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Abs t r ac t .  Static single assignment (SSA) form is an intermediate rep- 
resentation that is well suited for solving many data flow optimization 
problems. However, since the standard algorithm for building SSA form is 
exhaustive, maintaining correct SSA form throughout a multi-pass com- 
pilation process can be expensive. In this paper, we present incremental 
algorithms for restoring correct SSA form after program transformations. 
First, we specify incremental SSA algorithms for insertion and deletion of 
a use/definition of a variable, and for a large class of updates on intervals. 
We characterize several cases for which the cost of these algorithms will 
be proportional to the size of the transformed region and hence poten- 
tially much smaller than the cost of the exhaustive algorithm. Secondly, 
we specify customized SSA-update algorithms for a set of common loop 
transformations. These algorithms are highly efficient: the cost depends 
at worst on the size of the transformed code, and in many cases the cost 
is independent of the loop body size and depends only on the number of 
loops. 

1 Introduct ion 

Static single assignment (SSA) [8, 6] form is a compact  intermediate p rogram 
representation that  is well suited to a large number  of compiler opt imizat ion 
algorithms, including constant propagat ion [19], global value numbering [3], and 
program equivalence detection [21]. In SSA form, each variable appears  as a 
target  of an assignment at most  once, so that  each variable use is reached by a 
single definition. Special variable definitions called r  fundions are added to 
the program to represent multiple reaching definitions. 

This paper  addresses the problem of rebuilding SSA form after p rogram trans- 
formation.  The tradit ional algori thm for building minimal  SSA form [8, 18] is 
efficient but  exhaustive. Even when program changes are small, the cost of up- 
dating SSA with this algorithm is proport ional  to the size Of the procedure. As 
a result, maintaining current and correct SSA form during a mult i-pass compi- 
lation process is expensive. 
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As an alternative to exhaustive SSA reconstruction, we propose incremental 
SSA update techniques. We present general incremental algorithms for restoring 
correct SSA form: 

- after an arbitrary insertion/deletion of a use/definition of a variable, and 
- after an arbitrary update of a single interval. 

We also characterize several cases for which the cost of these algorithms will be 
proportional to the size of the transformed region and hence potentially much 
smaller than the cost of the exhaustive algorithm. 

Additionally, we present customized incremental SSA-update algorithms for 
a set of common loop transformations, which includes interchange of rectan- 
gular/trapezoidal loops, general iteration-reordering loop transformations, and 
loop fusion. These algorithms are highly efficient: the cost depends at worst on 
the size of the transformed code, and in many cases the cost is independent of 
the loop body size and depends only on the number of loops. 

I t  is important to use more efficient customized SSk-update algorithms for 
common loop transformations because: 

- Loop transformations are increasingly important in multi-pass compilers to 
facilitate instruction scheduling, increase parallelism, improve reference lo- 
cality, and enable other optimizations [14]. 

- Loop transformations often constitute a small program change, relative to 
the size of the procedure. 

- SSA form for loops has special properties which make incremental update 
on a single loop basis efficient and straightforward. 

The rest of the paper is organized as follows. Section 2 describes comparison 
of our method with previous work. Section 3 presents definitions and background 
material on SSA form. Section 4 presents basic techniques for updating SSA form 
after changes to individual statements or to individual intervals. Section 5 gives 
more efficient update algorithms for specific loop transformations, and Section 
6 presents our conclusions. 

2 R e l a t e d  W o r k  

We focus our discussion on incremental update of SSA form, since it is well- 
known how to perform incremental updates on other data structures such as the 
control flow graph and the intermediate language text for these loop transforma- 
tions. Previous work on incremental data flow analysis focuses on obtaining an 
updated fixed-point solution after a small program change [5, 4, 13, 12]. These 
incremental data flow techniques apply to any monotone data flow problem ex- 
pressed within the classic data flow framework. Our work differs from these 
exhaustive approaches in that we apply specialized update algorithms for par- 
ticular changes in the program. Thereby, our methods incur costs proportional 
to the size of the changes in the program. Cytron and Gershbein [9] also present 
techniques for incrementally building SSA form to accommodate may-aliases. 
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Their  techniques deal with only inserting special definitions, called may-defs, 
generated by may-aliases. They considered incrementality only in response to 
specific demands for data  flow information over a program whose structure and 
contents remain constant. Ryder and Carroll [15] present techniques for incre- 
mentally updating the dominator tree of a directed graph. 

In [11], Griswold and Notkin propose an incremental paradigm for updating 
the source abstract syntax tree (AST), control flow graph (CFG), and program 
dependence graph (PDG) representations of a program so as to properly reflect 
a program transformation supported by their tool. Each local /compensation 
transformation that  is applied to the source AST by the tool has a corresponding 
subgraph substitution rule that  is applied to the C F G / P D G .  In contrast,  we 
present substitution rules for updating the SSA graph for a variety of source 
transformations. Our technique could be used to extend the work reported in 
[11] so as to allow incremental update of the SSA graph representation in addition 
to incremental updates of the CFG and PDG. In fact, the SSA graph could be 
used as a more efficient representation of the data  dependence edges in the PDG 
representation. 

In [10], Giegerich et al study the problem of identifying conditions under 
which data  flow information is unchanged after a program transformation is 
applied. They define the notion of invariance of an approximative semantics with 
respect to a given set of transformation rules. Their  work could potentially be 
used as a basis for identifying transformations for which the SSA graph remains 
unchanged. 

3 B a c k g r o u n d  

In this section, we describe terminology and definitions used in the rest of the 
paper. 

3.1 P r o g r a m  Representation 

Definit ion 1. A control flow graph of a procedure P is a directed multigraph 

CFG = <  Nc, Ec, E n t r y ,  E x i t  > 

A node ni E N~ represents a statement w in P,  and an edge ek --< n~, nj >E Ec 
represents the transfer of control from the statement of n~ to the statement of 
nj .  We assume that  each node is on a path from E n t r y  to Ex i t .  [] 

Definit ion 2. A node n dominates a node ~t in CFG if every directed path from 
E n t r y  to ~t contains n. El 

Definit ion 3. A back edge in CFG is an edge < l, h > such that  node h dom- 
inates node I. Node h is called a header node. A back edge defines a strongly 
connected region STR(h, l), which consists of the nodes and edges belonging to 
all CFG simple paths from h to l, and also the back edge. [] 
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Definit ion4.  Let B(h) = {< l ,h  >E Ec I< l ,h  > is a back edge}. Then,  
the transitive interval with header h, denoted by I*(h), is the union of all the 
STR(h, l) defined by B(h). The interval with header h, denoted by Interval(h), 
is a directed graph Interval(h) = <  Nh, Eh, h > such tha t  

- Nh = {n E No In  E (I*(h) - U~z.Ch),~r I*(h))}, and 
- Eh = {< n~, nj >~  E.  I r . ,  n: ~ JVh}. 

We denote the header node of interval I by halt(I). [] 

Informally, Interval(h) is the union of all the nodes in I* (h) that  do not "belong 
to" intervals nested in I* (h), and edges between these nodes. 

3.2 Properties  of  SSA 

Rendering a program into SSA form simplifies and increases the accuracy of 
solving a useful subset of data-flow optimizat ion problems. These results are 
largely due to the statically functional nature of an SSA form program: each 
"variable" in the transformed program appears as the target of exactly one 
assignment s tatement .  All uses are appropriately renamed so that  the value flow 
from a variable's definition (de]) to its use(s) is explicitly apparent  in the program 
text.  

To describe how to construct SSA form of a program,  we introduce the fol- 
lowing terminology. 

D e f i n i t i o n  5. Let n and m be nodes in CFG. If n dominates  m and n # m, 
then n strictly dominates ra. The dominance frontier DF(n) of n is the set of all 
CFG nodes m such that  n dominates a predecessor of ra but does not strictly 
dominate  m. [] 

Note that  the dominator  relation of a CFG forms a tree, called a domina- 
tor tree. Algorithmically, SSA form is constructed by identifying regions of a 
program dominated by a given def. Where control flow from different regions 
merge, the t ransformed program contains a e-function that  explicitly represents 
the merge of value defs. More specifically, the set of nodes containing e-functions 
for variable v can be precomputed as the iterated dominance frontier of nodes 
containing defs of v [8, 18]. The SSA construction algori thm then traverses the 
dominator  tree of the program's  control flow graph, maintaining a stack of re- 
named defs for each variable. 

Figure 1 shows an example program segment and its SSA form. Renaming 
in SSA form ensures that  each variable in the t ransformed program appears as 
the target  of exactly one assignment s tatement .  A e-function is introduced at 
s ta tement  $4 to explicitly represent the merge of value defs I"1 and I"2. Note tha t  
in this paper,  we use z and y for the original variable names and use X~ and Yj 
for the variable names renamed from x and y, respectively. 

A s ta tement  in a program has a unique node in the corresponding CFG.  
Hence, in this paper,  we will use s ta tements  and nodes (in CFG) interchangeably 
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$1: z . . . .  ; $1: X1 . . . .  ; 
$2: i f ( z > 0 )  y = z + 1 0 ;  .~2: i f ( X 1 > 0 )  Y ~ = X ~ + 1 0 ;  
$3: else y = z - 1 0 ;  $3: else Y~ = X z - 1 0 ;  
s, :  ~,: y. = r  Y.); 
&: = = = + y ;  ~5: X 2 = X ~ + Y 3 ;  

Fig. 1. An Example program and Its SSA Form 

when the meaning is clear. Our results are equally applicable to the case when 
a CFG node represents a basic block, which could contain multiple statements. 

P r o p e r t y  1 Let n be a node in CFG with a def of X~, and m be a node in 
CFG with a use of X~ that  is a user statement, i.e. not a C-function parameter. 
Then, 

1. n dominates m; and 
2. there is no node I with a def of �9 such that  I dominates m and is in turn 

dominated by n. 

D e f i n i t i o n  6. Given a variable v and user statement S of a procedure in SSA 
form, reaching_clef(S, v) is the def of v that reaches the statement S. For So, 
which is the entry of the procedure, reaching_clef(So, v) is V0, a def of v assumed 
to reach the entry of the procedure (interprocedurally). 

Since S is a user program statement and not a C-function, reaching_def(S, v) is 
unique and strictly dominates S. For Xi at a CFG node n to be reaching_def(m, z), 
node n and node m must satisfy Property 1. 

P r o p e r t y  2 Let n be a node in CFG with a def of Xi, and m be a node in 
CFG with a use of X~ that  is a C-function parameter. Then, 

1. m is a dominance frontier of n; and 
2. Xi = reaching_clef(S, v), where S is a predecessor statement of m in CFG, 

if S does not have a def of ~; or X~ is the def of z at S. 

4 Incremental SSA Algorithms 

This section explores general incremental properties of SSA. Given an insertion 
or deletion of a variable def or use, Section 4.1 presents algorithms for restoring 
correct SSA form. Section 4.2 generalizes these algorithms to work for updates 
of an interval. 
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4.1 I n c r e m e n t a l  SSA T e c h n i q u e s  

When a variable def is deleted (inserted), C-funct ions may have to be deleted 
(inserted) to restore minimal SSA form. 4 For example, in Figure 2, if the state- 
ment $5 is deleted in (a), C-funct ions at statements $4, $7 and $9 must also 
be deleted, resulting in program (b). Similarly, inserting a def of z at location 
~5 in (b) results in the inverse transformation. This insertion update procedure 
requires using the dominance frontier relation, and all four incremental algo- 
r i thms presented below use the dominator tree. The variable def that  reaches 
the change site plays a special role. 

T h e o r e m  7. Suppose a def of v is deleted (inserted) at s tatement S in an SSA- 
correct program P.  Let /5  be the resulting SSA-correct program after the deletion 
(insertion), and r = reaching_clef(S, v) in /5  (p) .  Then all modified statements 
in both P a n d / 3  are dominated by r or are in the iterated dominance frontier 
of r. [] 

P r o o f i  It follows from Property 1 and Property 2. [] 
In Figure 2, X1 is reaching_def(Sh, z) in (b), and dominates all modified 

statements. (Note that  (b) corresponds to the transformed program/3  when S 
is deleted, and to the initial program P when S is inserted.) 

SI: XI .... SI: XI .... 

$2: if ... ~2: if ... 

$3 : repeat $3 : repeat 

S5: Xs .... ~5: 

$6: until . . .  ~6: until . . .  
sT: x. = r x~ , x. ) ~ : 

$8: endif $8: endif 

sg: x ,  = r ~9: 
SIO: . . . .  X5 SiO: . . . .  Xl 

Ca) (b) 

Fig. 2. SSA form before and after deletin 8 a def Xs. 

A C-function represents the merge of different value defs, which can become 
redundant if one or more of the defs get deleted. For example, the C-functions at 
$4 and $7 in Figure 2 represent the merge of defs X1 and X3, and will become 

4 By minimal SSA form, we mean the SSA form that would be constructed by the 
exhaustive algorithm in [8]. 
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redundant if X3 gets deleted. A formal definition of a redundant C-function is 
given as follows: 

D e f i n i t l o n 8 .  A C-function F is redundant if all the parameters,  except those 
identical to the target of the C-function, are the same renamed variable. 

Examples of redundant C-functions are: 

= x j ) ,  = r  

In the incremental SSA update algorithms specified below, it is assumed 
that  same-named variables are represented by def-use chains after variable re- 
naming. Specifically, Uses(d) is the set of uses reached by the def d. Using 
doubly-linked list representations for the Uses sets, adding and deleting uses 
can be performed in constant time. Computing r = reaching_clef(S, v) can be 
performed by searching ancestors in the dominator tree, so that  the cost is pro- 
portional to the height of the tree. 
D e l e t e  u se  u o f  v a r i a b l e  v a t  s t a t e m e n t  S: Remove u from Uses(r) .  
I n s e r t  u se  u o f  v a r i a b l e  v a t  s t a t e m e n t  S: Add u to Uses(r).  
D e l e t e  d e f  d o f  v a r i a b l e  v a t  s t a t e m e n t  S: Like the original SSA algorithm 
in [8], the incremental update algorithm works in several steps: 

i. Update Uses sets: All uses of d, including parameters of C-functions, become 
uses of r, which is reaching_clef(S, v). 

2. Delete redundant C-functions: If any C-function F becomes redundant,  F 
will be deleted and the whole process of (a) and (b) repeats, with the target 
of F as the new d. 

Ezample: To illustrate this algorithm, we delete $5 in Figure 2(a). Xa in $5 is 
used in C-functions at $4 and $7, and initially reaching_clef(S5, m) = X~.. 
Substituting X~. for X3, $4 becomes redundant and deleted. Step (a) is ap- 
plied recursively with X~. as the newly deleted d. The new reaching_clef(S4, m) 
is X1, which is propagated to the C-function at $7, where X2 appears as an 
input operand after the first iteration. Statement $7 is deleted as being re- 
dundant,  and X1, as the new reaching_def(S7, m), substitutes the use of X4 
at $9, resulting in a redundant C-function at $9. With X5 at $9 deleted, 
the use of X5 at S10 becomes that of X1, resulting in Figure 2(b) 

I n s e r t  clef d o f  v a r i a b l e  v a t  s t a t e m e n t  S: 

1. Insert new C-functions: For each node in the dominance frontier of S, if 
there is no r  for v create a new r  and perform this 
step recursively. (All the input operands of new C - f u n c t i o n s  are initially 
assumed to be uses of r. Adjustments are made in step (c), when correct 
reaching defs are known.) For inserting defs at multiple nodes, a linear t ime 
algorithm for computing iterated dominance frontiers of these nodes can be 
used for placing C-functions [18]. 

2. Update Uses sets for all uses dominated by S, or all uses dominated by any 
of the new defs of the new C-function assignments. This is done by walking 
down the dominator tree from each of these defs and identifying uses that ,  
along with the def, satisfy Property 1. 
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3. Update each use that  is a parameter  of the newly created r  
according to Property 2. 

Ezample: To illustrate this insertion algorithm, we insert 'z  . . . .  ' at $5 in 
Figure 2(b) and rename it X3. $5 has two dominance frontiers: $4 and $7, 
at which we insert new r  We then rename the new def of z at 
$4 as X2, and the one at $7 as X4, which recursively creates a new def of z 
at its dominance frontier 5r as Xs. 
We now update Uses sets for these new defs. None of X2, X3, or X4 has 
uses dominated by them. However, X5 has a use dominated by it at S10, 
which used to be a use of X1, that  now becomes a use of Xs. The resulting 
SSA form is the same as that  in Figure 2(a). 

The cost of the insert and delete use algorithms is linear in the height of the 
dominator tree. The cost of the insert (delete) definition algorithm is linear in the 
size of the subgraph that  is dominated by r (~) or is in the iterated dominance 
frontier of r (~). It  is in the worst case as expensive as the exhaustive algorithm, 
but  is often much more efficient. 

Our incremental algorithm produces minimal SSA form when the CFG is 
reducible. For an irreducible CFG, restoring minimal SSA form, after a deletion 
of a def, requires an additional step of identifying and removing a set of e- 
functions that  have as their parameters only themselves plus a single, identical 
renamed variable. [7] 

4.2 Incremental  SSA for Updat ing  an Interval 

In this section, we generalize the above algorithms to handle arbitrary update 
of an interval. If interval I is transformed into interval I ,  restoring correct SSA 
form involves: a) rebuilding SSA form of . / and  b) incrementally updating SSA 
as needed for intervals nested in i and intervals containing i .  

We use augmented control flow graph (CFGa~,g) as the program representa- 
tion. As compared to the original CFG, CFG~,g makes loop (interval) structure 
evident via preheader and postezit nodes [1, 16]. These extra nodes also provide 
convenient locations for summarizing data  flow information for the loop. An in- 
terval I has a single preheader node, denoted by prehdr(I), and there is an edge 
from the prehdr(I) to hdr(I), the header node. There is a postexit node for 
each distinct loop exit target. Also, for each interval node n which may exit the 
interval, there is an edge from n to the corresponding postexit node. Figure 3 
shows an example code segment and the corresponding CFGaug. More details 
on how to compute CFGaug of a CFG are given in [1, 16]. 

Incremental ly  Updat ing  Inner and Outer Intervals We first consider how 
to update the SSA form of inner untransformed intervals. 

Def in i t ion9 .  A use of variable A at node n is upwards-ezposed at m if there 
is a CFG~,g path P,~,~ : m - -  n along which A is not defined. A use in I is 
upwards-ezposed in the interval if it is upwards-exposed at hdr( I). 
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Note that  if interval I has no def of A, Aj, the unique def of A reaching prehdr(I), 
will reach all the uses of A in I: all the uses of A in I will be converted into 
uses of Aj in the SSA form, which are all upwards-exposed at hdr(I) as well as 
at prehdr(1). If I has any def of A in it, there will be a def ehAd~ at hdr(I). In 
this case, Aj is still upwards-exposed at hdr(I) as a parameter  of the .4 ehdr" The 
following theorem follows from the above observations. 

T h e o r e m  10. If an inner interval I '  is nested in a transformed interval, then 
restoring correct SSA form for I '  involves updating upwards-exposed uses in I '  
only. o 

Now we consider the effect of a transformation on the SSA form of outer 
intervals. If a variable A is defined in I but not in I ,  r  cA  at the 
postexit node of I becomes redundant and need be deleted. Correct SSA form 
for A in outer intervals can be restored by the procedure specified in Section 4.1 
for deleting the def c A  at the postexit node of I.  Similarly, if A is defined in 

but not in I,  a .clef ( c A )  need inserted at the postexit node of I,  so that  the 
incremental insert-definition procedure in Section 4.1 can be applied. 

I n t e r v a l - b a s e d  SSA A l g o r i t h m  Correct SSA form for the new interval ~f is 
restored by performing the steps below. Following [8], S is a set of stacks of defs 
reaching the current CFGau9 node. For each variable A, S(A) initially contains 
reaching ~e f (p~ehdr( I), A ). 

1. Rebuild CFG~ug dominator tree for .f. 
2. Compute dominance frontier for ~f. 
3. Update r  in I.  
4. Rename variables in/*, using an algorithm similar to [8], but without modi- 

lying the SSA structure of inner loops except for the upwards-exposed uses 
of variables in them. 

5. Incrementally update SSA for outer intervals, using the algorithms in Sec- 
tion 4.1, for variables defined in/~ and not in I,  and vice versa. 

In many common cases, the set of variables defined in the interval does not 
change and hence the SSA form of outer intervals need not be updated. We call 
this the conservative change property. For example, this property is satisfied by 
the loop transformations discussed in Section 5. For such loop transformations, 
the cost of updating SSA form incrementally using this algorithm is on average 
linear in N~ +UE(I), where N~ is the size of interval I,  and UE(I) is the number 
of upwards-exposed uses in intervals nested in I.  

5 E f f i c i e n t  S S A  U p d a t e  f o r  C o m m o n  L o o p  

T r a n s f o r m a t i o n s  

In this section, we discuss many popular loop-oriented program transformations, 
and present incremental update algorithms that  can be even more efficient than 
the algorithms in Section 4 for these special-case loop transformations. 
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a =  

�9 ~ ~ 

do i = e 1, e2, e3 
BODY 

endo 

eel  = e l  
ee2 = e2 
ee3 = e3 
i = eel  N.~e.'~ 

I 

Fig. 3. Schemata of Loop Construct, its C F G ~ , g ,  and its SSA numbering 

5.1 Def ini t ion of  Loop Construct  

Before discussing the various loop transformations, we define the basic loop 
construct assumed as input to the loop transformations. This loop construct is 
essentially a well-structured loop with a single entry, single exit, and a single 
back edge. An example of such a loop construct is a Fortran do-loop with no 
premature exits. Figure 3 contains schemata of the loop construct, its augmented 
control flow graph ( C F G ~ g ) ,  and SSA numbering for all variables that have at 
least one clef contained within the loop. 

We assume that  the scope of the index variable (i) is local to a loop construct 
thus making it unnecessary to perform SSA numbering for loop index variables 
(since each use of an index variable is associated with a unique loop construct). 
For convenience, we assume the existence of temporary variables, e e l ,  ee2,  ee3  

to capture the values of el ,  e2, e3 on loop entry and thus keep those values 
invariant of the i loop. 

We use the name .4 in Figure 3 to generically represent any variable (other 
than the index variable) that  has at least one def contained within the loop. The 
four defs of variable .4 that  are noteworthy are: def .40 reaches the loop header 
from loop entry, def .41 reaches the loop header from the back edge (-40 and `41 
may be user defs or r  def A2 = r A1) is the value of A used at the 
start  of the loop body, and def As = r A1) is the value of A at loop exit. 
For all such variables A, there is a C - f u n c t i o n  a Chdr at the interval header, and 
a r  cpA at the postexit node. In this example, A2 is Chad,, and As is 
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5.2 Loop Interchange  

The effect of loop interchange [20] is to interchange two perfectly nested loops 
as shown below in Fortran-like syntax: 

do i = e l ,  e2, e3 do j = eT, e8, e9 
do j = e4, eS, e6 do i = e lO, e l l ,  e l 2  

BODY ---> BODY 

enddo enddo 
enddo enddo 

The loop body is unchanged by the transformation. 
If the loop nest is rectangular (i.e. if expressions e4, e5, e6 are independent 

of variable i), then the bounds expressions are not modified but only relocated 
(e7 = e4, e8 = e5, e9 -- e6, el0 -- el, e l l  -- e2, el2 = e3). All SSA Uses sets 
remain unchanged after this transformation. The numbering for defs and uses of 
generic variable A is unchanged by the transformation even though the relative 
positions of loops i and j have been switched. Since we do not perform SSA 
numbering for loop index variables, there are no other SSA Uses sets that need 
to be changed. This incremental SSA result is also applicable to any general 
permutation of n rectangular loops. 

In general, we have to consider cases when the loops are triangular or trape- 
zoidal loops (i.e. cases in which e4, e5 are linear functions of i, and e3, e6 are 
compile-time constants). In such a case, it becomes necessary to generate new 
loop bound expressions that are different from the old loop bound expressions 
as in the following example ~om [2~: 

d o i =  1, n, 1 
do j = i ,  n+i,  1 

BODY ---> 

enddo 

enddo 

do j = 1, n+n, 1 
do i = max(l,j-n), min(j,n), 1 

BODY 

enddo 

enddo 

We observe that a def of a non-index-variable that is used in any of eT, e8, 
e9, el0, e l l ,  el2 must also have been used in one of el, e2, e3, e4, e5, e6 (since 
e7, e8, eg, el0, e l l ,  el2 are derived from el, e2, e3, e4, e5, e6). Therefore, the 
algorithm for updating Uses sets in trapezoidal loop interchange is equivalent to 
repeated application of the Insert-use and Delete-use algorithms in Section 4.1), 
such that uses of non-index-variables in el, e2, e3, e4, e5, e6 are replaced by 
uses of the corresponding non-index-variables in e7, eS, eg, el0, e l l ,  el2. 

5.3 Genera l  I t e r a t ion -Reorde r ing  Loop Trans format ion  

Any iteration-reordering loop transformation such as interchange, reversal, 
skewing, unimodular, blocking, coalescing or any combination thereof can be 
represented by the schema shown in Figure 4 for transforming a set of n per- 
fectly nested loops into a set of n' perfectly nested loops with initialization 
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do r = ~1~ IL1, 81 

BODY 

do z~ -- l~, u~, s~ 

: 

Xn : f ~ ( z l , . . .  , z~ , )  
BODY 

Fig.  4. General structure of Iteration-reordering Loop Transformations 

statements that  map the new index variables ~ , . . . ,  z~, to the old index vari- 
ab]es z l , . . . ,  z,~ [17]. From our earlier assumption that  an index variable is local 
in scope to its loop construct, we can assume that  variables z l , . . . ,  ~,~ are local 
in scope to the loop body of the transformed loop nest shown in Figure 4. 

As in Section 5.2, we observe that  a def of a non-index-variable that  is used 
in the transformed loop nest must also have been used in the original loop nest. 
Therefore, the algorithm for updating Uses sets in a general iteration-reordering 
transformation is as follows: 

1. For each non-index variable A that  has at least one def in BODY do 
Ca) Let Ao = def of A that reaches entry to the original loop nest, and A1 = 

def of A that  reaches end of BODY (as in Figure 3). Also let A,~ = d e f  
of A on exit from original loop nest. Defs A0, A1, A,~ will be preserved 
by the SSA update. 

(b) For each loop 1 < i < n in the original loop nest, delete the ~b-function 
associated with A at the entry of loop i (corresponding to ~b-def A2 in 
Figure 3). 

(c) For each loop 2 < i < n in the original loop nest, delete the ~b-function 
associated with A at the exit of loop i (corresponding to ~b-def As in 
Figure 3). Note that  the exit ~b-function for the outermost loop (A,~) is 
not deleted. 

(d) For each loop 1 ~ i t __ n'  in the transformed loop nest, create a t -  
function associated with A at the entry of the loop�9 

(e) For each loop 2 < i '  _< n ' in the transformed loop nest, create a t -  
function associated with A at the exit of the loop. ~b-def Am will continue 
to be used as the exit ~b-function for the outermost loop, i ~ = 1. 

s.t .  l < i < r d d o  2. For each use u I of a non-index-variable in If, u~, s~ 
(a) Let u = corresponding use in one of l~, ui, s~. 
(b) Insert u' in the Uses set that  u belongs to (this operation takes constant 

time with a doubly-linked list representation). 
3. For each use u of a non-index-variable in li, ui, si s.t. 1 < i < n do 

(a) Delete u from the Uses set that  it belongs to (this operation takes con- 
stant t ime with a doubly-linked list representation). 
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:=r I I  
BODY-I I I 

r 
Fig. 5. SSA update for Loop Fusion 

These updates will result in Uses sets that are identical to the Uses sets 
that would be obtained by exhaustively recomputing SSA form after the trans- 
formation. Even though the C-functions associated with a generic variable A are 
changed, the defs Ao, At, Am remain unchanged after the transformation. The 
above algorithm ensures that all uses in l~, ui, s~, l~, u~, s~ are properly adjusted. 
Since we do not perform SSA numbering for loop index variables, there are no 
other SSA Uses sets that need to be changed. 

This SSA update has O(n 2 + n '2) execution-time complexity, which is inde- 
pendent of the size of the loop body. 

5.4 Loop Fusion 

The effect of loop fusion [2] is to fuse together the bodies of two adjacent con- 
formable loops to obtain a single fused loop body: 

a ~ 

do i = el, e2, e3 a = 

BODY-I do i = el, 

enddo ---> BODY- 1 

do i = el, e2, e3 BODY-2 

BODY-2 enddo 

enddo 

e2, e3 

For simplicity, the above schema makes the following assumptions: 

1. The two loops together form a single-entry, single-exit region. 
2. The two loops use the same index variable and have identical loop bounds 

expressions. 

Figure 5 outlines the low-level control flow and SSA numbering for the loop 
configurations before and after loop fusion. 
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The algorithm for updating Uses sets after a loop fusion transformation is 
as follows: 

1. Combine A2 = r A1) and As = r A4) into a new C-function As = 
r A4) 

2. Combine A3 = r A1) and As = r A4) into a new C-function A6 = 
r A4). 

3. Append uses(As) list into uses(A1) list (this operation takes constant time 
with a doubly-linked list representation). 

4. Delete defs A3 and As. 

6 Conclus ions  

SSA form is a compact intermediate program representation that  is well suited 
to a large number of compiler analysis and optimization algorithms. Though the 
current SSA construction algorithm has linear execution-time complexity, it is 
an exhaustive algorithm. For an intermediate form to be practical, it must be 
efficiently restorable after program transformations. We have therefore exam- 
ined the question of incrementally maintaining correct SSA form after a number 
of common program transformations. We have concentrated on program state- 
ments and intervals as the basic units of incrementality. By treating intervals 
as collapsed statements, incremental SSA-updating for intervals can be seen as 
a generalization of incremental SSA-updating for statements. Finally, we have 
shown that  it is possible to customize SSA-updating for common transforma- 
tions of structured loops resulting in more efficient algorithms. In some cases 
(e.g. loop interchange, fusion), the cost is independent of the size of the loop 
body. In other cases, (e.g. loop distribution) the cost is proportional to the loop 
body sizes. These sample transformations illustrate that  incremental SSA up- 
dating is a reasonable approach for a practical compiler: the advantages of SSA 
form can be repeatedly exploited without multiple costly reconstructions. 

References  

1. Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante. 
An overview of the ptran analysis system for multiprocessing. Proceedings of the 
ACM 1987 International Conference on Supercomputing, 1987. Also published in 
The Journal of Parallel and Distributed Computing, Oct., 1988, 5(5) pages 617-640. 

2. Frances Allen and John Cocke. A catalogue of optimizing transformation. Design 
and Optimization of Compilers, pages 1-30, 1972. 

3. Bowen Alpcrn, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality 
of variables in programs. Fifteenth A CM Principles of Programming Languages 
Symposium, pages 1-11, January 1988. San Diego, CA. 

4. M.G. Burke and B.G. Ryder. A critical analysis of incremental iterative data flow 
analysis algorithms. IEEE Transactions on So,  ware Engineering, 16(7):723-728, 
July 1990. 



237 

5, Michael Burke. An interval-based approach to exhaustive and incremental inter- 
procedural data-flow analysis. A CM Transactions on Programming Languages and 
Systems, 12(3):341-395, July 1990. 

6. Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of 
sparse data flow evaluation graphs. Conference Record of the Eighteenth Annual 
A CM Symposium on Principles of Programming Languages, January 1991. 

7. Ron Cytron. private communication. 
8. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth 

Zadeck. Efficiently computing static single assignment form and the control de- 
pendence graph. ACM Transactions on Programming Languages and Systems, 
October 1991. 

9. Ron Cytron and Reid Gershbein. Efficiently accommodating may-alias information 
in ssa form. Proceedings of the A CM Conference on Programming Language Design 
and Implementation, 1993. 

10. Robert Giegerich, Ulrich Moencke, and Reinhard Wilhelm. Invariance of approx- 
imative semantics with respect to program transformation. 11th GI Annual Con- 
ference, Informatik-Fachberichte 50, pages 1-10, October 1981. 

11. William G. Griswold and David Notkin. Automated Assistance for Program 
Restructuring. ACM Transactions on Software Engineering and Methodology, 
2(3):228-269, July 1993. 

12. T. J. Marlowe and B. Ryder. An efficient hybrid algorithm for incremental data 
flow analysis. ACM SIGPLAN Syrup. on Principles o] Programming Language, 
pages 184-196, January 1990. 

13. Thomas J. Marlowe. Data Flow Analysis and Incremental Iteration. PhD thesis, 
Rutgers University, October 1989. 

14. David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for su- 
percomputers. Communications of the ACM, 29(12):1184-1201, December 1986. 

15. Barbara G. Ryder and Martin D. Carroll. Incrementally updating the dominator 
tree of a rooted diagraph. Technical report, Rutgers U., December 1986. Center 
for Computer Aids for Industrial Productivity Technical Report CAIP-TR-029. 

16. Vivek Sarkar. The ptran parallel programming system. Parallel Functional Pro- 
gramming Languages and Compilers, pages 309-391, 1991. 

17. Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering 
loop transformations. Proceedings of the ACM SIGPLAN '9~ Conference on Pro- 
gramming Language Design and Implementation, pages 175-187, June 1992. 

18. Vugranam C. Sreedhar and Guang R. Oao. A linear time algorithm for placing 
C-nodes. In BBnd Annual ACM SIGACT-SIGPLAN Symposium on the Principles 
of Programming Languages, pages 62-73, January 1995. 

19. Mark Wegman and Ken Zadeck. Constant propagation with conditional branches. 
A CM Transactions on Programming Languages and Systems, pages 181-210, April 
1991. 

20. Michael J. Wolfe. Optimizing Supercompilersfor Supercomputers. Pitman, London 
and The MIT Press, Cambridge, Massachusetts, 1989. 

21. Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program components 
with equivalent behaviors. Technical report, University of Wisconsin, Madison, 
April 1989. Computer Sciences Technical Report Number 840. 


