
Linear Scan Register Allocation
in the Context of SSA Form and Register Constraints 1

Hanspeter Mössenböck and Michael Pfeiffer

University of Linz, Institute of Practical Computer Science
{moessenboeck,pfeiffer}@ssw.uni-linz.ac.at

Abstract. Linear scan register allocation is an efficient alternative to the widely
used graph coloring approach. We show how this algorithm can be applied to
register-constrained architectures like the Intel x86. Our allocator relies on
static single assignment form, which simplifies data flow analysis and tends to
produce short live intervals. It makes use of lifetime holes and instruction
weights to improve the quality of the allocation. Our measurements confirm
that linear scan is several times faster than graph coloring for medium-sized to
large programs.

1 Introduction

Register allocation is the task of assigning registers to the variables and temporaries
of a program. It is crucial for the efficiency of the compiled code. The standard
algorithm for register allocation is based on graph coloring [4, 3]: it builds an
interference graph, in which the nodes represent the values in a program. An edge is
drawn between two values if they are live at the same time. The graph is then colored
such that adjacent nodes get different colors. If colors are viewed as registers we get a
register allocation in which two values are kept in different registers if they are live at
the same time.

There are situations, however, in which graph coloring is too slow, for example in
a just in time (JIT) compiler that translates an intermediate program representation to
machine code at load time or even at run time. JIT compilers must do their job in
almost no time but should still produce high quality code. This conflict has led to a
new register allocation technique that is called Linear Scan [10, 11, 13]. It assigns
registers to values in a single linear scan over the live intervals of all values in a
program. A live interval of a value v is the range of instructions starting at the
defining instruction and ending at the instruction where v was used for the last time. If
the live intervals of two values overlap, the values cannot reside in the same register.
Although graph coloring leads to a slightly better register allocation than linear scan,
the latter runs several times faster and is therefore an attractive register allocation
technique in JIT compilers.

1 This work was supported by Sun Microsystems, California.

This paper describes an implementation of the linear scan register allocation
technique making two contributions: Firstly, and in contrast to [10, 11, 13, 8], we base
our allocator on programs in static single assignment form (SSA form). This
simplifies data flow analysis and tends to produce shorter live intervals but requires
modifications to the original linear scan algorithm. Secondly, we show how linear
scan can be applied to register-constrained architectures such as the Intel x86. While
[10, 11, 13, 8] describe the algorithm for RISC architectures, a CISC machine like the
Intel x86 requires modifications to the basic algorithm because of its two-address
instructions and the fact that some operations expect or deliver values in specific
registers.

The work described in this paper was done in a joint project with Sun
Microsystems, in which their Java HotSpot™ client compiler [7] was extended with
SSA form, register allocation and various optimizations. The HotSpot client compiler
is a JIT compiler that is invoked for frequently called methods. Our modified
compiler builds a control flow graph from the bytecodes of the method, translates the
bytecodes to intermediate instructions of a register machine, brings them in SSA form
(eliminating loads and stores for local variables), performs global common
subexpression elimination and register allocation, and finally generates code for the
Intel x86. The first version of our compiler used a graph coloring register allocator.
Since this was not fast enough, we reimplemented the allocator using the linear scan
technique.

Section 2 of this paper describes the original linear scan algorithm both in its
simple form and in a refined form in which lifetime holes are exploited to fill them
with other live intervals. We also explain how SSA form affects the computation of
live intervals. Section 3 explains the data structures on which our algorithm relies and
Section 4 describes how the intermediate code is prepared for register allocation. In
Section 5 we explain our linear scan technique taking the peculiarities of the Intel
architecture into account. Section 6 evaluates the complexity of our algorithm,
compares it with related approaches and shows some measurements. Finally, Section
7 summarizes the results.

2 Linear Scan Register Allocation

Linear scan was introduced by Poletto et al. [10, 11] as an alternative to graph
coloring allocation. It computes the live intervals of values in a program and scans
them sequentially to find overlaps. Non-overlapping intervals can be assigned the
same register. Since the live interval of a value v may contain holes in which v is not
live, a refined version of this algorithm (called second-chance binpacking) was
described by Traub et al. [13]. Although more complicated, this algorithm results in a
better usage of registers. It also splits live intervals so that a value may reside in
different registers during its lifetime. Both algorithms, however, do not take into
account, that many optimizing compilers keep the intermediate program
representation in SSA form. Therefore Section 2.3 describes how SSA form affects
the linear scan allocation technique.

2.1 Basic Algorithm

The live interval of a value v is the range of instruction numbers [i, j[such that i is the
instruction where v starts to live and j is the instruction where it ends living. The value
v may still be used at j but it does not interfere with another value defined at j. Thus
the interval is open on the right-hand side. The instructions are numbered
consecutively through all basic blocks in a topological order of the control flow graph
without backward edges. The live variable information is obtained by data-flow
analysis [1]. Fig.1 shows an example of four live intervals computed from a linear
sequence of instructions.

1: a = ...
2: b = ...
3: c = b + 1
4: d = a + c
5: ... = c
6: ... = d
7: ... = b

a

b

1 3 5 72 4 6

c

d

Fig. 1. A simple instruction sequence and its live intervals

The linear scan algorithm traverses all intervals in the order of increasing start points
maintaining a list, active, which contains those intervals that overlap the start point of
the current interval. Initially all registers are free. For every interval i the algorithm
performs the following steps:

• If there are live intervals j in active that already expired before i begins (i.e., j.end
≤ i.beg), remove them from active and add j.reg to the set of free registers.

• If there are still free registers, assign one of them to i and add i to active. If there
are no free registers, spill the interval with the largest end point among i and all
intervals in active. If an interval from active was spilled, assign its register to i, and
add i to active.

Assuming that we have 2 registers, r1 and r2, the algorithm processes the intervals of
Fig. 1 as follows:

interval free active action
a r1, r2 - assign r1 to a; make a active
b r2 ar1 assign r2 to b; make b active
c - ar1, br2 spill b since it ends after c; make r2 free

r2 ar1 assign r2 to c; make c active
d - ar1, cr2 remove a from active (expired); make r1 free

r1 cr2 assign r1 to d; make d active

In this example, a and d end up in r1 and c in r2. The value b was first assigned to a
register, but later it was spilled and thus resides in memory.

2.2 Holes in Live Intervals

Between the first definition and the last use of a value there may be points at which
the value is not live. Consider for example the program in Fig. 2 in which we look at
the live intervals of the variables a and b.

1: a = ...
2: ...
3: ... = a
4: ...
5: a = ...
6: ...

7: b = ...
8: ...
9: ... = b

13: ...

10: ...
11: ... = a
12: ...

Live intervals without holes

Live intervals with holes

1

1

5

5

9

9

3

3

7

7

11

11

2

2

6

6

10

10

4

4

8

8

1213

1213

a

a

b

b

Fig. 2. Holes in live intervals

The live interval of a has two holes, the first one between instructions 3 and 5 where a
is not used any more before it is redefined, and the second one between instructions 7
and 9 resulting from the order in which we numbered the instructions. Since the
interval of b exactly falls into such a hole it can be assigned the same register as the
interval of a.

Keeping track of holes in live intervals makes the linear scan algorithm more
complicated but it pays off since we get more values into registers. The refinement of
linear scan with lifetime holes was described by Traub et al. [13]. The idea is also
used in our algorithm, which we will describe in Section 5.

Traub et al. add a second improvement to the linear scan algorithm. If an interval is
assigned a register but gets spilled later, a spill instruction is inserted at that point and
the interval is split into two halves. In the first half the value resides in a register, in
the second half it resides in memory unless it is selected for being reloaded into a
register later. They call their algorithm second-chance binpacking because a spilled
value gets a second chance to reside in a register later. We did not use this idea in our
algorithm, because our live intervals tend to be shorter due to SSA form as we will
describe in Section 2.3.

In Traub's algorithm the decision which interval is spilled if the allocator runs short
of registers is based on weights that are computed from the distance to the next use of
a value and the nesting level. We use similar weights based on the number of accesses
to the value and the nesting level.

2.3 Live Intervals and Static Single Assignment Form

Many optimizing compilers keep the intermediate program in Static Single
Assignment Form (SSA form) [6, 9] because it simplifies data flow analysis and
optimizations. In SSA form, every assignment introduces a new and uniquely named
variable so that there is never more than one assignment statement per variable. Thus,
given a variable name one immediately knows where this variable received a value. If
two variables have the same name they must also have the same value. Fig. 3 shows a
statement sequence and its transformation to SSA form.

a = ...
b = a + 1
a = ...
b = b + a

a1 = ...
b1 = a1 + 1
a2 = ...
b2 = b1 + a2

original SSA form a1 a2 b1 b2

Fig. 3. A statement sequence and its SSA form

If there are multiple assignments to a variable we get several smaller live
intervals—one for every copy of this variable—instead of a single large interval for
the original variable. Each of these intervals can reside in a different register,
decreasing register pressure. Thus, the need for splitting intervals as it is done in
second-chance binpacking is not as important as without SSA form.

If two values of a variable flow together at a basic block, SSA form requires the
insertion of a so-called φ-function (or phi-function), which is a pseudo instruction that
creates yet another copy of this variable. This is shown in Fig. 4.

1: a1 = ...
2: b1 = ...
3: ...

7: a3 = (a1, a2)
8: b3 = (b1, b2)
9: ... = b3

4: a2 = ...
5: b2 = ...
6: ...

φ
φ

B1 B2

B3

Fig. 4. φ-functions in a merge block

The φ-function in instruction 8 means that if the control flow comes via the left
branch b3 becomes b1, otherwise b3 becomes b2. It creates a single definition point
for the value of b that flows from here and is used in instruction 9.

Unfortunately, φ-functions become a problem in the computation of live intervals.
For example, the live interval of b1 is [2,4[, [7,8[and the live interval of b2 is [5,7[,
[7,8[. This would lead to an overlap of the two intervals in instruction 7 forcing them
into different registers. However, this is exactly what we do not want, since b1 and b2
are two values of the same variable and should end up in the same register if possible

so that the φ-function in instruction 8 can be eliminated and the same register can be
used for b1, b2 and b3.

In fact, b1 and b2 are not live at the same time in instruction 7. b1 is only live if we
come via the left branch and b2 is only live if we come via the right branch. If we
could insert move instructions at the end of B1 and B2 and eliminate the φ-functions
in B3 the overlap would be removed (Fig. 5a). However, this would invalidate SSA
form. The solution is to insert move instructions while keeping the φ-functions, and to
treat φ-functions as special cases for liveness analysis (Fig. 5b).

1: a1 = ...
2: b1 = ...
3: ...
4: a3 = a1
5: b3 = b1

1: a1 = ...
2: b1 = ...
3: ...
4: a3 = a1
5: b4 = b1

13: ... = b3 13: b3 = (b4, b5)
14: ... = b3

 6: a2 = ...
 7: b2 = ...
 8: ...
 9: a3 = a2
10: b3 = b2

 6: a2 = ...
 7: b2 = ...
 8: ...
 9: a3 = a2
10: b5 = b2

B1 B1B2 B2

B3 B3φa) b)

Fig. 5. Move instructions are inserted for the operands of φ-functions

In Fig. 5b the live interval of b1 is [2,5[, the live interval of b2 is [7,10[, and the live
interval of b3 is [14,14[(φ-functions are excluded from live intervals as described in
Section 4.3). There is no overlap any more and b1, b2 and b3 can be put into the same
register. By coalescing (Section 4.4) we can possibly also eliminate instructions 5 and
10. If only b1 and b3 can be put into the same register but not b2 (e.g., because this
register is used for some other purpose in B2) instruction 10 remains a register move.

3 Data Structures

The data structures for basic blocks are as described in Fig. 6. Every block has
pointers to its successors and predecessors as well as a pointer to its first and last
instruction and to the first φ-function (φ-functions precede the ordinary instructions).

b b.phi (points to the first -function)

(points to the first ordinary instruction)

(points to the last instruction)

b.first

b.last

φ

Fig. 6. Data structures for basic blocks

Every instruction i has an instruction number i.n and a field i.reg that holds the
register that the allocator assigns to the value created by i. The reg fields are
initialized to -1 (any) meaning that no register was assigned so far. If an instruction i
should produce a value in a specific register r (as it is sometimes the case on Intel
processors) i.reg is initialized to r (r ≥ 0) and the register allocator does not overwrite
this value. This technique is sometimes called precoloring and is described in more
detail for example in [5].

When the bytecodes are transformed to instructions of the intermediate represen-
tation (IR) we eliminate stores and loads for local variables (except for loads of
parameters). Every instruction produces a value that is stored in a new virtual register,
assuming that we have an unlimited number of virtual registers. Fig. 7 shows an
example of a Java function and the IR instructions generated for it.

int f(int a) {
 int b = a * a;
 return b + a;
}

1: i1 = load a
2: i2 = i1 * i1
3: i3 = i2 + i1
4: ret i3

Fig. 7. Every instructions produces a value in a virtual register

Instructions 1, 2 and 3 produce a value in a new virtual register (i1, i2, i3), thus the IR
is in SSA form. The reg fields of these instructions are initialized to any; the register
allocator will assign physical registers to them later. Instruction 4 does not produce a
value. Nevertheless it has a reg field, which the register allocator ignores. Stores and
loads of the variable b have been eliminated.

Live intervals are stored as a sorted sequence of sub-intervals (ranges) that are
open on the right-hand side. For example, the interval [3,5[, [10,15[, [18,20[consists
of three ranges. The first range starts at instruction 3 where the value is live and ends
at instruction 5 where the value may be used but is not live any more when a new
value is defined there. All live intervals are kept in an array interval (see Fig. 8). The
live interval of a value defined in instruction i can be found in interval[i.n].

interval ranges

beg

beg

beg

beg

beg

begend

end

end

end

end

end

...

1

2

3

Fig. 8. Live intervals and their ranges

Note that the array interval is automatically sorted in the order of increasing start
points of the live intervals, since every instruction (except return, goto, etc.) creates a
new value and is the start of this value’s live interval.

We say that the live interval of a value v is fixed if v.reg ≥ 0 prior to register
allocation. Fixed intervals with the same register are joined (see Section 4.4) into a
single interval. In order to make sure that fixed intervals of the same register do not
overlap, we insert moves before or after the instructions that generate or use values in
fixed registers. If an instruction

x = y op z

requires y to be in a specific register r, we insert a move instruction in front of it

u = y
x = u op z

and set u.reg to r. If the instruction leaves its result x in a specific register r, we insert
a move instruction after it

v = y op z
x = v

and set v.reg to r. The moves make sure that fixed intervals of the same register do
not overlap. Many of these moves can be eliminated by coalescing (see Section 4.4).

Finally we use live sets that we obtain by live variable analysis [1] and store them
as bit sets. Live variable analysis is considerably simplified by SSA form as described
for example in [9]. Every basic block b stores in b.live the set of values that are live
immediately before the instruction b.first.

4 Preparing the IR for Linear Scan

4.1 Generating Moves for φ-Operands

As explained in Section 2, we have to generate moves for the operands of φ-functions.
Fig. 9 shows the result of this process and algorithm GENMOVES() explains the
details. Since there is no block in the original graph to hold instruction 6 we have to
insert one.

a = ...
...

1: i1 = ...
2: i2 = ...

1: i1 = ...
2: i2 = ...

b = ...
a = b + 1

3: i3 = ...
4: i4 = i3 + 1

3: i3 = ...
4: i4 = i3 + 1

... = a 7: i7 = (i5, i6)
8: i8 = ... i7

7: i7 = (i4, i1)
8: i8 = ... i7

φφ

5: i5 = i4

6: i6 = i1

Fig. 9. Move instructions 5 and 6 are generated for the φ-function 7

GENMOVES()
for all blocks b do

for all predecessors p of b do
if b.no_of_predecessors > 1 and p.no_of_successors > 1 then

insert a new block n between p and b
else

n ← p
for each φ-function phi of b do

i ← new RegMove(phi.opd(p)) // the φ-operand corresponding to p
phi.opd(p) ← i
append i to n
join i with phi // see Section 4.4

4.2 Numbering the Instructions

After moves have been inserted for φ-operands the instructions have to be numbered
consecutively. In order to do that we traverse all basic blocks in topological order so
that a block b is only visited after all its predecessors that have forward branches to b
have been visited. Fig. 10 shows some valid visit sequences.

1 1 1 1

2 2

3 4

4 3

2 33 2

4 4

Fig. 10. Valid visit sequences of blocks for instruction numbering

4.3 Computing Live Intervals

In SSA form there is only one assignment to every variable. This assignment marks
the beginning of the variable’s lifetime. The variable lives in all paths from its
definition to its last use. For every block b and every variable v we compute a range
rv,b that denotes the live range of v in b as shown in Fig. 11.

If v is live at the end of b it must have been defined either in b or in some
predecessor block p. If v was defined in p then rv,b begins at b.first and ends after
b.last. If it was defined in b then rv,b begins at the instruction v and ends after b.last.

If v is not live at the end of b but is used in b then rv,b begins as described above
and ends at the last use of v in b. The last use of a variable is detected using the live
sets: the instructions of b are traversed in reverse order; if a variable v is used at
instruction i but is not in the live set at the end of i then i is the last use of v.

first:

last:

first:

i:

last:

first:
v:

i:

last:

first:

v:

last:

...

...

...

...

...

...

...

...

...
v ...
...
...

...

...

...
v ...
...
...

...

...

...

...

...

...

live: {v} live: {v} live: {}live: {}

live: {v} live: {} live: {}live: {v}

r : [first, last+1[r : [first, i[r : [v, i[r : [v, last+1[v,b v,b v,bv,b

Fig. 11. Computation of the live range rv,b of a variable v in block b

The live interval of a φ-function i in block b does not start at i but at the first ordinary
instruction in this block (b.first). This avoids undesired conflicts between the φ-
functions of a block. It is an invariant of our algorithm that the defining instruction of
a φ-function never appears in a live interval.

The algorithm ADDRANGE(i, b, end) computes the range ri,b of instruction i in
block b (according to Fig. 11) assuming that we already know that i ends living at the
instruction with the number end. It then adds the range to the live interval of i.

ADDRANGE(i: Instruction; b: Block; end: integer)
if b.first.n ≤ i.n ≤ b.last.n then range ← [i.n, end[else range ← [b.first.n, end[
add range to interval[i.n] // merging adjacent ranges

If possible, adjacent ranges of the same live interval are merged. For example, the
ranges [1,3[, [3,7[are merged into a single range [1,7[.

The algorithm BUILDINTERVALS() traverses the control flow graph in an arbitrary
order, finds out which values are live at the end of every block, and computes the
ranges for these values as described above.

BUILDINTERVALS()
for each block b do

live ← {}
for each successor s of b do

live ← live ∪ s.live
for each φ-function phi in s do

live ← live – {phi} ∪ {phi.opd(b)}
for each instruction i in live do ADDRANGE(i, b, b.last.n+1)
for all instructions i in b in reverse order do

live ← live – {i}
for each operand opd of i do

if opd ∉ live then
live ← live ∪ {opd}
ADDRANGE(opd, b, i.n)

Fig. 12 shows a sample program in source code and in intermediate representation
with a φ-function for the value d and corresponding move instructions in the
predecessor blocks. Fig. 13 shows the live intervals that are computed for this
program by BUILDINTERVALS(). Note that the live intervals of i2 and i11 exclude
instruction 11 since φ-functions never appear in live intervals.

a = ...
b = ...

e = ...
... = d
... = e

... = a
c = b
d = ...
... = c

d = ...
... = a

1: i1 = ...
2: i2 = ...

3: i3 = ... i1
4: i4 = ... i2
5: i5 = ...
6: i6 = ... i4
7: i7 = i5

8: i8 = ...
9: i9 = ... i1
10: i10 = i8

11: i11 = (i7, i10)
12: i12 = ...
13: i13 = i2 + i11
14: i14 = ...i12

φ

Fig. 12. Sample program in source code and in intermediate representation

i1:
i2:
i4:
i5:
i7:
i8:

i10:
i11:
i12:

[1,3[, [8,9[
[2,11[, [12,13[
[4,6[
[5,7[
[7,8[
[8,10[
[10,11[
[12,13[
[12,14[

2 6 10 144 8 121 5 9 133 7 11

Fig. 13. Live Intervals computed from the program in Fig. 12

4.4 Joining Values

Sometimes we want that two values go into the same register, for example:

• a φ-function and its operands (so that the φ-function can be eliminated);
• the left-hand and right-hand sides of register moves (so that the move can be

eliminated);
• the first operand y and the result x of a two-address instruction x = y op z as it is

required by the Intel x86 architecture.

If the live intervals of the two values do not overlap we can join them, i.e. we merge
their intervals so that the register allocator assigns the same register to them. This is
also called coalescing ([2]). Note that coalescing leads to longer intervals possibly
introducing additional conflicts that force more values into memory. Currently we do
not try to minimize such conflicts although it could be done as described for example
in [2].

A group of joined values is represented by only one of those values, its
representative, using a union-find algorithm ([12]). Every instruction i has a field
i.join, which points to its representative. Initially, i.join = i for all instructions i. If we
have three values, a, b, and c, and if we join b with c, and then a with b we get a
group with c as its representative as shown in Fig. 14.

a
c

b

a.join

Fig. 14. A group of four joined values with c as its representative

Taking into account that certain values have to be in specific registers we can join two
values x and y only if they are compatible, i.e. if

• both do not have to be in specific registers, or
• both have to be in the same specific register, or
• x must be in a specific register and the interval of y does not overlap any other

interval to which x.reg has been assigned (or vice versa). More formally:
x.reg ≥ 0 ∧ ¬ (∃ interval iv: iv.reg = x.reg & interval[y.n] overlaps iv) ∨
y.reg ≥ 0 ∧ ¬ (∃ interval iv: iv.reg = y.reg & interval[x.n] overlaps iv)

The algorithm JOIN(x, y) joins the two values x and y if they are compatible:

JOIN(x, y: Instruction)
i ← interval[REP(x).n]
j ← interval[REP(y).n]
if i ∩ j = {} and x and y are compatible then

interval[REP(y).n] ← i ∪ j
drop interval[REP(x).n]
x.join ← REP(y)

REP(x: Instruction): Instruction
if x.join = x then return x else return REP(x.join)

If we look at the program in Fig. 12 we can join the values 11, 7 and 10 (the φ-
function and its operands) as well as 5 with 7 and 8 with 10 (the left- and right-hand
sides of the register moves). The resulting intervals are shown in Fig. 15.

The live intervals are now in a form that can be used for linear scan register
allocation. This will be described in the next section.

i1:
i2:
i4:

i5,7,8,10,11:
i12:

[1,3[, [8,9[
[2,11[, [12,13[
[4,6[
[5,11[, [12,13[
[12,14[

2 6 10 144 8 121 5 9 133 7 11

Fig. 15. Live intervals of Fig. 13 after join operations

5 The Linear Scan Algorithm

The register allocator has to map an unbounded number of virtual registers to a small
set of physical registers. If a value cannot be mapped to a register it is assigned to a
memory location. Many instructions of the Intel x86 allow memory operands so there
is a good chance that this value never has to be loaded into a register. If it has to be in
a register, however, we load it into a scratch register (one scratch register is excluded
from register allocation). If an instruction needs more than one scratch register the
code generator spills one of the registers and uses it as a temporary scratch register.
When the spilled value is needed again the code generator reloads it into the same
register as before. Note that spilling instructions are emitted by the code generator and
not by the register allocator, which only decides if a value should reside in a register
or in memory.

The register allocator assumes that all live intervals of a method are sorted in the
order of increasing start points. It makes the first interval the current interval (cur)
and divides the remaining intervals into the following four sets:

• unhandled set: all intervals that start after cur.beg;
• handled set: all intervals that ended before cur.beg or were spilled (see below);
• active set: all intervals where one of their ranges overlaps cur.beg;
• inactive set: all intervals where cur.beg falls into one of their holes.

Throughout register allocation the following invariants hold: Registers assigned to
intervals in the handled set are free; registers assigned to intervals in the active set are
not free; a register assigned to an interval i in the inactive set is either free or occupied
by a currently active interval j that does not overlap i (i.e. fully lies in a hole of i).
When i becomes active again, j already ended so that i can reclaim its register.

The algorithm LINEARSCAN() repeatedly picks the first interval cur from
unhandled updating the sets active, inactive and handled appropriately.

LINEARSCAN()
unhandled ← all intervals in increasing order of their start points
active ← {}; inactive ← {}; handled ← {}
free ← set of available registers

while unhandled ≠ {} do
cur ← pick and remove the first interval from unhandled
//----- check for active intervals that expired
for each interval i in active do

if i ends before cur.beg then
move i to handled and add i.reg to free

else if i does not overlap cur.beg then
move i to inactive and add i.reg to free

//----- check for inactive intervals that expired or become reactivated
for each interval i in inactive do

if i ends before cur.beg then
move i to handled

else if i overlaps cur.beg then
move i to active and remove i.reg from free

//----- collect available registers in f
f ← free
for each interval i in inactive that overlaps cur do f ← f – {i.reg}
for each fixed interval i in unhandled that overlaps cur do f ← f – {i.reg}
//----- select a register from f
if f = {} then

ASSIGNMEMLOC(cur) // see below
else

if cur.reg < 0 then cur.reg ← any register in f
free ← free – {cur.reg}
move cur to active

If we cannot find a free register for cur we assign a memory location to either cur or
to any of the other currently active or inactive intervals, whichever has a lower
weight. The weights are computed from the accesses to the intervals weighted by the
nesting level in which the accesses occur. Here is the algorithm:

ASSIGNMEMLOC(cur: Interval)
for all registers r do w[r] ← 0 // clear register weights
for all intervals i in active, inactive and (fixed) unhandled do

if i overlaps cur then w[i.reg] ← w[i.reg] + i.weight // if fixed i.weight = ∞
find r such that w[r] is a minimum
if cur.weight < w[r] then

assign a memory location to cur and move cur to handled
else // assign memory locations to the intervals occupied by r

move all active or inactive intervals to which r was assigned to handled
assign memory locations to them
cur.reg ← r
move cur to active

Table 1 shows how LINEARSCAN() works through the intervals of Fig. 15 assuming
that we have 2 registers available. The weights of the intervals can be computed from
the accesses to values (see Fig. 12) and are as follows: i1:3, i2:3, i4:2, i5:7, i12:2
(accesses in a φ-function are neglected).

Table 1. Simulation of LINEARSCAN() for the intervals of Fig. 15

cur action free unhandled active inactive handled
initialize r1, r2 1, 2, 4, 5, 12 - - -

1 assign r1 to interval 1 r2 2, 4, 5, 12 1r1 - -
2 assign r2 to interval 2 - 4, 5, 12 1r1, 2r2 - -
4 move interval 1 to inactive r1 5, 12 2r2 1r1 -

assign r1 to interval 4 - 5, 12 2r2, 4r1 1r1 -
5 put interval 2 into memoy r2 12 4r1 1r1 2m

assign r2 to interval 5 - 12 4r1, 5r2 1r1 2m

12 move int. 1 and 4 to handled r1 - 5r2 - 1r1, 2m, 4r1

assign r1 to interval 12 - - 5r2, 12r1 - 1r1, 2m, 4r1

Interval 2 was put into memory because its weight (3) is less than the cumulated
weights of intervals 1 and 4 that occupy the same register at that time (weight = 5)
and of the current interval 5 (weight = 7). Fig. 16 shows the result of the register
allocation for Fig. 15.

i1:
i2:
i4:
i5:

i12:

r1
memory
r1
r2
r1

2 6 10 144 8 121 5 9 133 7 11

Fig. 16. Result of the register allocation with 2 available registers

6 Evaluation

6.1 Complexity

LINEARSCAN takes linear time to scan the intervals. For every interval it has to inspect
the active, inactive and unhandled fixed sets in order to find overlaps. Since there
cannot be more active intervals than registers, the length of the active set is bounded
by the number of registers, which is a small constant. The length of the inactive set
can come close to the total number of intervals, which would lead to a quadratic time
complexity in the worst case. In practice, however, there are only very few inactive
intervals (typically less than 2) at any point in time so the behavior is still linear.
Finally, the number of unhandled fixed intervals is bounded by the number of
available registers, because fixed intervals with the same register are joined into a
single interval. Therefore, if n is the number of live intervals, the overall complexity
of our algorithm is O(n2) in the worst case but linear in practice.

During preprocessing we have to generate moves for φ-functions. This takes time
proportional to the number of φ-functions, which is smaller than n. Live intervals are
generated in sorted order so we do not need a separate pass to sort them.

6.2 Comparison with Related Work

The novelty of our approach lies in the fact that it is applicable to programs in SSA
form and that it can deal with values that have to reside in specific registers. The
adaptations for SSA form are done in a preprocessing step in which moves are
inserted into the instruction stream in order to neutralize the φ-functions. After this
step, SSA form does not affect the linear scan register allocation since φ-functions do
not show up in the live intervals any more.

In contrast to Poletto and Sarkar [11] our linear scan algorithm can deal with
lifetime holes and fixed intervals, which makes it more complicated: In addition to the
three sets unhandled, handled and active we need a fourth set, inactive, to hold
intervals with a hole into which the start of the current interval falls. We also have to
exclude registers that are occupied by overlapping fixed intervals from the register
selection. Otherwise our algorithm is very close to the one described in [11].

Traub et al. [13] emit spill and reload instructions during register allocation
eliminating a separate pass in which the instruction stream is rewritten. A spilled
value can be reloaded into any free register later so that a value can reside in different
registers during its life. While the ability to split long intervals is definitely an
advantage, SSA form tends to produce shorter intervals from the beginning. For
example, the live interval of the value v in Fig. 17a is [1,9[. In SSA form (Fig. 17b)
the interval is split into 4 intervals ([1,2[, [4,7[, [9,10[, [12,12[), each of which can
reside in a different register. Therefore the need for interval splitting seems not to be
as urgent as without SSA form.

1: v = ...
2: ... = v
3: ...
4: v = ...

1: v0 = ...
2: ... = v0
3: ...
4: v1 = ...

5: ...
6: ...

5: ...
6: ...
7: t1 = v1

7: ...
8: v = ...

8: ...
9: v2 = ...
10: t2 = v2

9: ... = v
11: v3 = (t1, t2)
12: ... = v3

φ

a) b)

Fig. 17. Length of live intervals a) without and b) with SSA form

Traub’s algorithm has to insert register moves at certain block boundaries because
values can be in different locations at the beginning and the end of a control flow
edge. In a similar way, we insert moves for the operands of φ-functions (instructions 7
and 10 in Fig. 17b) and eliminate unnecessary moves by coalescing values later.

6.3 Measurements

The first version of our compiler used a graph coloring register allocator, which we
later replaced by a linear scan allocator. In order to compare their speed we compiled
the first 1000 classes of the Java class library.

Fig. 18 shows the time used for register allocation (in milliseconds) depending on
the size of the compiled methods (in bytecodes). We can see that linear scan has a
nearly linear time behavior and remains efficient even for larger methods, whereas the
time for graph coloring tends to increase disproportionally. For large programs linear
scan is several times faster than graph coloring.

0.0
2.0

4.0
6.0

8.0
10.0

12.0

14.0
16.0

18.0

20.0

0 200 400 600 800 1000 1200 bytecodes

ms

graph coloring

linear scan

Fig. 18. Run time of graph coloring vs. linear scan

7 Summary

We described how to adapt the linear scan register allocation technique for programs
in SSA form. Due to SSA form the live intervals of most values become short and
allow us to keep the same variable in different registers during its lifetime without
splitting live intervals. We also showed how to deal with values that have to reside in
specific registers as it is common in many CISC architectures.

Acknowledgements. We would like to thank Robert Griesemer, Srdjan Mitrovic and
Kenneth Russell from Sun Microsystems for supporting our project as well as the
anonymous referees for providing us with valuable comments on an early draft of this
paper.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

2. Appel, A.W.: Modern Compiler Implementation in Java. Cambridge University Press
(1998)

3. Briggs, P., Cooper, K., Torczon, L: Improvements to Graph Coloring Register Allocation.
ACM Transactions on Programming Languages and Systems 16, 3 (1994) 428-455

4. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein,
P.W.: Register Allocation via Coloring. Computer Languages 6 (1981) 47-57

5. Chow F. C., Hennessy J. L.: The Priority-Based Coloring Approach to Register
Allocation. ACM Transactions on Programming Languages and Systems 12, 4 (1990)
501-536

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N.: Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph. ACM Transactions on
Programming Languages and Systems 13, 4 (1991) 451 - 490

7. Griesemer, R., Mitrovic, S.: A Compiler for the Java HotSpot™ Virtual Machine.. In
Böszörmenyi et al. (ed.): The School of Niklaus Wirth. dpunkt.verlag (2000)

8. Johansson, E., Sagonas, K.: Linear Scan Register Allocation in the HiPE Compiler.
International Workshop on Functional and (Constraint) Logic Programming (WFLP
2001), Kiel, Germany, September 13-15, 2001

9. Mössenböck, H.: Adding Static Single Assignment Form and a Graph Coloring Register
Allocator to the Java HotSpot Client Compiler. TR-15-2000, University of Linz,
Institute of Practical Computer Science, 2000

10. Poletto, M., Engler, D.R., Kaashoek, M.F.: A System for Fast, Flexible, and High-Level
Dynamic Code Generation. Proceedings of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, Las Vegas (1997) 109-121

11. Poletto, M., Sarkar, V.: Linear Register Allocation. ACM Transactions on Programming
Languages and Systems 21, 6 (1999) 895-913

12. Sedgewick, R.: Algorithms, 2nd edition. Addison Wesley (1988)
13. Traub, O., Holloway, G., Smith, M.D.: Quality and Speed in Linear-Scan Register

Allocation. Proceedings of the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (1998) 142-151

