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Abstract 

This paper discusses garbage collection techniques used in a 
high-performance Lisp implementation with a large virtual 
memory, the Symbolics 3600. Particular attention is paid to 
practical issues and experience. In a large system problems 
of scale appear and the most straightforward garbage- 
collection techniques do not work well. Many of these 
problems involve the interaction of the garbage collector with 
demand-paged virtual memory. Some of the solutions adopted 
in the 3600 are presented, including incremental copying 
garbage collection, approximately depth-first copying, 
ephemeral objects, tagged architecture, and hardware assists. 
We discuss techniques for improving the efficiency of garbage 
collection by recognizing that objects in the Lisp world have a 
variety of lifetimes. The importance of designing the 
architecture and the hardware to facilitate garbage collection 
is stressed. 

reclaims their storage. The user program does not have to 
say explicitly "I'm done with this object." Automatic storage 
reclamation is usually called garbage collection. It can be 
thought of as finding all the objects that are no longer useful 
for anything-the garbage--and collecting the memory used to 
represent them so that it can be reused for new objects. 

Garbage collection consists of 

-Deciding when to garbage collect and how much of the 
machine's resources to devote to garbage collection (as 
opposed to "useful work"). 

-Discovering the division of storage between garbage and 
good objects' representations. 

- Separating the garbage so that its memory can be reused 
without disturbing the good objects. 

Automatic Storage Management 

Storage management is the part of a Lisp implementation 
that controls the use of memory to contain representations of 
objects. When a new object is created, memory must be 
allocated to contain its representation. When an object is no 
longer in use, the memory occupied by its representation can 
be reused for other purposes. Storage management can have 
a major impact on the efficiency and usability of a Lisp 
system. 

Automatic storage management allows the user to think 
entirely in terms of objects while the system takes care of 
the memory behind the scenes. Its most important aspect is 
automatic storage reclamation: the system finds all the 
objects that can be proved to be no longer in use and 
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Problems with Garbage Collection in Large Systems 

All Lisp implementations have some form of garbage 
collection. Garbage collection is straightforward in a small 
system, but in a large system problems of scale appear and 
the most straightforward garbage-collection techniques do not 
work well. This paper discusses some of these problems and 
the solutions adopted in the 3600. 

The first problem is that most garbage-collection techniques 
take time proportional to the size of memory. As systems 
become larger, garbage collection takes longer. Eventually 
garbage-collection delays destroy the system's interactive 
response. 

The introduction of virtual memory only makes things worse. 
Virtual-memory systems are designed around the assumption 
that only part of the memory is in use at any one time and 
the remaining memory locations can be much slower to access 
without hurting performance. The active portion of virtual 
memory is held in a fast main memory while the remainder 
is banished to a large, slow secondary memory. For that 
assumption to be valid, the data structures used by a 
program must have locality; they must reside in a minimal 
number of virtual-memory pages. Traversing a data structure 
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tha t  is spread all over virtual memory takes much longer 
than  traversing the same data structure when it is 
concentrated into a few pages. In a virtual-memory system, 
the responsibility of the garbage collector is not only to 
reclaim unused memory, so tha t  the user program does not 
run out of memory, but  even more importantly to keep data 
structures local, so tha t  the user program can achieve 
acceptable performance. 

Besides heaping new responsibilities upon the garbage 
collector, virtual memory slows the garbage collector down. A 
garbage collector tha t  must  access every location in memory 
does not fit the  assumptions behind virtual memory and 
derives little benefit from the fast main memory; it makes 
many accesses to the  locations tha t  reside in the slow 
secondary memory. In a large virtual memory, where the 
overall size of the virtual address space greatly exceeds the 
size of the fast main memory, the  garbage collector can spend 
most of its time thrashing, waiting for data to be transferred 
to and from secondary memory. The 3600 is typically 
operated with a ratio of virtual memory size to main memory 
size of thirty. 

Users of the 3600 and its predecessors have avoided the 
garbage collector whenever possible. They found tha t  garbage 
collection made interactive response so poor and 
unpredictable, and its overhead was so high, tha t  it was 
preferable to turn  off garbage collection and simply wmt for 
the inevitable exhaustion of virtual address space (at which 
point the  system crashes and must  be re-booted). They often 
made substantial efforts to decrease the rate of creation of 
new objects in their programs in order to defer tha t  fate for 
as long as possible, even at the  cost of making their programs 
slower and harder to understand. 

To solve these problems of long garbage-collection delays, poor 
locality of data structures, incompatibility of garbage collection 
with virtual memory, and generally unacceptable interactive 
response, the 3600 adopted several techniques tha t  are 
described in this paper (as well as some others of lesser 
interest). 

Incremental garbage collection side-steps the problem of 
garbage-collection delays by collecting garbage in parallel 
with program execution. The system continues to 
respond while the  garbage-collection is taking place. This 
technique is not new; it was implemented as part of the 
original Lisp Machine project at MIT, but  has not been 
extensively reported before. 

-Approximately depth-first copying improves the locality of 
data structures copied by the garbage collector. This 
technique was introduced in the 3600 system some time 
ago, but  has not been reported before. 

-Ephemeral objects categorizes objects according to their 
expected lifetimes and concentrates the efforts of the 
garbage collector on the  objects most likely to be garbage. 
This technique is new and its implementation has not yet 
been released to users. 

Tagged architecture and hardware assists greatly simplify 
and speed up the  garbage collector. Early versions of this 
were developed as part  of the  original Lisp Machine 
project at  MIT. Improved forms are built into the  3600 
architecture and hardware. 

Incremental Copying Garbage Collection 

The 3600 uses incremental copying garbage collection: 

It decides when to garbage collect using Baker's algorithm 
for incremental garbage collection (1), which interleaves 
operation of the garbage collector with operation of the  
user program. 

It discovers the  division of storage between garbage and 
good objects by starting with some objects tha t  are known 
never to become garbage and tracing recursively through 
their references until  all objects tha t  can ever be reached 
are found. 

It  separates the  good objects from the garbage by copying 
them into a different space, leaving the garbage behind. 
It  uses the Cheney algorithm for nonrecursive list copying 
(2) to avoid the  need for temporary storage such as a 
stack. 

The term "incremental copying" is based on the  fact tha t  
one object at a time is copied. The incremental technique 
decreases the  impact of the garbage collector on the response 
time perceived by the  user, compared with doing the  entire 
garbage collection at  once and making the user wait for it to 
be completed. The  copying technique is easier to do 
incrementally than  techniques where objects remain in place; 
it also offers the  possibility of improving virtual memory 
performance through compaction. 

The identities of objects must  be preserved by garbage 
collection. When an object is moved to a different memory 
address by the garbage collector, all references to tha t  object 
must  be found and relocated to the new address. To aid in 
distinguishing between the old and new copies of an object, 
memory is divided into spaces. Every object resides in a 
space. The space tha t  contains a given object can be 
determined efficiently. One space can be changed into 
another  efficiently, without touching the  affected objects. 

The interesting spaces are newspace, oldspace, and copyspace. 
New objects are created in newspace. The other two spaces 
do not exist until  the first garbage collection occurs. When it 
is time to collect garbage, the spaces are flipped: Lisp 
changes newspace and copyspace into oldspace then creates a 
fresh newspace and a fresh copyspace. After a flip, accessible 
objects in oldspace are evacuated by copying them into 
copyspace. When an object is evacuated, its incarnation in 
oldspace is replaced by GC-forwarding pointers, which contain 
the address of the  object's incarnation in copyspace. 

After all of the accessible objects have been evacuated, and all 
of the references to objects in oldspace have been replaced by 
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references to copyspace, oldspace contains nothing but 
garbage. The garbage collector reclaims oldspace, making the 
memory it occupied available for assignment to newspace. 
Another flip may occur at  any time after oldspace has been 
reclaimed. 

Unlike Baker's algorithm (1), which used a fixed division of 
memory into two semispaces, the 3600 dynamical.ly allocates 
virtual memory to spaces from a free pool. A flip creates a 
fresh newspace and a fresh copyspace from free virtual 
memory, not necessarily at  the  same vir tual  addresses tha t  
were formerly occupied by oldspace. The space of an object is 
encoded in its address by dividing virtual memory into equal- 
sized units called quanta. Each quantum contains objects 
tha t  are all in the same space, which can be determined by 
looking up the address of the quantum in a table. One space 
is changed into another  by changing the table entries for all 
the quanta  in tha t  space. The quantum size (16,384 words) 
was chosen for hardware convenience and is of no 
fundamental importance. 

There are three agents involved in garbage collection: the 
mutator, the scavenger, and the transporter. The mutator is 
the "user program" tha t  performs a useful computation, 
creating new objects and changing ("mutating") the contents 
of memory. 

The scavenger reads through memory looking for references 
to objects in oldspace. I t  finds all accessible objects by 
starting at  a root set of static objects, such as the hash table 
of all interned symbols, and recursively tracing through them 
and the objects they reference. 

The transporter is invoked when either the mutator  or the 
scavenger refers to an object in oldspace. I t  either evacuates 
the object or follows a GC-forwarding pointer to the already 
evacuated object. In either case, the transporter  redirects its 
client to an object in copyspace. 

Incremental garbage collection means tha t  interruptions of 
the mutator  are limited to a small, bounded amount  of time. 
The mutator  provides reasonable interactive response to the 
user because it is not interrupted by pauses of arbitrary 
length. There are three possible reasons for the mutator  to 
be interrupted: 

- T h e  transporter is invoked when the mutator  tries to 
touch an object in oldspace. This takes a constant 
amount  of time if the object has already been evacuated. 
Otherwise it takes time dependent on the size of the 
object. 

- The scavenger is given a chance to use the machine. In 
the Baker algorithm, the scavenger runs whenever the 
mutator  creates a new object. I t  runs for a time 
dependent on the size of the new object, which keeps the 
rate of scavenging proportional to the rate of expansion of 
n~wspace, allowing oldspace to be reclaimed before 
newspace fills up. The length of an interruption to run 
the scavenger is also affected by the sizes of any objects it 
happens to evacuate. 

- T h e  garbage collector decides to flip. This takes a 
constant amount  of time. 

The scavenger also runs when the mutator  voluntarily 
relinquishes the machine to wait for an I/O operation. 

A garbage collection is complete and oldspace can be reclaimed 
when all the accessible objects have been found by the 
scavenger. This is the case when every object in the root set 
and all of copyspace has been scavenged. There can be no 
references from newspace to oldspace because newspace is 
empty when oldspace is created by the flip, the mutator 
never stores references to oldspace anywhere, and the 
transporter never stores into newspace. Once all of the root 
set and copyspace have been scavenged, all references from 
them to oldspace have been changed by the transporter to 
references to copyspace. Copyspace is initially empty, but  the 
transporter expands copyspace faster than  the scavenger can 
scavenge it until all accessible objects have been evacuated. 

The decision of when to flip is based on the idea of filling a 
fixed-size memory to the brim but  not overflowing it. The 
limiting factor is the amount  of secondary memory (disk) 
allocated to hold virtual memory pages. The garbage collector 
flips when the amount  of free virtual memory remaining is 
equal to the sum of the maximum expected sizes of copyspace 
and newspace at  the moment when oldspace will be 
reclaimed. If  these spaces reach their maximum sizes, virtual 
memory will be completely full at tha t  moment. Were the 
garbage collector to flip later, it would risk filling virtual 
memory before it could reclaim oldspace and make more 
memory available. 

The maximum expected size of copyspace is the sum of the 
current sizes of newspace and copyspace, multiplied by the 
maximum expected fraction of these spaces tha t  will be 
evacuated into copyspace after the flip. This fraction is 
normally 1.0, but  can be set smaller by the adventurous user. 
The maximum expected size of newspace is the maximum 
amount of work that  the scavenger will have to do to 
complete the garbage collection divided by a conversion factor, 
k. When an n-word object is created in newspace, the 
scavenger interrupts the mutator  and performs (on the 
average) kn units of work. This work consists of checking for 
references to oldspace and evacuating objects. Either checking 
or evacuating one word counts as one unit  of work. The 
total amount  of work required is twice the maximum 
expected size of copyspace, since each word in copyspace must  
both be created by evacuation and be checked for a reference 
to oldspace, plus the size of the static objects in the root set, 
which must  be checked but not evacuated k=4 works well. 

Local i ty  o f  D a t a  in a D e m a n d - P a g e d  Virtual  M e m o r y  

An important function of the garbage collector is to improve 
the locality of data in virtual memory. This is accomplished 
by the copying garbage collector in three ways: 

-Copying the accessible objects prevents them from being 

237 



diluted by intervening garbage. After a garbage collection 
the accessible objects are packed into the fewest possible 
pages of virtual memory. 

- The separation of newspace and copyspace avoids 
interleaving new objects created by the mutator with 
unrelated old objects evacuated by the scavenger. It also 
saves the scavenger some work since newspace does not 
have to be scavenged. 

- A copying garbage collector is free to choose the order in 
which it copies accessible objects. I t  can exploit this 
freedom to improve locality by copying related objects onto 
the same page. 

A copying garbage collector can choose breadth-first copying 
or depth-first copying. The Cheney list-copying algorithm (2), 
which is traditionally used because it does not require any 
temporary storage (such as a stack), is breadth-first. Any 
algorithm tha t  uses a stack faces the risk of failure to 
allocate sufficient memory to hold the  stack. The stack 
depth required depends on user data structure and cannot be 
reliably predicted in advance. 

Depth-first copying generally yields better  locality than  
breadth-first copying, because it tends to put  components of a 
structure on the  same page as the  parent structure. This is 
especially true when the  tree of accessible objects is short and 
bushy; the distance between related objects is determined by 
the height of the  tree in depth-first copying, but  determined 
by the  breadth of the  tree in breadth-first copying. The 
breadth of the  tree is large when the  root from which the  
garbage collector starts tracing accessible objects is a large 
object such as the  hash table of all interned symbols. 

Fortunately, the  Cheney algorithm can be modified to work 
in an approximately depth-first fashion. The technique used 
in the 3600 is very simple but  effective. When the  scavenger 
scans through copyspace looking for references to oldspace, it 
always scans the  partially-filled page at  the  end of copyspace 
first. Any object evacuated from oldspace will be copied into 
this partially-filled page, putt ing it on the  same page as the  
reference to it. If  copyspace ends exactly at  a page boundary, 
or if no references to oldspace are found in the  partially-filled 
page, the  scavenger examines the lowest address in copyspace 
tha t  has not already been scanned. It  continues scanning 
consecutive addresses, even if they have already been 
scanned, until  either an  object is evacuated or it reaches the 
end of copyspace. In the first case, there is a new partially- 
filled page and the scavenger redirects its at tent ion to it. In 
the second case, the  scavenger has  finished its work and 
oldspace may be reclaimed. 

The cost of the extra scanning required by this technique is 
very small. If the scavenger does not find any references to 
oldspace, it expends a negligible amount of CPU time since it 
doesn't call the transporter and it takes no page faults since 
it only touches the active page at the end of copyspace. If it 
does find references to oldspace, it does no work that would 
not have been done anyway at some later time. The cost of 
examining some memory locations twice is less than the cost 

of the bookkeeping tha t  would be required to prevent this 
duplication. It  is easy to avoid examining any memory 
location more than  twice, by remembering the highest 
address in the  last page of copyspace that  has already been 
examined. 

The cost on the  3600 of scanning a 256-word page the 
second time, when there are no page faults and no transport  
traps, is an estimated 350 microseconds. This is roughly twice 
the time required to evacuate one object of minimal size. 
Another way to determine the  cost of this depth-first copying 
technique is to eliminate it and see how performance 
changes. In a world with 9 megawords of Lisp objects, of 
which 2.5 megawords were subject to garbage collection, 
removing depth-first copying decreased the elapsed time for a 
garbage collection by 6%. No at tempt  was made to quantify 
the decreased locality of data in virtual memory; this would 
be a good topic for future research. 

Tagged Memory Architecture is Important 

The most critical architectural feature needed to make a 
machine suitable for runn ing  Lisp efficiently is tagged 
memory. The garbage collection techniques described in this 
paper depend implicitly on tagged memory. In a tagged 
architecture, every word in memory is divided into two parts: 
the data and the  tag. The  tag distinguishes words whose 
data part is an address from words whose data part  is a 
riumber or a bit pattern.  A tagged architecture provides 
conventions and machine instructions for efficient processing 
of these tagged words without overhead for checking, 
removal, and insertion of tags. For example, the  machine 
instruction tha t  adds two numbers  accepts its operands in 
tagged form, produces its result in tagged form, and 
guarantees tha t  the  tag of the  result cannot erroneously be 
set to "address". In many tagged architectures the  ADD 
instruction provides additional features, such as checking the 
tags of the operands to verify tha t  they are numbers,  
automatic overflow detection, and generic operation on both 
fixed- and floating-point operands, but  these features, while 
useful, are not necessary from the  point of view of the 
garbage collector. 

The fundamental data manipulated by Lisp are object 
references. The value of a variable, an argument  to a 
function, the result of a function, and an element of a hst 
are object references. A typical object reference contains the 
address of the representation in storage of the  object. For 
example, a CONS can be represented as two memory words 
containing object references for the  CAR and the  COS. An 
object reference to tha t  C0NS contains the address of the first 
of the two memory words. An array can be represented as 
some number  of overhead words containing information such 
as the dimensions of the array, followed by one memory word 
for each cell of the array, containing an object reference to 
the contents of tha t  cell. The overhead words typically 
contain numbers and bit pat terns ra ther  than  addresses. A 
small integer, whose efficient implementation is important for 
many applications, can be represented as an object reference 
containing the value of the integer instead of a memory 
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address. A tagged architecture implements the  object 
reference concept directly. 

A copying garbage collector needs to distinguish addresses 
from numbers. When it copies an object it must  change all 
references to the object to contain the object's new address, 
but  numbers tha t  jus t  happen to be the same pattern of bits 
as the  object's old address must  not be changed to new 
numerical values. A tagged architecture makes it simple to 
distinguish addresses from numbers, provided tha t  it is 
obeyed not only by words in the  representations of Lisp 
objects, but  by words anywhere in memory, for example in 
the  saved state of an  interrupted process. Any register or 
location the  garbage collector can ever see tha t  might 
sometimes contain an object reference must  always have a 
valid tag so the  garbage collector can tell whether  or not it in 
fact does contain an object reference. 

When all words in memory, including overhead words in 
structures such as arrays, contain a tag, it is possible to 
regard memory as a sequence of object references ra ther  than  
a sequence of representations of objects. This makes it 
possible to scan through all the object references in memory 
without regard for object boundaries, making the scavenger 
simpler and faster, because it need not "parse" memory to 
find the object boundaries and need not worry about skipping 
"unboxed words." An unboxed word, in some Lisp 
implementations (including Interlisp-10, the MIT CADR, and 
the Symbolics LM-2), is a word tha t  is not an object 
reference and does not contain a tag field. 

The transparency of object boundaries has a more important 
effect t han  simplicity and speed: it makes it possible to scan 
non-sequentially through memory. The ephemeral scavenger, 
described below, depends critically on being able to process 
memory one page at a time. It skips some pages and it does 
not necessarily process pages in the numerical order of their 
addresses. 

Most computers do not have tagged architecture, probably 
because traditional languages such as Fortran and C tha t  do 
not include automatic storage management would not benefit 
from such an architecture. This may have led to the belief 
tha t  tagged architecture is expensive. 

The  hardware cost of tagged architecture can be estimated by 
considering the 3600 as an example. Its tagged architecture 
has 4 tag bits and 32 data bits in each memory word. A 
hypothetical variant with only one tag bit is also considered, 
since one tag bit would be sufficient for the garbage 
collector's need to distinguish between addresses and 
numbers. The increased hardware costs and decreased disk 
capacity due to tag bits are shown in this table: 

1 tag b i t  4 tag b i t s  
Memory ch ip  count  +3Z +IOZ 
CPU ch ip  count  +3~ +4~ 
Disk capacity -3~ -IIZ 

The increase in memory chip count and decrease in disk 
capacity are due to the  longer words. The increase in CPU 

chip count is the sum of two components; one due to the 
longer words and the other due to the extra hardware for 
processing tags, which is independent of the number of tag 
bits. This extra hardware is 2% of the 3600 CPU. 

The hardware speed penalty for a tagged architecture in the 
3600 is estimated to be zero, because tag processing is 
performed in parallel with arithmetic processing. Removing 
tags would not decrease the  clock cycle time. 

The above estimates apply only to bare hardware. Even with 
tha t  limited perspective, tagged architecture is not very 
expensive. When the  complete hardware/software system is 
considered, tagged architecture probably reduces the  cost and 
increases the speed, because it simplifies the software. 

Hardware to Decrease  Mutator Overhead 

In a system with incremental garbage collection, certain 
requirements are imposed on the mutator. Without careful 
design, the mutator could easily spend an unacceptably large 
fraction of its time making gerbage-coIlector-related checks 
rather than doing its own work. A small amount of special- 
purpose hardware can perform these tasks in parallel with 
normal mutator operation. 

A barrier is erected between oldspace and the other spaces, 
preventing the  uncontrolled propagation ; f  references to 
objects in oldspace. The barrier applies to reads from main 
memory: no word read from main memory can contain a 
reference to oldspace, hence no reference to oldspace can be 
inside the  machine state. One effect of the barrier is to hide 
the fact tha t  two copies of an object can exist, one in 
oldspace and the other in copyspace. The mutator  will never 
see the oldspace incarnation of an object, so Lisp's EQ 
primitive can simply compare object addresses numerically. 
The other important effect of the barrier is to control how 
references to objects in oldspace can spread through memory. 
References to oldspace can be created only by flipping (which 
creates them en masse) and by the transporter  (which 
creates them in copyspace by copying them from oldspace, 
bypassing the barrier). Thus the only place tha t  new 
references to oldspace can appear during a garbage collection 
cycle is at  the growing end of copyspace; this enables the 
scavenger to find all such references in a single pass through 
copyspace. 

The barrier is implemented in hardware by examining the 
tag and address fields of each word read from main memory. 
If  the tag field says tha t  the word contains a meaningful 
address, then the  address is translated into a space by table 
lookup. If  the  space is oldspace, a transport trap occurs and 
the transporter  gains control. The transporter replaces the 
contents of the  memory location being read with a reference 
to the  eopyspaee incarnation of the  object. First it looks in 
oldspaee for a GC-forwarding pointer. If  it finds one, the 
object has already been evacuated and its eopyspaee address is 
immediately available. I f  no GC-forwarding pointer is 
present, the transporter evacuates the object. The 
transporter then retries the operation; this time the reference 
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to copyspace is read and no trap occurs. 

Unless a transport  trap occurs, the barrier hardware operates 
completely in parallel with the  mutator ' s  processing of the  
word read from main memory and does not slow down the 
computation. If the  barrier were implemented in software, it 
would be very expensive, since every primitive data structure 
accessing operation, such as CAR, AREF, or SYMBOL-VALUE, 
would have to do this checking. Even the  implicit CAR and 
CDR operations inside such higher level primitives as MEMI3ER 
would be slowed down. Implementing the  barrier in 
microcode would be faster than  software, but  would still 
require adding several additional microinstructions to those 
primitives, probably at  least doubling their execution time. 
Implementing the  barrier in hardware is not expensive, given 
a tagged architecture; in the  3600 just  2.3% of the chips in 
the processor exist to implement the barrier. This is an 
example of how careful application of a small amount of 
hardware in just  the  right place can have a dramatic effect 
on performance. 

Not All Objects are Created Equal 

A garbage collector tha t  treats all objects the same will not 
perform as well as one tha t  concentrates its efforts on the 
objects most likely to be garbage. By concentrating garbage 
collection effort in the most productive places, the maximum 
amount of space can be reclaimed for the minimum cost in 
computation time, virtual-memory paging, and impaired 
interactive response. In a virtual-memory system it is also 
important to minimize the amount  of main memory wasted 
on inaccessible objects (garbage) and objects tha t  are 
accessible but  are not relevant to the  current activity of the  
mutator. 

The 3600 divides objects into three somewhat arbitrary 
categories according to their predicted lifetimes: 

- s ta t i c  objects are assumed to be very unlikely to become 

garbage. 

- ephemera l  objects are assumed to be likely to become 
garbage soon after they are created. 

- dynamic  objects have intermediate assumed lifetimes. 

The division of objects into these categories is partly 
automatic and partly controlled by the  user or by the 
application program. Objects on the  3600 are stored in areas 
and several garbage-collection and paging policies are 
controlled on a per-area basis. Areas are not the same as the  
spaces introduced earlier; each area is subdivided into various 
spaces, such as oldspace and newspace. 

When a new object is created, the area to contain it may be 
specified explicitly or left to a default. The default area may 
be different for different types of objects; an application 
program will often define its own object types and store them 
in its own area. A single area may contain objects of all 
lifetime categories, but  newly-created objects in an area 

belong to a single category specified by tha t  area. The  
default area normally used for ordinary Lisp objects, such as 
conses and arrays, specifies tha t  newly-created objects are 
ephemeral. Thus  if an object is created with no at tent ion to 
storage-management issues the system assume~ tha t  the  
object has a high probability of quickly becoming garbage. 

The garbage collector concentrates its effort on the ephemeral 
objects. After an ephemeral object has survived a few 
garbage collections, it graduates to dynamic status and gets 
less at tention from the garbage collector. A graduating object 
does not move to a different area; a single area may contain 
objects of all lifetime categories. Both ephemeral and 
dynamic objects are periodically compacted and culled for 
garbage, using the  incremental copying garbage collection 
technique described above, but  dynamic objects are garbage- 
collected much less frequently. 

Each ephemeral object has an  associated level. A new 
object is always created at  the first level. If  it survives a 
garbage collection, it advances to the  second level. When the  
second level is garbage-collected, if the object survives it 
advances to the  third level. This continues until  the  object 
graduates from the  last ephemeral level and becomes a 
dynamic object. 

The levels are garbage-collected independently. The first level 
is garbage-collected more often than  later levels, jus t  as 
ephemeral objects are garbage-collected more often than  
dynamic objects. Each level has a user-specified capacity, 
measured in machine words. When the  sum of the  sizes of 
the objects at  a level exceeds its capacity, the leve l  is garbage 
collected and any surviving objects advance to the next level. 
Several levels can be garbage-collected simultaneously, but  
only the first level can initiate a garbage collection, since it is 
the only one tha t  can acquire new objects when a garbage 
collection is not in progress. Once a garbage collectien has 
been initiated, garbage collection of all levels tha t  have 
exceeded their  capacity proceeds in parallel with normal 
program execution. 

One can th ink  of the capacity of a level as the amount  of 
main memory allocated to storing objects at  t ha t  level. This 
is only an approximation, since the virtual memory system 
will remove ephemeral objects from main memory if it decides 
the memory should be used for something else. It  is possible 
for a level to exceed its capacity temporarily by an arbitrary 
amount, if it fills up during a garbage collection, since a new 
garbage collection will not be initiated until  the previous 
garbage collection has been completed. 

Each area has its own set of levels and specifies the capacity 
of each level. Thus  the  interval between ephemeral garbage 
collections and the  number  of garbage collection cycles 
required before graduation are controlled independently for 
each area. 

All objects in a given quantum of address space are at  the 
same level. Thus  the level of an ephemeral object, like its 
space, is encoded in its address. 
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Static objects are never garbage-collected, except by a rarely- 
used (and slow) explicit command to do a "full garbage 
collection." It is not worth expending effort on the static 
objects, since the amount of space that  could be reclaimed is 
expected to be small. When garbage-collecting dynamic 
objects, the static objects are scavenged for references to 
oldspace but are not copied. Thus static objects are the root 
set. 

Many application programs, as well as the Lisp system itsel£ 
have some objects that  are known to have long lifetimes. 
They avoid garbage collection overhead for these objects 
simply by putting them in an area that  makes them static. 
Examples of such objects in the basic Lisp system include 
compiled functions, interned symbols, and system tables such 
as the readtable. 

In addition, when a Lisp world (a virtual-memory image) is 
released for general use all of the objects in it, including the 
static ones, are garbage collected to compact them and to 
reduce the world to minimum size. Most of the objects then 
graduate to static status. A freshly-booted 3600 contains 
about four million words of static objects. 

The following table shows the possible transitions of objects 
between lifetime categories: 

From To Reason 

ephemeral dynamic 
any static 
static dynamic 
any ephemeral 

surviving several GC's 
release for general use 
full garbage collection 
forbidden 

Keeping Track of Ephemeral Objects 

A problem with frequent garbage collection of ephemeral 
objects is the large minimum cost of a garbage collection. No 
matter how few objects it evacuates and no matter how little 
time has passed since the previous garbage collection, a 
garbage collection cannot be quicker than the time needed to 
scavenge the root set. When garbage-collecting only the 
ephemeral objects at a certain level, the root set includes all 
the ephemeral objects at other levels, all the dynamic objects, 
and all the static objects. In a large virtual memory this root 
.~et is much larger than the size of main memory; scavenging 
such a large root set takes a page fault on every page in it 
and consequently takes a very long time (several minutes). 

The root set must be made smaller. If the scavenger could 
consult an oracle that  knew the locations of all references to 
ephemeral objects, it would not need to touch the rest of the 
root set. Since the number of ephemeral objects is likely to 
be much smaller than the size of the root set and the 
number of references to each ephemeral object is likely to be 
small, such an oracle would save a great deal of time. 

There are no oracles in computer systems, but frequent 
garbage-collection of ephemeral objects can be made practical 
by forcing the mutator to maintain a table of locations that 

contain references to ephemeral objects. Whenever the 
mutator stores a reference to an ephemeral object into 
memory it must update this table. The scavenger uses this 
table as the root set for garbage collection of ephemeral 
objects. The reason that  transitions of objects into the 
ephemeral category are forbidden is that there might be 
references to such objects that are not in the table. 

Maintaining this table of references to ephemeral objects 
could burden the mutator with a substantial mnount of 
overhead. Checking the ephemerality of an object being 
stored into memory with software, or even with microcode, 
would take many times as long as the actual memory-write 
operation. It would be useless to make frequent garbage- 
collection of ephemeral objects efficient if all the gains were 
cancelled out by slowing down the mutator. Thus keeping 
track of references to ephemeral objects is a good application 
for special-purpose hardware. 

On the 3600, every word stored into memory is examined by 
hardware to detect references to ephemeral objects. The 
hardware used is the same unit that  implements the barrier 
for references to oldspace in words read from memory. If the 
data-type field of the word being stored indicates that the 
word contains an address, and the address field points into a 
portion of virtual memory set aside for ephemeral objects, the 
location being stored into is added to the table of references 
to ephemeral objects. 

Implementation of the table can be simplified by realizing 
that correct operation of the garbage collector only requires 
that the table mention every location containing a reference 
to an ephemeral object; it is not important that every location 
mentioned by the table actually refer to an ephemeral object. 
It is unnecessary to delete a table entry when a reference to 
an ephemeral object is overwritten with a reference to an 
ordinary object, since the only cost of extra entries in the 
table is to increase the size of the table and the size of the 
root set. 

Furthermore, a table entry can refer to a whole page rather 
than remembering the exact location(s) in that page 
containing references to ephemeral objects. The entire page 
can be linearly searched by the scavenger for references to 
ephemeral objects in oldspace. The tagged architecture 
makes it unnecessary to worry about object boundaries while 
searching the page and hardware assists make the speed of 
the search acceptably fast. 

These considerations show that the table can be represented 
as an array with a single bit for each page. The bit for a 
page is 1 if any location in that  page refers to an ephemeral 
object, or did so at some time in the past. The bit is 0 if the 
page is guaranteed to contain no references to ephemeral 
objects. 

Such a simple table is not adequate for a system with virtual 
memory. The time required to swap a page in from disk to 
search it for references to ephemeral objects in oldspace, only 
to find that  it does not contain any, is many times larger 
than the time required for a fruitless search of a page that is 

241 



already in main memory. Extra  table entries cost much more 
in a virtual-memory system than  in a system where all 
memory is fast. On the  other hand,  treating pages as units 
is still reasonable, since once a page has been swapped in 
little more time is needed to search the entire page than  to 
examine a single location in it. The mutator  cannot store 
into a virtual-memory location without first swapping it into 
main memory. Moving pages between main memory and 
disk is a much slower operation than  writing into main 
memory; consequently it can tolerate much more garbage- 
collector overhead. For these reasons, the 3600 uses separate 
tables for swapped-in and swapped-out pages and makes a 
greater effort to keep the  table of swapped-out pages free of 
extra entries. 

The GCPT (Garbage Collector Page Tags) is the table for 
swapped-in pages. It  is a hardware memory containing one 
bit for each page-frame of physical memory. The bit is set by 
the hardware when a reference to an ephemeral object is 
stored into any word in the page-frame. The bit is cleared 
by the  virtual memory system when a virtual page is evicted 
from the  frame. Maintenance of the  GCPT does not take 
any extra time. 

The E S R T  (Ephemeral Space Reference Table) is the table 
for swapped-out pages. I t  is a B* tree (3), maintained by 
software in non-pageable memory, tha t  associates with each 
virtual page a bit mask tha t  has one bit set for each level of 
ephemeral objects referenced by tha t  virtual page. A B* tree 
is used instead of an  array because the ESRT is sparsely 
occupied; virtual address space is very large, but  the great 
msjority of pages do not refer to ephemeral objects. These 
pages, whose bit mask would be zero, do not take up any 
space in the  ESRT. Storing a bit mask with separate bits for 
each level, ra ther  than  a single bit, keeps track of a separate 
root set for each level of ephemeral objects. In  the usual 
case, when not all of the  levels are being garbage-collected, 
the scavenger avoids page faults on pages tha t  are not in the 
current root set. 

The ESRT requires cooperation between the garbage collector 
and the virtual memory system. When a page is evicted 
from main memory, the  page must  be scanned for references 
to ephemeral objects and its ESRT entry must  be created, 
updated, or deleted. This is optimized in several ways: 

- Hardware assistance in the  3600 reduces the  time for this 
page-scanning operation to 85 microseconds if no 
references to ephemeral objects are found. 

- T h e  page scanning is usually done while the  processor 
would otherwise be idle, waiting for the disk. 

-A page does not actually need to be scanned unless its 
GCPT bit is 1 (it may have acquired new references to 
ephemeral objects) or it has an ESRT entry and has been 
modified (some references to ephemeral olJjects may have 
been overwritten). 

- To decrease the  size of the ESRT, entries are not made 
for pages in oldspace. Objects in oldspace are never part  

of the root set. 

To fur ther  decrease the  size of the ESRT, it does not 
record references to an object at  the same level as the 
page containing the  reference. Such references are 
extremely common, but  are of no interest to the garbage 
collector since all objects in a single level are flipped 
simultaneously. When the  object is in oldspace, the  page 
containing the  reference will also be in oldspace and 
hence will not be part  of the  root set. 

Garbage collection of ephemeral objects begins by flipping all 
levels tha t  are filled to capacity, putt ing all existing objects in 
those levels into oldspace. No new references to these objects 
can be created, except by evacuation of other objects tha t  
refer to them. These new references can only be in an easily 
identified portion of copyspace. The scavenger makes a single 
pass through the GCPT, scavenging each page whose bit is 
set. I t  then  makes a single pass through the ESRT, 
scavenging each page whose bit mask intersects the  levels 
tha t  were flipped. This involves page faults to bring pages of 
the root set tha t  have been swapped out back into main 
memory. Upon completion of the  passes through the  GCPT 
and the ESRT the  entire root set has been scavenged. 
Finally, the  scavenger repeatedly scavenges the portions of 
copyspace tha t  contain newly-evacuated objects, until  no 
additional evacuation occurs. This final step is actually 
interleaved with the  first two steps, in order to increase the  
locality of the  data structure in copyspace, as discussed in the 
section "Locality of Data in a Demand-Paged Virtual 
Memory" above. 

The scavenger occasionally scavenges a page two or three 
times. A page may appear in the GCPT, the ESRT, and 
copyspace, causing it to be scavenged three times. The extra 
scavenging takes so little time tha t  no bookkeeping to avoid it 
is worthwhile. 

While the  scavenger is operating, pages can be moving 
between main memory and disk, GCPT bits can change, and 
ESRT entries can be created and deleted. Cooperation 
between the scavenger and the virtual memory system is 
required to ensure tha t  no page in the  root set is missed. 
This is not difficult; the  virtual memory system simply has to 
adjust the scavenger's current  position in scanning the ESRT 
when it rebalances the  B* tree. Because the  scavenger scans 
the GCPT before the  ESRT, it can ignore, any new ESRT 
entries created while it is scanning the ESRT; they can only 
be for copyspace pages or pages tha t  have already been 
scavenged. 

D i s a d v a n t a g e s  

A disadvantage of the ephemeral-object garbage collector is 
tha t  by increasing the rate of flipping it increases the 
overhead expended on copying objects. This is alleviated by 
garbage-collecting the  first level of ephemeral objects more 
frequently than  the  later levels and by quickly graduating 
objects to dynamic status. 

242 



Increasing the  rate of flipping also increases the  overhead of 
rehashing hash tables; a hash function tha t  is based on the 
numerical value of the  address of the key must  be 
recomputed after a garbage collection. We hope tha t  the 
amount of extra time expended on overhead is less than  the 
amount of time saved by not waiting for the  disk as much. 
In a personal computer, where time spent waiting for the  
disk cannot be made available to other users and where the 
cost of computation is measured by elapsed time ra ther  than  
"compute" time, this is a good tradeoff. 

A potential problem with keeping track of ephemeral objects 
is the  assumption tha t  there are only a small number  of 
places tha t  contain references to ephemeral objects. This 
seems to be true of most programs, but  if the assumption is 
unt rue  the ESRT can grow large and occupy an  excessive 
amount  of non-pageable main memory, a limited resource. 
One program was observed to create a large number  of 
dynamic objects, each of which contains a reference to an  
ephemeral object. If  each dynamic object is on a different 
page, each requires its own entry in the  ESRT. The solution 
in tha t  case was to modify the program to make the 
referenced objects dynamic also. 

Why Hardware is Needed to Keep Track of Ephemeral 
Objects 

Is it really necessary to use special-purpose hardware to keep 
track of references to ephemeral objects? The cost in 
impaired execution speed of doing it in software or microcode 
can be estimated as the  ratio of the  overhead tha t  would be 
incurred by each store instruction to the average interval 
between store instructions. The denominator is not difficult 
to estimate. The static frequency of store instructions, other 
than  stores into a local variable, in the Lisp system is 3.1%. 
If  the dynamic frequency is the  same and the instruction 
processing rate is 1.2 MIPS, the  interval between store 
instructions would be roughly 25 microseconds. Actual 
measurements with a hardware analyzer on a variety of 
running  programs show average intervals between writes into 
main memory ranging from 17 to 25 microseconds (excluding 
graphics programs, which write much more frequently but  
deal with bit pat terns ra ther  than  object references). 

The numerator  is more difficult to estimate, since the 
branching ratios among the  several possible special cases are 
unknown and there are many possible implementation 
techniques. If  no compromises with the  present flexible 
assignment of address space were made, it would be 
necessary to perform table lookups on two fields of the word 
being stored and then conditionally perform a read-modify- 
write operation to set a bit in a table stored in main memory. 
With special fLxed assignments of address space, the  table 
lookups could be replaced with bit-masking operations, but  
this would introduce architectural inflexibility, which has its 
own costs. Estimates of the time required vary from 2.5 
microseconds to more than  25 microseconds, thus  the speed 
degradation from keeping track of ephemeral objects in 
software or microcode is estimated to be at least 10% and 
possibly a factor of 2 or more. 

The cost of eliminating this speed degradation with a 
hardware GCPT is minimal. The GCPT consists of the 
barrier, which is needed anyway for incremental garbage 
collection, and a small memory (100,000 bits). Jus t  2.3% of 
the chips in the 3600 processor exist to implement the 
barrier. The GCPT memory adds another  1%. 

Performance Evaluation 

The small root set provided by the  GCPT and ESRT makes 
garbage collection of ephemeral objects much more efficient 
than  garbage collection of dynamic objects. Since the  
scavenger knows where all the  references to an ephemeral 
object can be, it does not have to read through the entire 
virtual memory to prove tha t  there are no references to an 
object and the object's storage can safely be reclaimed. When 
an ephemeral object is evacuated to a new address, all 
references to it can be relocated without searching for them 
tbrough the  entire virtual memory. The effect is tha t  the 
garbage collector deals only with the  objects recently used by 
the mutator; inactive objects are not touched and also are not 
reclaimed if they become inaccessible. If  the active parts of 
the program are all swapped in, as is often the case, an 
entire garbage collection can be completed without any page 
faults. 

This elimination of a large amount  of disk traffic makes it 
possible for garbage collections to occur much more 
frequently. Ephemeral objects can be reclaimed quickly, soon 
after they become inaccessible. This should improve 
performance by minimizing the amount  of main memory 
wasted storing garbage and the  amount  of disk bandwidth 
wasted writing garbage to disk. Cutting down the  number  of 
page faults incurred by the garbage collector also decreases its 
interference with the mutator  in two ways: the mutator 's  
pages are not evicted from main memory to make room for 
the garbage collector's pages and the  mutator  does not have 
to wait while the  garbage collector uses the disk. 

Frequent garbage collection of ephemeral objects keeps the 
number  of ephemeral objects small compared to the total 
number  of objects, by reclaiming the  inaccessible ephemeral 
objects and turning the  rest into dynamic objects, Less 
address space is wasted on duplicate copies of objects in 
oldspace and copyspace since these spaces are smaller. 
Turning references to ephemeral objects into references to 
dynamic objects, once the  lifetime of the referenced objects 
has been demonstrated not to be short, makes the ESRT 
smaller. 

To measure this claimed effectiveness of the ephemeral 
garbage collection technique in reducing paging traffic, and to 
measure its cost in extra computation time, three forms of 
garbage collection were compared: no garbage collection (all 
objects static), traditional garbage collection (only dynamic and 
static objects), and ephemeral garbage collection (all three 
object categories used). Two test  programs were used, each 
designed to run  for about one hour. Compiler consists of 
compiling a medium-sized file 100 times. It creates about 8 
million 36-bit words of objects (about 2500 words per second). 

243 



Boyer is a kernel of a theorem-prover, designed by Bob Boyer 
as a benchmark for Lisp implementations. It creates about 
68 million words of objects (about 19,000 words per second). 
Both programs retain very few of the objects they create for 
the full length of the run. 

A 3600 with 1 million words of main memory, and 15 million 
words of secondary memory was used. The results for Soyer 
with no garbage collection had to be extrapolated from a run 
shortened to 1/5 the  normal number  of iterations, since tha t  
test  fills up secondary memory in much less than  an hour. 

accomplished by the garbage collector. 

There are some minor oddities in table 3. The number  of 
words scavenged in the last page of copyspace is too high 
because of a bug tha t  caused some copyspace words to be 
scavenged more than  twice. The bug was fLxed after the 
measurements  were collected. The number  of words 
scavenged because of the  GCPT includes pages tha t  were 
flagged by the  GCPT but  were not actually scavenged 
because they were in oldspace. The  actual number  of words 
scavenged was probably much smaller, but  unfortunately was 
not measured. 

The 8oyer  program running  with the  ephemeral garbage 
collector is particularly interesting. The garbage collector 
itself took very few page faults, and the  mutator  took only 
60% as many page faults as in the no-garbage-collection case. 

The  three tables below show the results of running each test  
program with each version of the  garbage collector. Table 1 
shows the  effect of each garbage collection technique on 
overall system performance. Table 2 shows the  resources 
consumed by the garbage collector. Table 3 shows the  work 

Table 1 
Effects on Overall  System Performance 

Program GC type Elapsed time Page fau l ts  
seconds r e l a t i v e  count re ]a t l ve  

Comptler none 3134 1.00 1903 1.00 2,5 
ephemera] 3244 1.04 5806 3.05 4.5 
dynamtc 5692 1.82 39904 20.97 31,8 

Boyer none 3535 1.00 7425 1.00 11,3 
ephemeral 6853 1.93 4527 0.60 1,6 
dynamic 16132 4.56 257383 34.66 57,9 

¢disk %GC 

0 
2.1 

25.4 
0 

56.1 
71.4 

Each row of this table shows the absolute and relative consumption of resources (elapsed 
time and page faults), the percentage of the time spent waiting for the disk, and the 
percentage of the time spent in the garbage collector (either scavenger or transporter). 
None of the elapsed time was spent waiting for I/O other than paging. 

Program 

Compiler 

Boyer 

Table 2 
Resources Consumed by the Garbage Col lector  

GC type Fl ip In terva l  Run Page Page 
Count Between Time Faults Prefetches 

ephemeral 44 74 1.6 1.8 15.5 
dynamic 3 1856 475 2001 27170 
ephemera] 337 20 11.5 0.1 0.08 
dynamic 35 461 330 6264 13591 

Each row of this table shows the  number  of garbage collections (the number  of flips), the  
interval between garbage collections in seconds, and the average consumption of resources 
by the  garbage collector per garbage collection. These resources are run  time in seconds 
(including time spent waiting for the  disk), the number  of page faults, and the  number  of 
page prefetches. A page fault requires tha t  the  machine wait for the page to be read from 
disk, whereas a page prefetch initiates reading of a page from the disk but  does not wait 
for it until the page is actually needed. In all tests roughly half of the prefetched 
pages arrived before they were needed and the  other half required some waiting time. 

Table 3 
Work Accomplished by the Garbage Co l l ec to r  

Program GC type Root Set Copyspace Evacuated 
GCPT ESRT Normal Last Page Words 

Compiler ephemeral 295522 28125 6364 2980 6364 
dynamic 4913853 868185 608945 868185 

8oyer ephemeral 577843 1288 57953 64022 57953 
dynamic 4911577 301067 123921 301067 

This table shows the  average work accomplished per garbage collection. The first four 
columns show the  number  of words scavenged per garbage collection, divided between the 
root set and copyspace. For the  ephemeral case, the  root set is fur ther  broken down into 
words found via the  GCPT and words found via the  ESRT. The words scavenged in copyspace 
are further  broken down into normal and last page (for depth-first copying). Any word 
counted in the last page column is counted again in the normal column. The last two 
columns show the number  of words evacuated and the  number  of words of garbage reclaimed. 
Naturally the  number  of words in copyspace scavenged is always equal to the  number  of 
words evacuated into copyspace. 

Reclaimed 
Words 

200403 
1184590 

197337 
1903147 
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Evidently garbage was reclaimed quickly enough that the 
program came close to fitting entirely in main memory, even 
though the amount of garbage it generated was more than 
sixty times the size of main memory. The run time of the 
mutator with the ephemeral garbage collector (3008 seconds) 
was actually less than with no garbage collector (3535 
seconds). However, the ephemeral garbage collector did not 
make the overall run time less than the no-garbage-collection 
case, because of the substantial time consumed by the 
garbage collector itself; each garbage collection took 11.5 
seconds to evacuate 57,953 words. Not using any garbage 
collector at all is still quicker than using the ephemeral 
garbage collector, unless virtual address space fills up and the 
machine crashes before the end of the session. On the other 
hand, using the ephemeral garbage collector slows down the 
program much less than the traditional garbage collector, 
especially for programs like Compiler that do not generate 
garbage as fast as 8oyer. 

If a sufficiently large fraction of the objects that will 
eventually become inaccessible are caught while they are still 
in the ephemeral category, it may be possible to avoid entirely 
the use of the full-scale dynamic-object garbage collector; 
dynamic objects can then be regarded as static. The size of 
the address space available to the user is substantially 
increased by not reserving a large portion of it for copying 
dynamic objects. Garbage will accumulate among the 
dynamic objects, but if it accumulates slowly enough the 
user's session on the machine will end for other reasons 
before virtual memory overflows. Observed session lengths 
vary from a few hours to two weeks. 

Both of the test cases used were programs that retained few 
of the objects they created. This matches, perhaps too well, 
the assumption that all newly-created objects are ephemeral 
and likely to become garbage. It would be valuable to 
measure a program that creates less garbage and therefore 
derives less benefit from the ephemeral garbage collector, to 
see whether discovering that objects are not ephemeral by 
copying them a few times is excessively costly. 

Tuning the Ephemeral Garbage Collector 

The Compiler and Boyer test programs were used to 
estimate the number of levels of ephemeral objects sufficient 
to collect almost all the garbage. The measurements listed 

abqve were obtained with two levels, which seems to be right 
for these programs. 

In the Compiler test 2.7% of the ephemeral objects survived 
garbage collection at the first level and 22% of those (0.6% of 
the total) survived garbage collection at the second level and 
graduated to dynamic status. 

In the Boyer test 27% of the ephemeral objects survived 
garbage collection at the first level and 5.7% of those (1.6% of 
the total) survived garbage collection at the second level and 
graduated to dynamic status. The Boyer test eventually 
discards all of the objects it creates, so by adding additional 
levels it should be possible to prevent any objects from 

graduating to dynamic status. With two levels, dynamic 
space grows by about 0.6 million words per hour, requiring 
one or two dynamic garbage collections per day. 

In general the number of levels of ephemeral objects required 
depends on the characteristics of the particular program 
creating and using the objects and on the interval between 
garbage collections. By using its own area an application 
program can tune the ephemeral garbage collection policy to 
its needs. Further research is required into the needs of 
different types of application programs and into automatic 
tuning of garbage collection parameters. 

Subjective Evaluation 

It  is difficult to be quantitative about perceived response time, 
but everyone (a half dozen sophisticated Lisp machine users) 
who has used the ephemeral garbage collector has remarked 
how much better it is than the older garbage collector that 
has only dynamic and static objects. Users have found that 
the garbage collector's interference with interactive response 
is not only much less, but also more predictable. In user 
interfaces predictability seems to be as important to perceived 
quality as performance. 

Comparison With Other Work 

Several other papers about interactions between garbage 
collection and virtual memory have been published (4-7). 
Most of these approaches decrease garbage collection overhead 
by concentrating the attention of the garbage collector on 
some subset of the objects. They avoid marking through all 
of virtual memory by controlling references to objects with 
reference counts (4,5), conventions about which objects can 
refer to which other objects (6), or tables of locations 
containing references to the interesting objects (7). The 
third technique is also used by the present work. 

Reference counts can substantially slow down the mutator, 
because every write into memory must increment the 
reference count of one object and decrement the reference 
count of another. Each of those operations potentially 
involves a page fault, but Deutsch and Bobrow (4) describe 
clever techniques for decreasing this overhead. Reference 
counts also cannot reclaim circular structures. 

A more serious problem with reference counts is that they do 
not permit copying of objects and therefore cannot improve 
the locality of data structures in virtual memory. In a large 
virtual memory, locality has a major effect on system 
performance. A garbage collector that knows not only how 
many references to an object exist, but exactly where those 
references are, is able to relocate the references when it 
moves the object. The overhead for keeping track of 
references to all objects would be prohibitive, far exceeding 
the overhead of keeping a reference count for every object, 
but the ephemeral garbage collector shows that it is sufficient 
only to keep track of references to an object early in its 
lifetime. 
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Keeping track of where the references are can also be more 
efficient than remembering how many references there are. 
When one object reference in memory is overwritten with 
another, a reference count system must deal with both the 
old and new objects, but a reference-tracking system need 
only deal with the new object. 

Lieberman and Hewitt (6) keep track of references to objects 
by using conventions about which objects can refer to which 
other objects along with indirect object references through 
entry tables. This does not work well for references from 
places subject to frequent modification, such as value cells of 
variables. Maintaining entry tables and chasing indirect 
references could be a significant burden on the mutator. The 
ephemeral garbage collector eliminates this burden by 
simplifying the tracking of references to objects so that it can 
be done by hardware that operates in parallel with the 
mutator. 

Generation scavenging (7) relies on software to keep track of 
references to ephemeral objects. This is practical for Berkeley 
Smalltalk because it is an interpreter that executes only 9000 
Smalltalk operations per second. The underlying machine 
has about 50 times the instruction processing rate, so the 
overhead of executing a few extra instructions per Smalltalk 
store operation is small. A system that executes mutator 
operations at a speed closer to the full capacity of the 
machine must turn to parallel hardware to keep the relative 
overhead of keeping track of references to ephemeral objects 
low. 

An important advantage of the 3600's garbage collection 
technique is that it is tunable by application programs and by 
the user. They can easily inform the garbage collector about 
the expected lifetimes of objects, using areas. They can 
adjust the number of levels in an area and the capacity of 
each level to tune the garbage collector to their requirements. 
Multiple application programs with different requirements can 
coexist by using separate areas. 

6. Lieberman, H., and Hewitt, C. A Real-Time Garbage 
Collector Based on the Lifetimes of Objects. Commun. ACM 
26, 6 (June 1983) 419-429. 

7. Ungar, D. Generation Scavenging: A Non-disruptive High 
Performance Storage Reclamation Algorithm. ACM 
SIGSOFT/SIGPLAN Practical Programming Environments 
Conference (April 1984) 157-167. 
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