
Garbage Collection in a Large Lisp System

David A. Moon
Symbolics, Inc.
Cambridge, Mass.

Abstract

This paper discusses garbage collection techniques used in a
high-performance Lisp implementation with a large virtual
memory, the Symbolics 3600. Particular attention is paid to
practical issues and experience. In a large system problems
of scale appear and the most straightforward garbage-
collection techniques do not work well. Many of these
problems involve the interaction of the garbage collector with
demand-paged virtual memory. Some of the solutions adopted
in the 3600 are presented, including incremental copying
garbage collection, approximately depth-first copying,
ephemeral objects, tagged architecture, and hardware assists.
We discuss techniques for improving the efficiency of garbage
collection by recognizing that objects in the Lisp world have a
variety of lifetimes. The importance of designing the
architecture and the hardware to facilitate garbage collection
is stressed.

reclaims their storage. The user program does not have to
say explicitly "I'm done with this object." Automatic storage
reclamation is usually called garbage collection. It can be
thought of as finding all the objects that are no longer useful
for anything-the garbage--and collecting the memory used to
represent them so that it can be reused for new objects.

Garbage collection consists of

-Deciding when to garbage collect and how much of the
machine's resources to devote to garbage collection (as
opposed to "useful work").

-Discovering the division of storage between garbage and
good objects' representations.

- Separating the garbage so that its memory can be reused
without disturbing the good objects.

Automatic Storage Management

Storage management is the part of a Lisp implementation
that controls the use of memory to contain representations of
objects. When a new object is created, memory must be
allocated to contain its representation. When an object is no
longer in use, the memory occupied by its representation can
be reused for other purposes. Storage management can have
a major impact on the efficiency and usability of a Lisp
system.

Automatic storage management allows the user to think
entirely in terms of objects while the system takes care of
the memory behind the scenes. Its most important aspect is
automatic storage reclamation: the system finds all the
objects that can be proved to be no longer in use and

Permission to copy without fee all oz" part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantagc, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. Tocopy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 4 2 - 3 / 8 4 / 0 0 8 / 0 2 3 5 $00.75

Problems with Garbage Collection in Large Systems

All Lisp implementations have some form of garbage
collection. Garbage collection is straightforward in a small
system, but in a large system problems of scale appear and
the most straightforward garbage-collection techniques do not
work well. This paper discusses some of these problems and
the solutions adopted in the 3600.

The first problem is that most garbage-collection techniques
take time proportional to the size of memory. As systems
become larger, garbage collection takes longer. Eventually
garbage-collection delays destroy the system's interactive
response.

The introduction of virtual memory only makes things worse.
Virtual-memory systems are designed around the assumption
that only part of the memory is in use at any one time and
the remaining memory locations can be much slower to access
without hurting performance. The active portion of virtual
memory is held in a fast main memory while the remainder
is banished to a large, slow secondary memory. For that
assumption to be valid, the data structures used by a
program must have locality; they must reside in a minimal
number of virtual-memory pages. Traversing a data structure

235

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800055.802040&domain=pdf&date_stamp=1984-08-06

tha t is spread all over virtual memory takes much longer
than traversing the same data structure when it is
concentrated into a few pages. In a virtual-memory system,
the responsibility of the garbage collector is not only to
reclaim unused memory, so tha t the user program does not
run out of memory, but even more importantly to keep data
structures local, so tha t the user program can achieve
acceptable performance.

Besides heaping new responsibilities upon the garbage
collector, virtual memory slows the garbage collector down. A
garbage collector tha t must access every location in memory
does not fit the assumptions behind virtual memory and
derives little benefit from the fast main memory; it makes
many accesses to the locations tha t reside in the slow
secondary memory. In a large virtual memory, where the
overall size of the virtual address space greatly exceeds the
size of the fast main memory, the garbage collector can spend
most of its time thrashing, waiting for data to be transferred
to and from secondary memory. The 3600 is typically
operated with a ratio of virtual memory size to main memory
size of thirty.

Users of the 3600 and its predecessors have avoided the
garbage collector whenever possible. They found tha t garbage
collection made interactive response so poor and
unpredictable, and its overhead was so high, tha t it was
preferable to turn off garbage collection and simply wmt for
the inevitable exhaustion of virtual address space (at which
point the system crashes and must be re-booted). They often
made substantial efforts to decrease the rate of creation of
new objects in their programs in order to defer tha t fate for
as long as possible, even at the cost of making their programs
slower and harder to understand.

To solve these problems of long garbage-collection delays, poor
locality of data structures, incompatibility of garbage collection
with virtual memory, and generally unacceptable interactive
response, the 3600 adopted several techniques tha t are
described in this paper (as well as some others of lesser
interest).

Incremental garbage collection side-steps the problem of
garbage-collection delays by collecting garbage in parallel
with program execution. The system continues to
respond while the garbage-collection is taking place. This
technique is not new; it was implemented as part of the
original Lisp Machine project at MIT, but has not been
extensively reported before.

-Approximately depth-first copying improves the locality of
data structures copied by the garbage collector. This
technique was introduced in the 3600 system some time
ago, but has not been reported before.

-Ephemeral objects categorizes objects according to their
expected lifetimes and concentrates the efforts of the
garbage collector on the objects most likely to be garbage.
This technique is new and its implementation has not yet
been released to users.

Tagged architecture and hardware assists greatly simplify
and speed up the garbage collector. Early versions of this
were developed as part of the original Lisp Machine
project at MIT. Improved forms are built into the 3600
architecture and hardware.

Incremental Copying Garbage Collection

The 3600 uses incremental copying garbage collection:

It decides when to garbage collect using Baker's algorithm
for incremental garbage collection (1), which interleaves
operation of the garbage collector with operation of the
user program.

It discovers the division of storage between garbage and
good objects by starting with some objects tha t are known
never to become garbage and tracing recursively through
their references until all objects tha t can ever be reached
are found.

It separates the good objects from the garbage by copying
them into a different space, leaving the garbage behind.
It uses the Cheney algorithm for nonrecursive list copying
(2) to avoid the need for temporary storage such as a
stack.

The term "incremental copying" is based on the fact tha t
one object at a time is copied. The incremental technique
decreases the impact of the garbage collector on the response
time perceived by the user, compared with doing the entire
garbage collection at once and making the user wait for it to
be completed. The copying technique is easier to do
incrementally than techniques where objects remain in place;
it also offers the possibility of improving virtual memory
performance through compaction.

The identities of objects must be preserved by garbage
collection. When an object is moved to a different memory
address by the garbage collector, all references to tha t object
must be found and relocated to the new address. To aid in
distinguishing between the old and new copies of an object,
memory is divided into spaces. Every object resides in a
space. The space tha t contains a given object can be
determined efficiently. One space can be changed into
another efficiently, without touching the affected objects.

The interesting spaces are newspace, oldspace, and copyspace.
New objects are created in newspace. The other two spaces
do not exist until the first garbage collection occurs. When it
is time to collect garbage, the spaces are flipped: Lisp
changes newspace and copyspace into oldspace then creates a
fresh newspace and a fresh copyspace. After a flip, accessible
objects in oldspace are evacuated by copying them into
copyspace. When an object is evacuated, its incarnation in
oldspace is replaced by GC-forwarding pointers, which contain
the address of the object's incarnation in copyspace.

After all of the accessible objects have been evacuated, and all
of the references to objects in oldspace have been replaced by

236

references to copyspace, oldspace contains nothing but
garbage. The garbage collector reclaims oldspace, making the
memory it occupied available for assignment to newspace.
Another flip may occur at any time after oldspace has been
reclaimed.

Unlike Baker's algorithm (1), which used a fixed division of
memory into two semispaces, the 3600 dynamical.ly allocates
virtual memory to spaces from a free pool. A flip creates a
fresh newspace and a fresh copyspace from free virtual
memory, not necessarily at the same vir tual addresses tha t
were formerly occupied by oldspace. The space of an object is
encoded in its address by dividing virtual memory into equal-
sized units called quanta. Each quantum contains objects
tha t are all in the same space, which can be determined by
looking up the address of the quantum in a table. One space
is changed into another by changing the table entries for all
the quanta in tha t space. The quantum size (16,384 words)
was chosen for hardware convenience and is of no
fundamental importance.

There are three agents involved in garbage collection: the
mutator, the scavenger, and the transporter. The mutator is
the "user program" tha t performs a useful computation,
creating new objects and changing ("mutating") the contents
of memory.

The scavenger reads through memory looking for references
to objects in oldspace. I t finds all accessible objects by
starting at a root set of static objects, such as the hash table
of all interned symbols, and recursively tracing through them
and the objects they reference.

The transporter is invoked when either the mutator or the
scavenger refers to an object in oldspace. I t either evacuates
the object or follows a GC-forwarding pointer to the already
evacuated object. In either case, the transporter redirects its
client to an object in copyspace.

Incremental garbage collection means tha t interruptions of
the mutator are limited to a small, bounded amount of time.
The mutator provides reasonable interactive response to the
user because it is not interrupted by pauses of arbitrary
length. There are three possible reasons for the mutator to
be interrupted:

- T h e transporter is invoked when the mutator tries to
touch an object in oldspace. This takes a constant
amount of time if the object has already been evacuated.
Otherwise it takes time dependent on the size of the
object.

- The scavenger is given a chance to use the machine. In
the Baker algorithm, the scavenger runs whenever the
mutator creates a new object. I t runs for a time
dependent on the size of the new object, which keeps the
rate of scavenging proportional to the rate of expansion of
n~wspace, allowing oldspace to be reclaimed before
newspace fills up. The length of an interruption to run
the scavenger is also affected by the sizes of any objects it
happens to evacuate.

- T h e garbage collector decides to flip. This takes a
constant amount of time.

The scavenger also runs when the mutator voluntarily
relinquishes the machine to wait for an I/O operation.

A garbage collection is complete and oldspace can be reclaimed
when all the accessible objects have been found by the
scavenger. This is the case when every object in the root set
and all of copyspace has been scavenged. There can be no
references from newspace to oldspace because newspace is
empty when oldspace is created by the flip, the mutator
never stores references to oldspace anywhere, and the
transporter never stores into newspace. Once all of the root
set and copyspace have been scavenged, all references from
them to oldspace have been changed by the transporter to
references to copyspace. Copyspace is initially empty, but the
transporter expands copyspace faster than the scavenger can
scavenge it until all accessible objects have been evacuated.

The decision of when to flip is based on the idea of filling a
fixed-size memory to the brim but not overflowing it. The
limiting factor is the amount of secondary memory (disk)
allocated to hold virtual memory pages. The garbage collector
flips when the amount of free virtual memory remaining is
equal to the sum of the maximum expected sizes of copyspace
and newspace at the moment when oldspace will be
reclaimed. If these spaces reach their maximum sizes, virtual
memory will be completely full at tha t moment. Were the
garbage collector to flip later, it would risk filling virtual
memory before it could reclaim oldspace and make more
memory available.

The maximum expected size of copyspace is the sum of the
current sizes of newspace and copyspace, multiplied by the
maximum expected fraction of these spaces tha t will be
evacuated into copyspace after the flip. This fraction is
normally 1.0, but can be set smaller by the adventurous user.
The maximum expected size of newspace is the maximum
amount of work that the scavenger will have to do to
complete the garbage collection divided by a conversion factor,
k. When an n-word object is created in newspace, the
scavenger interrupts the mutator and performs (on the
average) kn units of work. This work consists of checking for
references to oldspace and evacuating objects. Either checking
or evacuating one word counts as one unit of work. The
total amount of work required is twice the maximum
expected size of copyspace, since each word in copyspace must
both be created by evacuation and be checked for a reference
to oldspace, plus the size of the static objects in the root set,
which must be checked but not evacuated k=4 works well.

Local i ty o f D a t a in a D e m a n d - P a g e d Virtual M e m o r y

An important function of the garbage collector is to improve
the locality of data in virtual memory. This is accomplished
by the copying garbage collector in three ways:

-Copying the accessible objects prevents them from being

237

diluted by intervening garbage. After a garbage collection
the accessible objects are packed into the fewest possible
pages of virtual memory.

- The separation of newspace and copyspace avoids
interleaving new objects created by the mutator with
unrelated old objects evacuated by the scavenger. It also
saves the scavenger some work since newspace does not
have to be scavenged.

- A copying garbage collector is free to choose the order in
which it copies accessible objects. I t can exploit this
freedom to improve locality by copying related objects onto
the same page.

A copying garbage collector can choose breadth-first copying
or depth-first copying. The Cheney list-copying algorithm (2),
which is traditionally used because it does not require any
temporary storage (such as a stack), is breadth-first. Any
algorithm tha t uses a stack faces the risk of failure to
allocate sufficient memory to hold the stack. The stack
depth required depends on user data structure and cannot be
reliably predicted in advance.

Depth-first copying generally yields better locality than
breadth-first copying, because it tends to put components of a
structure on the same page as the parent structure. This is
especially true when the tree of accessible objects is short and
bushy; the distance between related objects is determined by
the height of the tree in depth-first copying, but determined
by the breadth of the tree in breadth-first copying. The
breadth of the tree is large when the root from which the
garbage collector starts tracing accessible objects is a large
object such as the hash table of all interned symbols.

Fortunately, the Cheney algorithm can be modified to work
in an approximately depth-first fashion. The technique used
in the 3600 is very simple but effective. When the scavenger
scans through copyspace looking for references to oldspace, it
always scans the partially-filled page at the end of copyspace
first. Any object evacuated from oldspace will be copied into
this partially-filled page, putt ing it on the same page as the
reference to it. If copyspace ends exactly at a page boundary,
or if no references to oldspace are found in the partially-filled
page, the scavenger examines the lowest address in copyspace
tha t has not already been scanned. It continues scanning
consecutive addresses, even if they have already been
scanned, until either an object is evacuated or it reaches the
end of copyspace. In the first case, there is a new partially-
filled page and the scavenger redirects its at tent ion to it. In
the second case, the scavenger has finished its work and
oldspace may be reclaimed.

The cost of the extra scanning required by this technique is
very small. If the scavenger does not find any references to
oldspace, it expends a negligible amount of CPU time since it
doesn't call the transporter and it takes no page faults since
it only touches the active page at the end of copyspace. If it
does find references to oldspace, it does no work that would
not have been done anyway at some later time. The cost of
examining some memory locations twice is less than the cost

of the bookkeeping tha t would be required to prevent this
duplication. It is easy to avoid examining any memory
location more than twice, by remembering the highest
address in the last page of copyspace that has already been
examined.

The cost on the 3600 of scanning a 256-word page the
second time, when there are no page faults and no transport
traps, is an estimated 350 microseconds. This is roughly twice
the time required to evacuate one object of minimal size.
Another way to determine the cost of this depth-first copying
technique is to eliminate it and see how performance
changes. In a world with 9 megawords of Lisp objects, of
which 2.5 megawords were subject to garbage collection,
removing depth-first copying decreased the elapsed time for a
garbage collection by 6%. No at tempt was made to quantify
the decreased locality of data in virtual memory; this would
be a good topic for future research.

Tagged Memory Architecture is Important

The most critical architectural feature needed to make a
machine suitable for runn ing Lisp efficiently is tagged
memory. The garbage collection techniques described in this
paper depend implicitly on tagged memory. In a tagged
architecture, every word in memory is divided into two parts:
the data and the tag. The tag distinguishes words whose
data part is an address from words whose data part is a
riumber or a bit pattern. A tagged architecture provides
conventions and machine instructions for efficient processing
of these tagged words without overhead for checking,
removal, and insertion of tags. For example, the machine
instruction tha t adds two numbers accepts its operands in
tagged form, produces its result in tagged form, and
guarantees tha t the tag of the result cannot erroneously be
set to "address". In many tagged architectures the ADD
instruction provides additional features, such as checking the
tags of the operands to verify tha t they are numbers,
automatic overflow detection, and generic operation on both
fixed- and floating-point operands, but these features, while
useful, are not necessary from the point of view of the
garbage collector.

The fundamental data manipulated by Lisp are object
references. The value of a variable, an argument to a
function, the result of a function, and an element of a hst
are object references. A typical object reference contains the
address of the representation in storage of the object. For
example, a CONS can be represented as two memory words
containing object references for the CAR and the COS. An
object reference to tha t C0NS contains the address of the first
of the two memory words. An array can be represented as
some number of overhead words containing information such
as the dimensions of the array, followed by one memory word
for each cell of the array, containing an object reference to
the contents of tha t cell. The overhead words typically
contain numbers and bit pat terns ra ther than addresses. A
small integer, whose efficient implementation is important for
many applications, can be represented as an object reference
containing the value of the integer instead of a memory

238

address. A tagged architecture implements the object
reference concept directly.

A copying garbage collector needs to distinguish addresses
from numbers. When it copies an object it must change all
references to the object to contain the object's new address,
but numbers tha t jus t happen to be the same pattern of bits
as the object's old address must not be changed to new
numerical values. A tagged architecture makes it simple to
distinguish addresses from numbers, provided tha t it is
obeyed not only by words in the representations of Lisp
objects, but by words anywhere in memory, for example in
the saved state of an interrupted process. Any register or
location the garbage collector can ever see tha t might
sometimes contain an object reference must always have a
valid tag so the garbage collector can tell whether or not it in
fact does contain an object reference.

When all words in memory, including overhead words in
structures such as arrays, contain a tag, it is possible to
regard memory as a sequence of object references ra ther than
a sequence of representations of objects. This makes it
possible to scan through all the object references in memory
without regard for object boundaries, making the scavenger
simpler and faster, because it need not "parse" memory to
find the object boundaries and need not worry about skipping
"unboxed words." An unboxed word, in some Lisp
implementations (including Interlisp-10, the MIT CADR, and
the Symbolics LM-2), is a word tha t is not an object
reference and does not contain a tag field.

The transparency of object boundaries has a more important
effect t han simplicity and speed: it makes it possible to scan
non-sequentially through memory. The ephemeral scavenger,
described below, depends critically on being able to process
memory one page at a time. It skips some pages and it does
not necessarily process pages in the numerical order of their
addresses.

Most computers do not have tagged architecture, probably
because traditional languages such as Fortran and C tha t do
not include automatic storage management would not benefit
from such an architecture. This may have led to the belief
tha t tagged architecture is expensive.

The hardware cost of tagged architecture can be estimated by
considering the 3600 as an example. Its tagged architecture
has 4 tag bits and 32 data bits in each memory word. A
hypothetical variant with only one tag bit is also considered,
since one tag bit would be sufficient for the garbage
collector's need to distinguish between addresses and
numbers. The increased hardware costs and decreased disk
capacity due to tag bits are shown in this table:

1 tag b i t 4 tag b i t s
Memory ch ip count +3Z +IOZ
CPU ch ip count +3~ +4~
Disk capacity -3~ -IIZ

The increase in memory chip count and decrease in disk
capacity are due to the longer words. The increase in CPU

chip count is the sum of two components; one due to the
longer words and the other due to the extra hardware for
processing tags, which is independent of the number of tag
bits. This extra hardware is 2% of the 3600 CPU.

The hardware speed penalty for a tagged architecture in the
3600 is estimated to be zero, because tag processing is
performed in parallel with arithmetic processing. Removing
tags would not decrease the clock cycle time.

The above estimates apply only to bare hardware. Even with
tha t limited perspective, tagged architecture is not very
expensive. When the complete hardware/software system is
considered, tagged architecture probably reduces the cost and
increases the speed, because it simplifies the software.

Hardware to Decrease Mutator Overhead

In a system with incremental garbage collection, certain
requirements are imposed on the mutator. Without careful
design, the mutator could easily spend an unacceptably large
fraction of its time making gerbage-coIlector-related checks
rather than doing its own work. A small amount of special-
purpose hardware can perform these tasks in parallel with
normal mutator operation.

A barrier is erected between oldspace and the other spaces,
preventing the uncontrolled propagation ; f references to
objects in oldspace. The barrier applies to reads from main
memory: no word read from main memory can contain a
reference to oldspace, hence no reference to oldspace can be
inside the machine state. One effect of the barrier is to hide
the fact tha t two copies of an object can exist, one in
oldspace and the other in copyspace. The mutator will never
see the oldspace incarnation of an object, so Lisp's EQ
primitive can simply compare object addresses numerically.
The other important effect of the barrier is to control how
references to objects in oldspace can spread through memory.
References to oldspace can be created only by flipping (which
creates them en masse) and by the transporter (which
creates them in copyspace by copying them from oldspace,
bypassing the barrier). Thus the only place tha t new
references to oldspace can appear during a garbage collection
cycle is at the growing end of copyspace; this enables the
scavenger to find all such references in a single pass through
copyspace.

The barrier is implemented in hardware by examining the
tag and address fields of each word read from main memory.
If the tag field says tha t the word contains a meaningful
address, then the address is translated into a space by table
lookup. If the space is oldspace, a transport trap occurs and
the transporter gains control. The transporter replaces the
contents of the memory location being read with a reference
to the eopyspaee incarnation of the object. First it looks in
oldspaee for a GC-forwarding pointer. If it finds one, the
object has already been evacuated and its eopyspaee address is
immediately available. I f no GC-forwarding pointer is
present, the transporter evacuates the object. The
transporter then retries the operation; this time the reference

239

to copyspace is read and no trap occurs.

Unless a transport trap occurs, the barrier hardware operates
completely in parallel with the mutator ' s processing of the
word read from main memory and does not slow down the
computation. If the barrier were implemented in software, it
would be very expensive, since every primitive data structure
accessing operation, such as CAR, AREF, or SYMBOL-VALUE,
would have to do this checking. Even the implicit CAR and
CDR operations inside such higher level primitives as MEMI3ER
would be slowed down. Implementing the barrier in
microcode would be faster than software, but would still
require adding several additional microinstructions to those
primitives, probably at least doubling their execution time.
Implementing the barrier in hardware is not expensive, given
a tagged architecture; in the 3600 just 2.3% of the chips in
the processor exist to implement the barrier. This is an
example of how careful application of a small amount of
hardware in just the right place can have a dramatic effect
on performance.

Not All Objects are Created Equal

A garbage collector tha t treats all objects the same will not
perform as well as one tha t concentrates its efforts on the
objects most likely to be garbage. By concentrating garbage
collection effort in the most productive places, the maximum
amount of space can be reclaimed for the minimum cost in
computation time, virtual-memory paging, and impaired
interactive response. In a virtual-memory system it is also
important to minimize the amount of main memory wasted
on inaccessible objects (garbage) and objects tha t are
accessible but are not relevant to the current activity of the
mutator.

The 3600 divides objects into three somewhat arbitrary
categories according to their predicted lifetimes:

- s ta t i c objects are assumed to be very unlikely to become

garbage.

- ephemera l objects are assumed to be likely to become
garbage soon after they are created.

- dynamic objects have intermediate assumed lifetimes.

The division of objects into these categories is partly
automatic and partly controlled by the user or by the
application program. Objects on the 3600 are stored in areas
and several garbage-collection and paging policies are
controlled on a per-area basis. Areas are not the same as the
spaces introduced earlier; each area is subdivided into various
spaces, such as oldspace and newspace.

When a new object is created, the area to contain it may be
specified explicitly or left to a default. The default area may
be different for different types of objects; an application
program will often define its own object types and store them
in its own area. A single area may contain objects of all
lifetime categories, but newly-created objects in an area

belong to a single category specified by tha t area. The
default area normally used for ordinary Lisp objects, such as
conses and arrays, specifies tha t newly-created objects are
ephemeral. Thus if an object is created with no at tent ion to
storage-management issues the system assume~ tha t the
object has a high probability of quickly becoming garbage.

The garbage collector concentrates its effort on the ephemeral
objects. After an ephemeral object has survived a few
garbage collections, it graduates to dynamic status and gets
less at tention from the garbage collector. A graduating object
does not move to a different area; a single area may contain
objects of all lifetime categories. Both ephemeral and
dynamic objects are periodically compacted and culled for
garbage, using the incremental copying garbage collection
technique described above, but dynamic objects are garbage-
collected much less frequently.

Each ephemeral object has an associated level. A new
object is always created at the first level. If it survives a
garbage collection, it advances to the second level. When the
second level is garbage-collected, if the object survives it
advances to the third level. This continues until the object
graduates from the last ephemeral level and becomes a
dynamic object.

The levels are garbage-collected independently. The first level
is garbage-collected more often than later levels, jus t as
ephemeral objects are garbage-collected more often than
dynamic objects. Each level has a user-specified capacity,
measured in machine words. When the sum of the sizes of
the objects at a level exceeds its capacity, the leve l is garbage
collected and any surviving objects advance to the next level.
Several levels can be garbage-collected simultaneously, but
only the first level can initiate a garbage collection, since it is
the only one tha t can acquire new objects when a garbage
collection is not in progress. Once a garbage collectien has
been initiated, garbage collection of all levels tha t have
exceeded their capacity proceeds in parallel with normal
program execution.

One can th ink of the capacity of a level as the amount of
main memory allocated to storing objects at t ha t level. This
is only an approximation, since the virtual memory system
will remove ephemeral objects from main memory if it decides
the memory should be used for something else. It is possible
for a level to exceed its capacity temporarily by an arbitrary
amount, if it fills up during a garbage collection, since a new
garbage collection will not be initiated until the previous
garbage collection has been completed.

Each area has its own set of levels and specifies the capacity
of each level. Thus the interval between ephemeral garbage
collections and the number of garbage collection cycles
required before graduation are controlled independently for
each area.

All objects in a given quantum of address space are at the
same level. Thus the level of an ephemeral object, like its
space, is encoded in its address.

240

Static objects are never garbage-collected, except by a rarely-
used (and slow) explicit command to do a "full garbage
collection." It is not worth expending effort on the static
objects, since the amount of space that could be reclaimed is
expected to be small. When garbage-collecting dynamic
objects, the static objects are scavenged for references to
oldspace but are not copied. Thus static objects are the root
set.

Many application programs, as well as the Lisp system itsel£
have some objects that are known to have long lifetimes.
They avoid garbage collection overhead for these objects
simply by putting them in an area that makes them static.
Examples of such objects in the basic Lisp system include
compiled functions, interned symbols, and system tables such
as the readtable.

In addition, when a Lisp world (a virtual-memory image) is
released for general use all of the objects in it, including the
static ones, are garbage collected to compact them and to
reduce the world to minimum size. Most of the objects then
graduate to static status. A freshly-booted 3600 contains
about four million words of static objects.

The following table shows the possible transitions of objects
between lifetime categories:

From To Reason

ephemeral dynamic
any static
static dynamic
any ephemeral

surviving several GC's
release for general use
full garbage collection
forbidden

Keeping Track of Ephemeral Objects

A problem with frequent garbage collection of ephemeral
objects is the large minimum cost of a garbage collection. No
matter how few objects it evacuates and no matter how little
time has passed since the previous garbage collection, a
garbage collection cannot be quicker than the time needed to
scavenge the root set. When garbage-collecting only the
ephemeral objects at a certain level, the root set includes all
the ephemeral objects at other levels, all the dynamic objects,
and all the static objects. In a large virtual memory this root
.~et is much larger than the size of main memory; scavenging
such a large root set takes a page fault on every page in it
and consequently takes a very long time (several minutes).

The root set must be made smaller. If the scavenger could
consult an oracle that knew the locations of all references to
ephemeral objects, it would not need to touch the rest of the
root set. Since the number of ephemeral objects is likely to
be much smaller than the size of the root set and the
number of references to each ephemeral object is likely to be
small, such an oracle would save a great deal of time.

There are no oracles in computer systems, but frequent
garbage-collection of ephemeral objects can be made practical
by forcing the mutator to maintain a table of locations that

contain references to ephemeral objects. Whenever the
mutator stores a reference to an ephemeral object into
memory it must update this table. The scavenger uses this
table as the root set for garbage collection of ephemeral
objects. The reason that transitions of objects into the
ephemeral category are forbidden is that there might be
references to such objects that are not in the table.

Maintaining this table of references to ephemeral objects
could burden the mutator with a substantial mnount of
overhead. Checking the ephemerality of an object being
stored into memory with software, or even with microcode,
would take many times as long as the actual memory-write
operation. It would be useless to make frequent garbage-
collection of ephemeral objects efficient if all the gains were
cancelled out by slowing down the mutator. Thus keeping
track of references to ephemeral objects is a good application
for special-purpose hardware.

On the 3600, every word stored into memory is examined by
hardware to detect references to ephemeral objects. The
hardware used is the same unit that implements the barrier
for references to oldspace in words read from memory. If the
data-type field of the word being stored indicates that the
word contains an address, and the address field points into a
portion of virtual memory set aside for ephemeral objects, the
location being stored into is added to the table of references
to ephemeral objects.

Implementation of the table can be simplified by realizing
that correct operation of the garbage collector only requires
that the table mention every location containing a reference
to an ephemeral object; it is not important that every location
mentioned by the table actually refer to an ephemeral object.
It is unnecessary to delete a table entry when a reference to
an ephemeral object is overwritten with a reference to an
ordinary object, since the only cost of extra entries in the
table is to increase the size of the table and the size of the
root set.

Furthermore, a table entry can refer to a whole page rather
than remembering the exact location(s) in that page
containing references to ephemeral objects. The entire page
can be linearly searched by the scavenger for references to
ephemeral objects in oldspace. The tagged architecture
makes it unnecessary to worry about object boundaries while
searching the page and hardware assists make the speed of
the search acceptably fast.

These considerations show that the table can be represented
as an array with a single bit for each page. The bit for a
page is 1 if any location in that page refers to an ephemeral
object, or did so at some time in the past. The bit is 0 if the
page is guaranteed to contain no references to ephemeral
objects.

Such a simple table is not adequate for a system with virtual
memory. The time required to swap a page in from disk to
search it for references to ephemeral objects in oldspace, only
to find that it does not contain any, is many times larger
than the time required for a fruitless search of a page that is

241

already in main memory. Extra table entries cost much more
in a virtual-memory system than in a system where all
memory is fast. On the other hand, treating pages as units
is still reasonable, since once a page has been swapped in
little more time is needed to search the entire page than to
examine a single location in it. The mutator cannot store
into a virtual-memory location without first swapping it into
main memory. Moving pages between main memory and
disk is a much slower operation than writing into main
memory; consequently it can tolerate much more garbage-
collector overhead. For these reasons, the 3600 uses separate
tables for swapped-in and swapped-out pages and makes a
greater effort to keep the table of swapped-out pages free of
extra entries.

The GCPT (Garbage Collector Page Tags) is the table for
swapped-in pages. It is a hardware memory containing one
bit for each page-frame of physical memory. The bit is set by
the hardware when a reference to an ephemeral object is
stored into any word in the page-frame. The bit is cleared
by the virtual memory system when a virtual page is evicted
from the frame. Maintenance of the GCPT does not take
any extra time.

The E S R T (Ephemeral Space Reference Table) is the table
for swapped-out pages. I t is a B* tree (3), maintained by
software in non-pageable memory, tha t associates with each
virtual page a bit mask tha t has one bit set for each level of
ephemeral objects referenced by tha t virtual page. A B* tree
is used instead of an array because the ESRT is sparsely
occupied; virtual address space is very large, but the great
msjority of pages do not refer to ephemeral objects. These
pages, whose bit mask would be zero, do not take up any
space in the ESRT. Storing a bit mask with separate bits for
each level, ra ther than a single bit, keeps track of a separate
root set for each level of ephemeral objects. In the usual
case, when not all of the levels are being garbage-collected,
the scavenger avoids page faults on pages tha t are not in the
current root set.

The ESRT requires cooperation between the garbage collector
and the virtual memory system. When a page is evicted
from main memory, the page must be scanned for references
to ephemeral objects and its ESRT entry must be created,
updated, or deleted. This is optimized in several ways:

- Hardware assistance in the 3600 reduces the time for this
page-scanning operation to 85 microseconds if no
references to ephemeral objects are found.

- T h e page scanning is usually done while the processor
would otherwise be idle, waiting for the disk.

-A page does not actually need to be scanned unless its
GCPT bit is 1 (it may have acquired new references to
ephemeral objects) or it has an ESRT entry and has been
modified (some references to ephemeral olJjects may have
been overwritten).

- To decrease the size of the ESRT, entries are not made
for pages in oldspace. Objects in oldspace are never part

of the root set.

To fur ther decrease the size of the ESRT, it does not
record references to an object at the same level as the
page containing the reference. Such references are
extremely common, but are of no interest to the garbage
collector since all objects in a single level are flipped
simultaneously. When the object is in oldspace, the page
containing the reference will also be in oldspace and
hence will not be part of the root set.

Garbage collection of ephemeral objects begins by flipping all
levels tha t are filled to capacity, putt ing all existing objects in
those levels into oldspace. No new references to these objects
can be created, except by evacuation of other objects tha t
refer to them. These new references can only be in an easily
identified portion of copyspace. The scavenger makes a single
pass through the GCPT, scavenging each page whose bit is
set. I t then makes a single pass through the ESRT,
scavenging each page whose bit mask intersects the levels
tha t were flipped. This involves page faults to bring pages of
the root set tha t have been swapped out back into main
memory. Upon completion of the passes through the GCPT
and the ESRT the entire root set has been scavenged.
Finally, the scavenger repeatedly scavenges the portions of
copyspace tha t contain newly-evacuated objects, until no
additional evacuation occurs. This final step is actually
interleaved with the first two steps, in order to increase the
locality of the data structure in copyspace, as discussed in the
section "Locality of Data in a Demand-Paged Virtual
Memory" above.

The scavenger occasionally scavenges a page two or three
times. A page may appear in the GCPT, the ESRT, and
copyspace, causing it to be scavenged three times. The extra
scavenging takes so little time tha t no bookkeeping to avoid it
is worthwhile.

While the scavenger is operating, pages can be moving
between main memory and disk, GCPT bits can change, and
ESRT entries can be created and deleted. Cooperation
between the scavenger and the virtual memory system is
required to ensure tha t no page in the root set is missed.
This is not difficult; the virtual memory system simply has to
adjust the scavenger's current position in scanning the ESRT
when it rebalances the B* tree. Because the scavenger scans
the GCPT before the ESRT, it can ignore, any new ESRT
entries created while it is scanning the ESRT; they can only
be for copyspace pages or pages tha t have already been
scavenged.

D i s a d v a n t a g e s

A disadvantage of the ephemeral-object garbage collector is
tha t by increasing the rate of flipping it increases the
overhead expended on copying objects. This is alleviated by
garbage-collecting the first level of ephemeral objects more
frequently than the later levels and by quickly graduating
objects to dynamic status.

242

Increasing the rate of flipping also increases the overhead of
rehashing hash tables; a hash function tha t is based on the
numerical value of the address of the key must be
recomputed after a garbage collection. We hope tha t the
amount of extra time expended on overhead is less than the
amount of time saved by not waiting for the disk as much.
In a personal computer, where time spent waiting for the
disk cannot be made available to other users and where the
cost of computation is measured by elapsed time ra ther than
"compute" time, this is a good tradeoff.

A potential problem with keeping track of ephemeral objects
is the assumption tha t there are only a small number of
places tha t contain references to ephemeral objects. This
seems to be true of most programs, but if the assumption is
unt rue the ESRT can grow large and occupy an excessive
amount of non-pageable main memory, a limited resource.
One program was observed to create a large number of
dynamic objects, each of which contains a reference to an
ephemeral object. If each dynamic object is on a different
page, each requires its own entry in the ESRT. The solution
in tha t case was to modify the program to make the
referenced objects dynamic also.

Why Hardware is Needed to Keep Track of Ephemeral
Objects

Is it really necessary to use special-purpose hardware to keep
track of references to ephemeral objects? The cost in
impaired execution speed of doing it in software or microcode
can be estimated as the ratio of the overhead tha t would be
incurred by each store instruction to the average interval
between store instructions. The denominator is not difficult
to estimate. The static frequency of store instructions, other
than stores into a local variable, in the Lisp system is 3.1%.
If the dynamic frequency is the same and the instruction
processing rate is 1.2 MIPS, the interval between store
instructions would be roughly 25 microseconds. Actual
measurements with a hardware analyzer on a variety of
running programs show average intervals between writes into
main memory ranging from 17 to 25 microseconds (excluding
graphics programs, which write much more frequently but
deal with bit pat terns ra ther than object references).

The numerator is more difficult to estimate, since the
branching ratios among the several possible special cases are
unknown and there are many possible implementation
techniques. If no compromises with the present flexible
assignment of address space were made, it would be
necessary to perform table lookups on two fields of the word
being stored and then conditionally perform a read-modify-
write operation to set a bit in a table stored in main memory.
With special fLxed assignments of address space, the table
lookups could be replaced with bit-masking operations, but
this would introduce architectural inflexibility, which has its
own costs. Estimates of the time required vary from 2.5
microseconds to more than 25 microseconds, thus the speed
degradation from keeping track of ephemeral objects in
software or microcode is estimated to be at least 10% and
possibly a factor of 2 or more.

The cost of eliminating this speed degradation with a
hardware GCPT is minimal. The GCPT consists of the
barrier, which is needed anyway for incremental garbage
collection, and a small memory (100,000 bits). Jus t 2.3% of
the chips in the 3600 processor exist to implement the
barrier. The GCPT memory adds another 1%.

Performance Evaluation

The small root set provided by the GCPT and ESRT makes
garbage collection of ephemeral objects much more efficient
than garbage collection of dynamic objects. Since the
scavenger knows where all the references to an ephemeral
object can be, it does not have to read through the entire
virtual memory to prove tha t there are no references to an
object and the object's storage can safely be reclaimed. When
an ephemeral object is evacuated to a new address, all
references to it can be relocated without searching for them
tbrough the entire virtual memory. The effect is tha t the
garbage collector deals only with the objects recently used by
the mutator; inactive objects are not touched and also are not
reclaimed if they become inaccessible. If the active parts of
the program are all swapped in, as is often the case, an
entire garbage collection can be completed without any page
faults.

This elimination of a large amount of disk traffic makes it
possible for garbage collections to occur much more
frequently. Ephemeral objects can be reclaimed quickly, soon
after they become inaccessible. This should improve
performance by minimizing the amount of main memory
wasted storing garbage and the amount of disk bandwidth
wasted writing garbage to disk. Cutting down the number of
page faults incurred by the garbage collector also decreases its
interference with the mutator in two ways: the mutator 's
pages are not evicted from main memory to make room for
the garbage collector's pages and the mutator does not have
to wait while the garbage collector uses the disk.

Frequent garbage collection of ephemeral objects keeps the
number of ephemeral objects small compared to the total
number of objects, by reclaiming the inaccessible ephemeral
objects and turning the rest into dynamic objects, Less
address space is wasted on duplicate copies of objects in
oldspace and copyspace since these spaces are smaller.
Turning references to ephemeral objects into references to
dynamic objects, once the lifetime of the referenced objects
has been demonstrated not to be short, makes the ESRT
smaller.

To measure this claimed effectiveness of the ephemeral
garbage collection technique in reducing paging traffic, and to
measure its cost in extra computation time, three forms of
garbage collection were compared: no garbage collection (all
objects static), traditional garbage collection (only dynamic and
static objects), and ephemeral garbage collection (all three
object categories used). Two test programs were used, each
designed to run for about one hour. Compiler consists of
compiling a medium-sized file 100 times. It creates about 8
million 36-bit words of objects (about 2500 words per second).

243

Boyer is a kernel of a theorem-prover, designed by Bob Boyer
as a benchmark for Lisp implementations. It creates about
68 million words of objects (about 19,000 words per second).
Both programs retain very few of the objects they create for
the full length of the run.

A 3600 with 1 million words of main memory, and 15 million
words of secondary memory was used. The results for Soyer
with no garbage collection had to be extrapolated from a run
shortened to 1/5 the normal number of iterations, since tha t
test fills up secondary memory in much less than an hour.

accomplished by the garbage collector.

There are some minor oddities in table 3. The number of
words scavenged in the last page of copyspace is too high
because of a bug tha t caused some copyspace words to be
scavenged more than twice. The bug was fLxed after the
measurements were collected. The number of words
scavenged because of the GCPT includes pages tha t were
flagged by the GCPT but were not actually scavenged
because they were in oldspace. The actual number of words
scavenged was probably much smaller, but unfortunately was
not measured.

The 8oyer program running with the ephemeral garbage
collector is particularly interesting. The garbage collector
itself took very few page faults, and the mutator took only
60% as many page faults as in the no-garbage-collection case.

The three tables below show the results of running each test
program with each version of the garbage collector. Table 1
shows the effect of each garbage collection technique on
overall system performance. Table 2 shows the resources
consumed by the garbage collector. Table 3 shows the work

Table 1
Effects on Overall System Performance

Program GC type Elapsed time Page fau l ts
seconds r e l a t i v e count re]a t l ve

Comptler none 3134 1.00 1903 1.00 2,5
ephemera] 3244 1.04 5806 3.05 4.5
dynamtc 5692 1.82 39904 20.97 31,8

Boyer none 3535 1.00 7425 1.00 11,3
ephemeral 6853 1.93 4527 0.60 1,6
dynamic 16132 4.56 257383 34.66 57,9

¢disk %GC

0
2.1

25.4
0

56.1
71.4

Each row of this table shows the absolute and relative consumption of resources (elapsed
time and page faults), the percentage of the time spent waiting for the disk, and the
percentage of the time spent in the garbage collector (either scavenger or transporter).
None of the elapsed time was spent waiting for I/O other than paging.

Program

Compiler

Boyer

Table 2
Resources Consumed by the Garbage Col lector

GC type Fl ip In terva l Run Page Page
Count Between Time Faults Prefetches

ephemeral 44 74 1.6 1.8 15.5
dynamic 3 1856 475 2001 27170
ephemera] 337 20 11.5 0.1 0.08
dynamic 35 461 330 6264 13591

Each row of this table shows the number of garbage collections (the number of flips), the
interval between garbage collections in seconds, and the average consumption of resources
by the garbage collector per garbage collection. These resources are run time in seconds
(including time spent waiting for the disk), the number of page faults, and the number of
page prefetches. A page fault requires tha t the machine wait for the page to be read from
disk, whereas a page prefetch initiates reading of a page from the disk but does not wait
for it until the page is actually needed. In all tests roughly half of the prefetched
pages arrived before they were needed and the other half required some waiting time.

Table 3
Work Accomplished by the Garbage Co l l ec to r

Program GC type Root Set Copyspace Evacuated
GCPT ESRT Normal Last Page Words

Compiler ephemeral 295522 28125 6364 2980 6364
dynamic 4913853 868185 608945 868185

8oyer ephemeral 577843 1288 57953 64022 57953
dynamic 4911577 301067 123921 301067

This table shows the average work accomplished per garbage collection. The first four
columns show the number of words scavenged per garbage collection, divided between the
root set and copyspace. For the ephemeral case, the root set is fur ther broken down into
words found via the GCPT and words found via the ESRT. The words scavenged in copyspace
are further broken down into normal and last page (for depth-first copying). Any word
counted in the last page column is counted again in the normal column. The last two
columns show the number of words evacuated and the number of words of garbage reclaimed.
Naturally the number of words in copyspace scavenged is always equal to the number of
words evacuated into copyspace.

Reclaimed
Words

200403
1184590

197337
1903147

244

Evidently garbage was reclaimed quickly enough that the
program came close to fitting entirely in main memory, even
though the amount of garbage it generated was more than
sixty times the size of main memory. The run time of the
mutator with the ephemeral garbage collector (3008 seconds)
was actually less than with no garbage collector (3535
seconds). However, the ephemeral garbage collector did not
make the overall run time less than the no-garbage-collection
case, because of the substantial time consumed by the
garbage collector itself; each garbage collection took 11.5
seconds to evacuate 57,953 words. Not using any garbage
collector at all is still quicker than using the ephemeral
garbage collector, unless virtual address space fills up and the
machine crashes before the end of the session. On the other
hand, using the ephemeral garbage collector slows down the
program much less than the traditional garbage collector,
especially for programs like Compiler that do not generate
garbage as fast as 8oyer.

If a sufficiently large fraction of the objects that will
eventually become inaccessible are caught while they are still
in the ephemeral category, it may be possible to avoid entirely
the use of the full-scale dynamic-object garbage collector;
dynamic objects can then be regarded as static. The size of
the address space available to the user is substantially
increased by not reserving a large portion of it for copying
dynamic objects. Garbage will accumulate among the
dynamic objects, but if it accumulates slowly enough the
user's session on the machine will end for other reasons
before virtual memory overflows. Observed session lengths
vary from a few hours to two weeks.

Both of the test cases used were programs that retained few
of the objects they created. This matches, perhaps too well,
the assumption that all newly-created objects are ephemeral
and likely to become garbage. It would be valuable to
measure a program that creates less garbage and therefore
derives less benefit from the ephemeral garbage collector, to
see whether discovering that objects are not ephemeral by
copying them a few times is excessively costly.

Tuning the Ephemeral Garbage Collector

The Compiler and Boyer test programs were used to
estimate the number of levels of ephemeral objects sufficient
to collect almost all the garbage. The measurements listed

abqve were obtained with two levels, which seems to be right
for these programs.

In the Compiler test 2.7% of the ephemeral objects survived
garbage collection at the first level and 22% of those (0.6% of
the total) survived garbage collection at the second level and
graduated to dynamic status.

In the Boyer test 27% of the ephemeral objects survived
garbage collection at the first level and 5.7% of those (1.6% of
the total) survived garbage collection at the second level and
graduated to dynamic status. The Boyer test eventually
discards all of the objects it creates, so by adding additional
levels it should be possible to prevent any objects from

graduating to dynamic status. With two levels, dynamic
space grows by about 0.6 million words per hour, requiring
one or two dynamic garbage collections per day.

In general the number of levels of ephemeral objects required
depends on the characteristics of the particular program
creating and using the objects and on the interval between
garbage collections. By using its own area an application
program can tune the ephemeral garbage collection policy to
its needs. Further research is required into the needs of
different types of application programs and into automatic
tuning of garbage collection parameters.

Subjective Evaluation

It is difficult to be quantitative about perceived response time,
but everyone (a half dozen sophisticated Lisp machine users)
who has used the ephemeral garbage collector has remarked
how much better it is than the older garbage collector that
has only dynamic and static objects. Users have found that
the garbage collector's interference with interactive response
is not only much less, but also more predictable. In user
interfaces predictability seems to be as important to perceived
quality as performance.

Comparison With Other Work

Several other papers about interactions between garbage
collection and virtual memory have been published (4-7).
Most of these approaches decrease garbage collection overhead
by concentrating the attention of the garbage collector on
some subset of the objects. They avoid marking through all
of virtual memory by controlling references to objects with
reference counts (4,5), conventions about which objects can
refer to which other objects (6), or tables of locations
containing references to the interesting objects (7). The
third technique is also used by the present work.

Reference counts can substantially slow down the mutator,
because every write into memory must increment the
reference count of one object and decrement the reference
count of another. Each of those operations potentially
involves a page fault, but Deutsch and Bobrow (4) describe
clever techniques for decreasing this overhead. Reference
counts also cannot reclaim circular structures.

A more serious problem with reference counts is that they do
not permit copying of objects and therefore cannot improve
the locality of data structures in virtual memory. In a large
virtual memory, locality has a major effect on system
performance. A garbage collector that knows not only how
many references to an object exist, but exactly where those
references are, is able to relocate the references when it
moves the object. The overhead for keeping track of
references to all objects would be prohibitive, far exceeding
the overhead of keeping a reference count for every object,
but the ephemeral garbage collector shows that it is sufficient
only to keep track of references to an object early in its
lifetime.

245

Keeping track of where the references are can also be more
efficient than remembering how many references there are.
When one object reference in memory is overwritten with
another, a reference count system must deal with both the
old and new objects, but a reference-tracking system need
only deal with the new object.

Lieberman and Hewitt (6) keep track of references to objects
by using conventions about which objects can refer to which
other objects along with indirect object references through
entry tables. This does not work well for references from
places subject to frequent modification, such as value cells of
variables. Maintaining entry tables and chasing indirect
references could be a significant burden on the mutator. The
ephemeral garbage collector eliminates this burden by
simplifying the tracking of references to objects so that it can
be done by hardware that operates in parallel with the
mutator.

Generation scavenging (7) relies on software to keep track of
references to ephemeral objects. This is practical for Berkeley
Smalltalk because it is an interpreter that executes only 9000
Smalltalk operations per second. The underlying machine
has about 50 times the instruction processing rate, so the
overhead of executing a few extra instructions per Smalltalk
store operation is small. A system that executes mutator
operations at a speed closer to the full capacity of the
machine must turn to parallel hardware to keep the relative
overhead of keeping track of references to ephemeral objects
low.

An important advantage of the 3600's garbage collection
technique is that it is tunable by application programs and by
the user. They can easily inform the garbage collector about
the expected lifetimes of objects, using areas. They can
adjust the number of levels in an area and the capacity of
each level to tune the garbage collector to their requirements.
Multiple application programs with different requirements can
coexist by using separate areas.

6. Lieberman, H., and Hewitt, C. A Real-Time Garbage
Collector Based on the Lifetimes of Objects. Commun. ACM
26, 6 (June 1983) 419-429.

7. Ungar, D. Generation Scavenging: A Non-disruptive High
Performance Storage Reclamation Algorithm. ACM
SIGSOFT/SIGPLAN Practical Programming Environments
Conference (April 1984) 157-167.

References

1. Baker, H.G. List Processing in Real Time on a Serial
Computer. Commun. ACM 21, 4 (April 1978) 280-294.

2. Cheney, C.J. A Nonrecursive List Compacting Algorithm.
Commun. ACM 13, 11 (November 1970) 677-678.

3. Knuth, D.E. The Art of Computer Programming, Volume
3. Addison-Wesley, Reading, Mass. 1968, 417-419.

4. Deutsch, L.P., and Bobrow, D.G. An Efficient,
Incremental, Automatic Garbage Collector. Commun. ACM
19, 9 (September 1976) 522-526.

5. Hayashi, H., Hattori, A., and Akimoto, H. ALPHA..
High-Performance Lisp Machine equipped with a New Stack
Structure and Real Time Garbage Collection System. Fujitsu
Laboratories, Ltd. draft report.

246

