occasionally subscripted, to denote tuples.

A tuple serves to identify and relate attribute values. So we might have a

tuple, é, with (EMPLOYEE NUMBER) = 12345, (SALARY) = 20000, (IDENTIFIER) =

“IDENTIFIER”, ¢(DATATYPE) = string. It is easier to display tuples as vectors or

"ordered n-tuples" such as (12345, 20000, “IDENTIFIER”, string) by arbitrarily

deciding upon some ordering of the attributes. (Thus the name, tuple.) This



makes the tuples appear to be elements of the Cartesian product of the underly-

ing domain taken with itself and this was the original definition.

A tuple need not be defined on every attribute in the universe. Let the set of

attributes on which a given tuple, ¢, is defined be called its scheme and denoted

a(t). A set of tuples is uniform if each tuple has the same scheme. A reiation isa

uniform set of tuples. A relation’s scheme (or schema) is the scheme of its

tuples. Relations are conventionally denoted by subscripted lowercase

T'S: TyTa.u7y,, OCCasionally s; relation schemes by subscripted upper case

R's: Ry Ro ...,Riy..., occasionally S; obeying the equation a(7,)=R,. (a{7;) is

just a(t) for ¢ an element of 7,, which is fine whenever r,; has any elements. The

empty set is certainly uniform and thus a relation but we do not know what

schema to give it. We will blithely assume a to be well defined everywhere and

that in particular when confronted with an empty relation it can distinguish

which empty relation it is.) |

Relations may be displayed as tables or matrices in which the columns

represent attributes, each column being labelled by the attribute it represents,

and the rows are tuples in the vector display mode already mentioned. There are

examples of such displays in figures 1 thru 3.

When for some 7; we have a{r;)=U, then we say 7; is an instance of the

universal relation or merely an instance. An instance is often denoted by an

upper case /. The phrase "the universal relation” reflects the customary misuse

of the term “relation” for "relation schema." We will continue this custom, rely-

ing on context for disambiguation.

A database is a set of relations. These are denoted by an upper-case bold R

as in R=}r,,....7,3 for a database of k relations. A database schema is a set of

relation schemas and not surprisingly we write

a{R)=falrs),.. alr Ba {Rp. Rar.



it is easier to ignore the empty database than it was to ignore the empty rela-

tion. We also safely ignore databases in which distinct relations have the same

schema.

We will be concerned with two operators of the relational algebra, projection

and join. Projection forms its result relation by ignoring some of the attributes

of its operand relation. Let ¢ be a tuple and let X be a subset of a(t). The projec-

tion of f onto X, written £.X, is a tuple, u, with the properties that a(u)=X and for

éach attribute AcX, ¢(A)=u(A). The projection of a relation onto a subset of its

attributes is the set formed by the projections of its tuples onto that set of attri-

butes. Two or more tuples having the same projection are identified in the pro-

jection of the relation. For r a relation and XCa(r), we write projection as my(7)

and define it as

ny(r)={ulatera~u=t.x}

We use different notations for projection of tuples and projection of rela-

tions because the two operations behave differently. We ean illustrate this

difference with the following rule which is obviously sound.

Subset Rule for Projection: Let r;, re be relations. Let XCa(r,)Cya(rg). If

ny(r\)=nyx(re) then for every proper subset Y of X, my(r1)=7y(72).

The same rule holds for projections of tuples. Somewhat surprisingly, the

converse of the subset rule is false for relations even though it is true for tuples.

Figure 1 is a counterexample. We leave it to the reader to convince himself that

the projections of the relations in that figure on any subset of their attributes

are equal.
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Figure 1

A counterexample to the

converse of the subset rule

The natural join takes two relations as operands and forms a new relation

whose schema is the union of the operand schemata. For relations 71, rz with

schemas a(r;)=R,, a(r2)=Re, we define 7;"%r2 by

ry*re=(t | (ater )(Ateere)(t.R =f ,)a(tRe=t2)}

We can calculate r,*72 by examining the tuples that appear in the projec-

tions of r,yand7rg onto. their common attributes; i.e., the relations

$1= Tar )Nalr (71) and s2=Mae jr) a(r,)\72) and finding the tuples which appear in

both, namely sg=s;(\se. For each tuple uwé€sq we find the tuples in each of

7; and 7, which have u as their common attribute projection and form a tuple of

ry"r2 for every pair. (This is not meant to be an efficient calculation technique

but only to help explain the definition.) Therefore any tuple of 7; (or 72) whose

projection onto a(r,;)(\a(r2) does not match any tuple of rg (or-r,) is lost from

the join. Conversely any tuple which does match appears indiscriminately with

all the matching tuples of the other relation. In the special case of

ars) K\alre)=9, the join is exactly the cross-product: every tuple of 7; appears

with every tuple of ro. In the case a(r,)Ca(re), the join is the intersection: those

tuples of rg whose alr ) projection appears in 7;.

It is not difficult to see that join is an associative and commutative opera-

tor; in short, that (r,°r2)"7g=7r47(re"rg) and ry*re=re*r;. We are justified in
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writing the expression representing the join of a group of x relations as

T1*7 2* on. °Tp

meaning the result of any one of the implied sequences of binary joins. For con-

k

venience we abbreviate this to * 7, or, when joining all the relations of a data-
a . .1

base R={ry,rg,...,7%$, to *R, It can easily be shown, by induction on k, that, for

a{r)=Ri,

# .

*R= St | A, Ge Er at. Ry=t,)}

3. The General Case

We now begin our formal investigation into the difficulty of enforcing the

universal relation assumption as a database constraint. This section summar-

izes the negative results of [HLY] and [L].

A pair of tuples selected from distinct relations of a database are compati-

ble if they agree on the attributes on which both are defined. Thus #, w are com-

patible if t. (a(t) \a(w))=w. (a(t) j\a(w)).

Proposition 1. (The Compatible Tuples Condition). Let R={r;,...,7,} be a data-

base. Select r; from R and u from 7;. An instance of the univeral relation exists

for R if and only if a set of tuples, {v,,...,v,} can be found such that for all

1S7,1Sk

® VETTE

8 uj=u

° uv; and v, are compatible

Proof. The necessity is apparent: u is the projection onto a(r;) of some tuple of

I. The vw are the projections of that tuple onto the remaining relation schemes.

Conversely, the uv; build a tuple of I whose projection onto a(7;) is wu and such a

tuple ean be built for each tuple of each relation in R. =
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Direct verification of the compatible tuples condition leads to a "backtrack-

ing” algorithm. However, the next proposition seems to offer some hope.

Proposition 2. Let R be a database satisfying the compatible tuples condition

and let / be any corresponding instance. Then we have

1) Jc*R

2) Tatr)(*@R)=r for every TER

Proof. For part 1 see [ABU]. For part 2 see [HLY]. =

In [HLY] a database which satisfies the universal relation assumption is

called join consistent. Proposition 2 gives a justification for this name. It states

that the join of a join consistent database is its largest instance. This implies the

correctness of a simple algorithm to test join consistency: form the join and test

the projections. Regrettably, this algorithm has worst case behaviour O(m*) {k

the number of relations, m the size of each relation). It may be deduced from

the next theorem that no algorithm with running time a polynomial of fixed

| degree is likely to be found to solve this problem in general.

Theorem 7 Determining join-consistency is NP-complete.

Proof. [HLY] A reduction from graph vertex 3-colorability is given. =

Note Readers unfamiliar with the notion of NP-completeness are referred to [GJ].

For our purposes it will suffice to assert than an NP-complete problem is prob-

ably too difficult to be solved in a reasonable amount of time by any algorithm.

Knowing that a database is join-consistent does not seem to help in deter-

_ Mining if a modified database will be join-consistent. This is proven in [HLY] for

the case that the modification is a tuple insert.

spayitestatasassnasniuo
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4, Tractable Subproblems

Since it appears that the problem of determining join consistency is

intractable in general, we turn our attention to subproblems which can be shown

to have efficient algorithms. In particular, we will give characterizations of sub-

problems for which it is sufficient to test the following condition, which is a

weakened form of the compatible tuples condition.

Definition A database R={r;,...,7,3 satisfies the common intersection property

(CIP) if for all r, ryER, X=al(7i) Nal7;), nx(7;)=my(r;). That is, every pair of rela-

tions agree on their common attributes. [Z, chap 5. ]

The test for CIP is polynomial-time bounded for any database. As the com-

patible tuple condition can be shown to imply the common intersection pro-

perty, CIP will hold in any join-consistent database. The insufficiency of CIP can

be demonstrated by the example in figure 3, which also appears in [HLY]. The

reader may verify that the database is not join consistent by forming the join.

We will formalize what "goes wrong" with this example in a later section. |

U = fA, B, C}

ry | Te T3
A B B C | C A

1 4 1 1 | 1 a
2 2 2 a a 1

Figure 3

So far we have considered properties defined on the data in a database. We |

now seek schema properties which characterize databases in which CIP implies

join-consistency. Specifically we examine the pattern of intersection of the rela- |

tien schemes. Let R={Ry...,Ryi bea database schema over a universe U. An |

attribute AR, is said to be common if it appears in some intersection

Ry C\Ry, tor some K#j7. As we will be studying intersections, we can ignore any



own,

sub-

is a

erty

rela-

com-

pro-

3 can

The

join.

-77-

attribute which is not common. Consider, in justification, adding any set of attri-

butes, X, to Ay, in figure 1. No way of assigning values to X will affect the eonclu-

sion that no universal instance exists. Now assume that for some distinct

schemes Aj, Ry, we have A;CR,. Then we are safe in studying the schema

R-{R;}, in the sense that any database satisfying CIP and having schema # will

have a universal instance Just in case the database resulting from the removal of

a relation 7; with schema A; has a universal instance. These observations lead to

the following algorithm, which outputs "yes" only if its input is a schema for

databases in which CIP implies join-consistency.

Algorithm 1

Input: A schema R={R,,...,R,} on universe U.

Ouput: "yes” or "no"

Procedure:

Stepi: For each i from 1 to k remove from A, any non-common attributes.

If A; becomes empty remove it from RF. | |
Step2z: Find, if possible, Fy, A; in Rk with A,CR; Remove R; from R.

Step 3: Repeat steps 1 and 2 until no changes are made. If FP is empty out-

put "yes"; otherwise output "no", «=

If the number of relations in R is k and the number of attributes in U is 72,

then Step1 can be done in time O(kn); step2 in time 0(k®n); step3 can cause at

Most & iterations. Therefore algorithm 1 is O(%7).

- A necessary condition

_ We now apply some techniques of graph theory to our problem. It is

umed the reader is familiar with the elementary aspects of graph theory as



-78-

For a given family of subsets of a given set, an intersection graph is a graph

is which the subsets play the role of vertices and an edge connects pairs of sub-

sets whose intersection is non-empty. A common attribute graph (CAC) is a

labelled intersection graph in which the label on an edge is the intersection giv-

ing rise to the edge and the label on a vertex is the union of the labels on the

edges incident to the vertex. Formally, if R is a database schema on U, then

CAG(R)=(V.£,1L) where

»s Y=R

¢ F=((RiRs)| RQ Rs#9}

© L:VUE>P(U)

where P(U) is the set of all subsets of U and I is defined by

INR; if c€B and c=(R;,R;)
KME=Wi((ey)) if reV and (ny)ek

v

This choice of vertex labelling automatically removes non-common attributes

from our attention. There are examples of CAG graphs in figures 4 and 5.

We can rapidly establish some partial results by considering graphs in

which the edge labels are pairwise disjoint.

Proposition 3 Let the edge labels of CAG(R) be pairwise disjoint. Then Aisa

scheme in which CIP implies join consistency if and only if CAG (A) is acyclic.

Proof

if It is easy to see that algorithm 1 will output "yes" for any acyclic graph. In

particular, the set of common attributes of any leaf in such a graph is exactly

the label oni the édge connecting the leaf to the graph.

Only if

We construct a counterexample. Let C be any cycle and A, any vertex of C.

Construct a relation for each vertex of CAC{R) other than A; containing two



-~79-

tuples: one a vector of all 1’s, one a vector of all 2’s. Let e be an edge of C

tains all 1’s except for attributes in 1(e) which are assigned 2’s. The other tuple

tue of the fact that no attribute appears in more than one edge label.

Now A; is clearly a relation on all the attributes of the universe and hav-
Gai

ing two tuples: one of all 1’s and one of all 2’s. Just as clearly, (3 Ry )*Ri= 9. Thus

required. a

be a set of attributes not appearing in #. Consider enlarging the schemas of

some subset of & by adding W to each relation schema in the subset. Let the new

database schema be #'. CAG(R') will in general no longer have all pairwise dis-

joint edge labels; however, if CAC(R) contains cycles, the proof of proposition 3

will go through for A' if the attributes in W are uniformally assigned the value 0.

We have established the following

Corollary For any schema, f, let R' be the result of removing from FR any attri-

bute appearing in three or more relations (equivalently, two or more edge

labels). R is a schema for which CIP implies join consistency only if CAG(R’) is

acyclic.»

6. A complete solution for databases on three relations

implies join consistency. (It is obvious that CIP implies join consistency for all

databases on two relations.) In the process we introduce a condition which will
ce

later be seen to be'sufficient in the general case.

incident with R,. Construct a two tuple relation for R, as follows: one tuple con-.

has 2's everywhere except for 1’s in i{e). This construction satisfies CIP by vir-.

the constructed database state satisfies CIP without being join consistent, as

Let R be a schema with CAG(R) as in the statement of proposition 3. Let W

We are able to characterize all databases with three relations for which CIP
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inition We say that a CAG, G, satisfies the CAG-C condition
 if every cycle of G

contains two edges, say @ &j with L(e;)2i(e;). e, e; are called comparable

edges. Gis called a CAG-C graph.

A graph in which every cycle of length 4 or more has a chord is call
ed tri- |

angulated or chordal, It is easy to see that any CAG-C graph is chordal. The tri-

angles of CAG graphs have some useful properties which are summarize
d in the

next proposition.

Proposition 4 The Triangle Lemma

(1) In any CAG triangle, the intersection of any two edge labels
 1s contained in

the third edge label.

(2) In any CAG-C triangle, the intersection of any two edge labels is non-e
mpty.

(3) I two edges of a CAG-C triangle are incomparable, th
e third edge label is

their interse ction.

Proof

(1) The intersection of two edge labels is the intersection of all three relations

which is certainly contained in the intersection of the two relations forming |

the third edge.

(2) Assume otherwise. By the CAG-C property, the third edge is
 comparable to

one of the two edges whose intersection Is empty. By (1), the intersection

the two comparable edges, i-e., the smaller of the two, is con
tained in ¢

remaining edge, violating the assumption.

(3) If the third edge contained one of the incomparable edges, (1) woul 
Bs

violated, Therefore the third edge is a lower bound on the two incom

edges and must be the greatest lower bound by (1) which is not the @

set by (2). #

Figures 4 and 6 give the only possible CAG triangles for CAG-C and
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C triangles respectively. All letters in these figures represent non-empty, dis-

joint sets of attributes except where noted. From the triangle lemma and previ-

ous considerations, we have

Theorem 2 The Triangle Theorem

If R is a database of three relations with schema #, then CIP is equivalent to

join consistency for R iff one of the relation schemes of F contains all of the

common attributes of A.

Proof Figure 4 gives the case for CAG(A) a triangle. Inspection of the other

graphs on three points completes the proof.s

7. A technical result

The importance of the triangle theorem is that it shows that database sche-

mas on three or fewer relations are fully understood with regard to this prob-

lem. The same is not true for larger schemata. The next result is a technical one

about CAG-C graphs. Having it will allow us to discuss related work in this area.

A complete graph is one in which an edge connects each pair of vertices. A

triangle is the complete graph on 3 vertices. We now prove a result about com-

plete CAG-C graphs. A minimal edge of a CAG graph is one whose label is

minimal among the set of all edge labels in the graph. A maximal edge is the

“dual notion. A smallest edge has a label contained in every edge label of the

graph. The largest edge is also defined. Every non-trivial CAG graph has a set of

imal (maximal) edges but may or may not have a smallest (largest) edge.

reposition 5 Let R be a database schema with CAG(R) satisfying CAG-C. Then

(R) is complete iff there is’a non-empty set of attributes which appear in

y relation of AR,

of The if part is obvious. The only-if part is obvious if R contains fewer than 3

‘ons. For larger schemas, we prove the stronger statement given next.
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Induction Hypothesis Let R={Ry,...,R,4, (n23) and assume CACG(R) is com-

plete. Let S={S,;,...,S,3 be the collection of all subsets of & having n—1 ele-

ments. Then for all but at most two values for j, isjsn

re mond

NRE OR,
i=l k=1

(where Sj=tRy, .-. fy 43)

Basis The triangle lemma.

Induction Assume the hypothesis has been proven for nSk. Consider a schema,

AR, on k+1 relations with CAC(R) a complete CAG-C graph. Choose a minimal

edge of CAG(A). There are e~2oe—1 subsets of size k which contain both end

points of this edge. By the induction hypothesis this edge is smallest for each

subgraph induced by these subsets. But the subsets cover all the relations in R

and all the edges in CAG(R), establishing the induction hypothesis for k +1.»

Note that this proposition applies to any complete CAG graph each of whose

triangles are CAG-C.

We have introduced proposition 5 in order to comment on the work of

Zaniolo in chapter 5 of [Z]. That work investigates this problem with the help of

hypergraphs and in particular the representative graph of a hypergraph. (See

[Be] for definitions of hypergraphs.) These representative graphs are CAG

graphs and what are called connection sets in [Z| are CAG edge labels. Zaniolo

shows our result for "simply-connected hypergraphs" which in our terms are

defined as follows: A CAG graph satifies the CAG-—Z property if in each cycle of

the graph there is ‘an’ edge whose label is contained in all other labels of the

cycle, It can be shown, as a consequence of proposition 5, that CAG-Z character-

izes CAG-C graphs each of whose blocks is complete. Therefore this work extends

the result to more schemas.
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8. CAG-C is sufficient

Before proceeding to the result of this section, we need the next lemma,

Lemma 6 A graph is CAG-C if and only if each cycle of the graph contains a pair

of adjacent, comparable edges.

Proof The if part is immediate. The only-if part is to be found in the appendix. «

We are now nearly fully armed for our final assault of this section. Our main

weapon is a transformation which operates simultaneously on a database and its

schema.

Let R be a database satisfying CIP, a(R)=A the schema for R, and assume

CAG(R) = G satisfies CAG-C. Let L be a maximal label of G. Define a transforma- |

tion, 7,(R, G)=(T,(R),T1(G)) as follows: Collect all the edges of G having L as a

label and dencte the resulting set of edges E,;. Let Vy, be the set of endpoints

(relation schemas) of the edges in Ey, and let Ry, be the relations in R with sche-

mas in Vj. Form 7, {R) by replacing Ry, by *R,, the join of the relations incident

to edges labelled by L. Define 7, (G) as follows: Let S=\V; be a relation schema

containing all the attributes in all the schemata of Vl. Form the vertex set of

T1(G) by removing V, and adding S. Form the edge set of 7,(G) by removing Ey,

and replacing the edges between a vertex, A;, not in V; and any vertex in V,, with

an edge (f,,S). The edges not incident to vertices in Vy appear unchanged.

We define the labelling function in 7,(G), denoted lr.(g). in terms of Ig, the

abel function in G. It suffices to define its behaviour on edges: An edge of 7;(G)

hich appears in G has the label it had in G. Otherwise, a new edge’s label is the

inion of the labels on the edges, it replaced. This is formalized by

tofe) ean edge of G
rele) = 7 ig((RiR;)) ¢=(RyS)a(R,.R;)an edge of G

e that if the relation S already appears in A, 71(G) is an induced subgraph of
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cisely when e and f are incident with R,,;=Ay;), has a label which contains L. But

has a label containing an attribute not in L, there is exactly one edge incident to :

G. It is easy to see that 7,(G) is the CAG graph of the schema of 7; (R).

A key feature of this transformation is that the edges of ky form a complete

subgraph of G on the vertices V,. In order to see this, consider two edges,

e, f of Ey with e=(Ro1Re2),f =(RypRye2). Then all four relations contain all the

attributes in L. Therefore the edge (Ag1,Ry1), if it exists (it will not exist pre-

since Lis maximal in G, the containment must be improper.

We will need to prove three propositions concerning this transformation.

The first is relatively simple.

Proposition 7 An instance of T1(R), if it exists, is an instance of R.

Proof Since the relation schemes in V;, each share exactly the attributes in L and

since R satisfies CIP, the compatible tuples condition holds amongst the rela-

tions in R;, and their join is an instance for them, by propositions 1 and 2. »

Before proceeding we need to make an observation. Let Ri bea vertex of G

in V-V, which is adjacent to some vertex in V,. A; appears in 7,(G) adjacent to S.

Let lpcq)((RyS))=L1xX, where L, € L and X is disjoint from L and non-empty. (If

no candidate for AR; can be found with these properties, we do not need the

observation.)

Observation There is exactly one R;€V, such that XCR;.

Proof Clearly there cannot be two such relations since XZL. It remains to show

there is at least one. Let X=AB---+ and assume the existence of two distinct

vertices of Vj, Ry R, with A€R,, BER,. Then the edges (RA, R,) and (R;,R,) are

incomparable. in G and by the triangle lemma, part 3, io({R,. RVY=L is their

intersection which is impossible since Lis maximal in G. «

As a consequence of this observation we have that if an edge (f,,S) in 71{(G)



A, in G having this label. (The case of S appearing in G is special; however, the

statement holds then as well.) Otherwise all edges between A; and the vertices of

Vi have the same label in G; namely, tp ¢cy((Fa, S)). The fact that the edges

added to G to form 7,(G) do not have "fat" labels is crucial in the remainder of

the development.

Proposition 8 T,(R) satisfies CIP.

Proof Edges not incident to S represent parts of the CIP constraint not affected

by the transformation. The remainder of the proof follows from proposition 7,

the observation, and the subset rule for projections. s

Proposition 9 T;(G) satisifies CAG-C.

Proof Let C be a cycle of T,{G) which violates CAG-C. Each edge of C not incident

to S has the same label as the equivalent edge in G. Let the edges (R;,S), (R;,S),

L. By the observation we can choose R,, A; in Vy, such that ig((Ri Ry) =L xX and

te((Ay,R1))=LeY. If X and Y are comparable then we have R,=R;. Thus C is a

non-CAG-C cycle of G. If X and Y are incomparable, R,#R, and the sequence of

edges (R;,R;), (Ry, R,), (R,,R;) have incomparable labels. Therefore G has a cycle

without adjacent, comparable edges and is not CAG-C by lemma 6. =

/ Theorem 3 If Ris a database satisfying CIP, R is the schema of R and CAG(R)

Satisfies CAG-C, then Ris join consistent.

Proof Continue to apply transformations of the type described to R and CAG (R)

u til a state is reached in which no further transformation can be made. These

ansformations generate a sequence of database, schema pairs: {<RyAg>,

1s genes RyRy 33 with Rg=R, Rop=A and each pair in the sequence a

Nsformation of the previous pair. Since each transformation results in a

ler schema, all such transformation sequences must terminate. Since no

Sformation can be applied to CAG(R,,) it must be the case that CAG(R,,) has

in C have incomparable labels 1X, LeY, respectively, with X and Y disjoint from



no edges. Thus R, consists of a set of relations having no c
ommon attributes.

Such a database is always join consistent. Since each <R,,A;> pair represent a

CAG-C schema and CIP database by propositions 8 and 9, proposition 7 allows us

to deduce the join consistency of R. #

9. Yet another sufficient condition

This next, somewhat bizarre result shows that there is at least some co
n-

nection between join consistency and dependency theory.

A join dependency is written *[S], where Sis a set of sets of 
attributes. A

relation 7 all of whose attributes are in S satisfies *[S] if is a fixed point of the

"projection-join mapping” associated with S [BMSU]. If S={Sy..., Sx} then T

satisfies *[S] iff

2 (ns (rr

See [Re] [F2] for more on join. dependencies.

Proposition 70 Let R be a database satisfying CIP and having schema A. If each

relation in R satisfies the join dependency defined by labels of edges incident to

it in CAG(R), then R is join consistent. |

Proof. We show that the compatible tuples condition is satisfied.
 Assume for

some tuple é, in relation 71 that the condition fails to be satisfied. Let

S=fliq oo, t,} be a maximal set of tuples (with ¢; from relation 7;: no more than

one tuple from any relation) within which the. requirements o
f compatibility are

satisfied. We know that relation 7x41 (from which no tuple appea
rs in S) has

tuples Wy : os Whe not necessarily distinct, such that

au,.{alr,) \alrea=te- (ars) are +1))- Now these projections are join con”

sistent, therefore their join appears in (the appropriate projection of) Trot: PY

the join dependency. But this tuple may be added to S, contradicting its maxi-

. meality. #
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The proof shows that an exhaustive search algorithm for the compatible
tuples condition succeeds in such a database without ever having to backtrack,
This is hardly necessary for join consistency.

10. Open questions

There are many questions left open by this work. No schema condition both
necessary and sufficient for CIP to imply join consistency has been uncovered. It

is not known whether or not all CAG-C graphs are accepted by Algorithm 1.
There are some schemas acceptable to Algorithm 1 whose graphs are not CAG-C.
The condition of section 9 is independent of the other conditions described, It
restricts the data rather than the schema. It is much too restrictive. Prehaps a

more useful contribution of dependency theory can be found.

Do any of the known schema design techniques guarantee an easy join con-
sistency test for their designs? Note that the schema of example 3 is the output
of [BDB] given {AC, B ~C} as input. Furthermore it is isomorphic to the exam-
ple of [Ni]. Although current design criteria (independent components in normal
form) do not produce schemas in which CIP implies join consistency, this does
not mean that they may not have easy tests.

| Even if the class of schemas with polynomial time bounded join consistency
_ tests is very large, one may argue on semantic grounds that the universal rela-
tion assumption over constrains the database. It requires every value of every
attribute to have some relation to some value of every other attribute in the
universe, This is frequently not the case in practice: a department in the plan-
Hing stage has no employees. An important goal of current research must be to
Saken the universal relation assumption to deal with these difficulties without
Sing the advantages the assumption provides,
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Appendix 
The

. 
qgo=(Fy.

The following notation is used in the proof of the nex
t result. If e, f are |

edges in a CAG graph, we write <e,f> to mean i(eJ2U(f) and [ef] to mean e and f 7
are comparable; that is, either <e,f> or <f.ie> holds. We 

use the symbol — to

mean negation.

Lemma 6 (Only-If Part) A CAG graph containing a cycle
 in which no adjacent

pair of edges is comparable is not CAG-C.

Proof By contradiction. Let G = CAG(R) for some schema R. Choose | The last

C=Ro,R1..-.Re-v a cycle of G and denote the edge (Ry-1,Ri
) as (All index We

arithmetic is done mod k.) Assume C is chosen as a shortest cycle of G satisfying This car

—[e:,ec41] for all OSS -1 | (*) that at |

Since G is a CAG-C graph, we may assume, without loss of generali
ty, the true for

existence of i and 7 such that <e,,¢@;> and for all ky, ke with O<isk <kesjsk-1 subtend

. = [ex » eke! unless k,=i and k2=7 (#*) fying (*)

In the set of edges from @ to ej inclusive, @%, @ is the only comparable pair. Itis By

easy to see that j>ite. Obviously, by (*) j2zite. However j=it2 allows the fol- Therefor

lowing computation 
‘(That is

now sho

<e,eise> > (Ri-1 Ry) 2 (Raat (\Ri+2)

> (Rif Rist) 2 (Rian Rit\Riat) 2 (Ruaif\Pi+e).

> <O yay C1427 2 Casel: ¢

which contradicts (*).

The attack for the remainder of this proof is to choose a sequence of chords

of C which subtend nested intervals of the path from R,-,to Rj. The innermost —

chord forms a triangle with two edges of C. The label-of this chord is necessarily

contained in both these edges, by the triangle lemma. It is then shown that the

label on each chord of the sequence contains the label of
 each chord which pre

eedes it. This leads to a contradiction.
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The elements of the sequence are denoted by subscripted g’s. Let
Go=(Ry_1,R;). Let Im—1=(Ry, Ry). Then

[Qm-1-x +1] > a= (Re +e.) (***)
[9m—1 &% 5] > Im = (Re Rieg1)

If both antecedents hold,

the choice is arbitrary.

(see figure A.1)

The last element of the sequence is Gp for p=j-i~2,

We must now show that each of 7O91:+++,Q» is a well specified edge of G.
This can be done by induction. Yo is an edge of G by <e;, €;>. It suffices to show
that at least one of the two conditions of (***) holds for 1SmSp. Assume this is
true for all mSmo. Then Ym, is an edge of G. But Im, and the edges of C which it

subtends form a cycle which is shorter than C. Since Cis a shortest cycle satis-
fying (*), one of the conditions of (***) must hold.

By the construction in (***), g,. subtends one fewer edges of C than Im-1:
Therefore G subtends j-i+1-(p+1)=e2 edges of C which we label as @n and ey 44.
(That is to S@Y, Ip=(Rp_-1,Rys1)). As advertised, <e,, Gp > and <én41,9,>. We must
now Show <Qm.Qm-1> for O<m Sp. We proceed by induction backwards from p.

There are two cases to consider in the basis.

: Qp-1=(Ry-1Rnsp)

Qp-1=(Ry-2Rys1)

(see figure A. 2)

ve

N case 1, [Gp-1ense] by the. second condition of (***), Jf <Gp-1,€n42> then
%:€ns2> since gp,en so, W-1 = (Rn-1Rna1), (R

But then <e,

n+iten se), (Rn+2An-1) form a trian-

+1:@n42> by the transitivity of <,> violating (*). Therefore

1+2, Y-1>. But then <p: Gp-1> by the triangle lemma, as required. The



reasoning in case 2 and the induction step is identical, subje
ct to the required

subscript change
s.

o>. But we also have

We can now deduce <@n+109

<e,,ej7 7 (Rate) 2 (Ry-a\Fa)

>» (Rei Rp (Ria NRiNs) 2 (Ry-117)

> <Go ej>

ej> which violates (**), 8

R;)

- Therefore <@n+1


