
Incremental Computation of
Static Single Assignment Form

Jong-Deok Choi 1 and Vivek Sarkar 2 and Edith Schonberg 3

IBM T.J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598
(jdchoi@watson.ibm.com)

2 IBM Software Solutions Division, 555 Bailey Avenue, San Jose, CA 95141
(vivek_sarkar@vnet.ibm.com)

IBM T.J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598
(schnbrg@watson.ibm.com)

Abs t r ac t . Static single assignment (SSA) form is an intermediate rep-
resentation that is well suited for solving many data flow optimization
problems. However, since the standard algorithm for building SSA form is
exhaustive, maintaining correct SSA form throughout a multi-pass com-
pilation process can be expensive. In this paper, we present incremental
algorithms for restoring correct SSA form after program transformations.
First, we specify incremental SSA algorithms for insertion and deletion of
a use/definition of a variable, and for a large class of updates on intervals.
We characterize several cases for which the cost of these algorithms will
be proportional to the size of the transformed region and hence poten-
tially much smaller than the cost of the exhaustive algorithm. Secondly,
we specify customized SSA-update algorithms for a set of common loop
transformations. These algorithms are highly efficient: the cost depends
at worst on the size of the transformed code, and in many cases the cost
is independent of the loop body size and depends only on the number of
loops.

1 Introduct ion

Static single assignment (SSA) [8, 6] form is a compact intermediate p rogram
representation that is well suited to a large number of compiler opt imizat ion
algorithms, including constant propagat ion [19], global value numbering [3], and
program equivalence detection [21]. In SSA form, each variable appears as a
target of an assignment at most once, so that each variable use is reached by a
single definition. Special variable definitions called r fundions are added to
the program to represent multiple reaching definitions.

This paper addresses the problem of rebuilding SSA form after p rogram trans-
formation. The tradit ional algori thm for building minimal SSA form [8, 18] is
efficient but exhaustive. Even when program changes are small, the cost of up-
dating SSA with this algorithm is proport ional to the size Of the procedure. As
a result, maintaining current and correct SSA form during a mult i-pass compi-
lation process is expensive.

224

As an alternative to exhaustive SSA reconstruction, we propose incremental
SSA update techniques. We present general incremental algorithms for restoring
correct SSA form:

- after an arbitrary insertion/deletion of a use/definition of a variable, and
- after an arbitrary update of a single interval.

We also characterize several cases for which the cost of these algorithms will be
proportional to the size of the transformed region and hence potentially much
smaller than the cost of the exhaustive algorithm.

Additionally, we present customized incremental SSA-update algorithms for
a set of common loop transformations, which includes interchange of rectan-
gular/trapezoidal loops, general iteration-reordering loop transformations, and
loop fusion. These algorithms are highly efficient: the cost depends at worst on
the size of the transformed code, and in many cases the cost is independent of
the loop body size and depends only on the number of loops.

I t is important to use more efficient customized SSk-update algorithms for
common loop transformations because:

- Loop transformations are increasingly important in multi-pass compilers to
facilitate instruction scheduling, increase parallelism, improve reference lo-
cality, and enable other optimizations [14].

- Loop transformations often constitute a small program change, relative to
the size of the procedure.

- SSA form for loops has special properties which make incremental update
on a single loop basis efficient and straightforward.

The rest of the paper is organized as follows. Section 2 describes comparison
of our method with previous work. Section 3 presents definitions and background
material on SSA form. Section 4 presents basic techniques for updating SSA form
after changes to individual statements or to individual intervals. Section 5 gives
more efficient update algorithms for specific loop transformations, and Section
6 presents our conclusions.

2 R e l a t e d W o r k

We focus our discussion on incremental update of SSA form, since it is well-
known how to perform incremental updates on other data structures such as the
control flow graph and the intermediate language text for these loop transforma-
tions. Previous work on incremental data flow analysis focuses on obtaining an
updated fixed-point solution after a small program change [5, 4, 13, 12]. These
incremental data flow techniques apply to any monotone data flow problem ex-
pressed within the classic data flow framework. Our work differs from these
exhaustive approaches in that we apply specialized update algorithms for par-
ticular changes in the program. Thereby, our methods incur costs proportional
to the size of the changes in the program. Cytron and Gershbein [9] also present
techniques for incrementally building SSA form to accommodate may-aliases.

225

Their techniques deal with only inserting special definitions, called may-defs,
generated by may-aliases. They considered incrementality only in response to
specific demands for data flow information over a program whose structure and
contents remain constant. Ryder and Carroll [15] present techniques for incre-
mentally updating the dominator tree of a directed graph.

In [11], Griswold and Notkin propose an incremental paradigm for updating
the source abstract syntax tree (AST), control flow graph (CFG), and program
dependence graph (PDG) representations of a program so as to properly reflect
a program transformation supported by their tool. Each local /compensation
transformation that is applied to the source AST by the tool has a corresponding
subgraph substitution rule that is applied to the C F G / P D G . In contrast, we
present substitution rules for updating the SSA graph for a variety of source
transformations. Our technique could be used to extend the work reported in
[11] so as to allow incremental update of the SSA graph representation in addition
to incremental updates of the CFG and PDG. In fact, the SSA graph could be
used as a more efficient representation of the data dependence edges in the PDG
representation.

In [10], Giegerich et al study the problem of identifying conditions under
which data flow information is unchanged after a program transformation is
applied. They define the notion of invariance of an approximative semantics with
respect to a given set of transformation rules. Their work could potentially be
used as a basis for identifying transformations for which the SSA graph remains
unchanged.

3 B a c k g r o u n d

In this section, we describe terminology and definitions used in the rest of the
paper.

3.1 P r o g r a m Representation

Definit ion 1. A control flow graph of a procedure P is a directed multigraph

CFG = < Nc, Ec, E n t r y , E x i t >

A node ni E N~ represents a statement w in P, and an edge ek --< n~, nj >E Ec
represents the transfer of control from the statement of n~ to the statement of
nj . We assume that each node is on a path from E n t r y to Ex i t . []

Definit ion 2. A node n dominates a node ~t in CFG if every directed path from
E n t r y to ~t contains n. El

Definit ion 3. A back edge in CFG is an edge < l, h > such that node h dom-
inates node I. Node h is called a header node. A back edge defines a strongly
connected region STR(h, l), which consists of the nodes and edges belonging to
all CFG simple paths from h to l, and also the back edge. []

226

Definit ion4. Let B(h) = {< l ,h >E Ec I< l ,h > is a back edge}. Then,
the transitive interval with header h, denoted by I*(h), is the union of all the
STR(h, l) defined by B(h). The interval with header h, denoted by Interval(h),
is a directed graph Interval(h) = < Nh, Eh, h > such tha t

- Nh = {n E No In E (I*(h) - U~z.Ch),~r I*(h))}, and
- Eh = {< n~, nj >~ E. I r . , n: ~ JVh}.

We denote the header node of interval I by halt(I). []

Informally, Interval(h) is the union of all the nodes in I* (h) that do not "belong
to" intervals nested in I* (h), and edges between these nodes.

3.2 Properties of SSA

Rendering a program into SSA form simplifies and increases the accuracy of
solving a useful subset of data-flow optimizat ion problems. These results are
largely due to the statically functional nature of an SSA form program: each
"variable" in the transformed program appears as the target of exactly one
assignment s tatement . All uses are appropriately renamed so that the value flow
from a variable's definition (de]) to its use(s) is explicitly apparent in the program
text.

To describe how to construct SSA form of a program, we introduce the fol-
lowing terminology.

D e f i n i t i o n 5. Let n and m be nodes in CFG. If n dominates m and n # m,
then n strictly dominates ra. The dominance frontier DF(n) of n is the set of all
CFG nodes m such that n dominates a predecessor of ra but does not strictly
dominate m. []

Note that the dominator relation of a CFG forms a tree, called a domina-
tor tree. Algorithmically, SSA form is constructed by identifying regions of a
program dominated by a given def. Where control flow from different regions
merge, the t ransformed program contains a e-function that explicitly represents
the merge of value defs. More specifically, the set of nodes containing e-functions
for variable v can be precomputed as the iterated dominance frontier of nodes
containing defs of v [8, 18]. The SSA construction algori thm then traverses the
dominator tree of the program's control flow graph, maintaining a stack of re-
named defs for each variable.

Figure 1 shows an example program segment and its SSA form. Renaming
in SSA form ensures that each variable in the t ransformed program appears as
the target of exactly one assignment s tatement . A e-function is introduced at
s ta tement $4 to explicitly represent the merge of value defs I"1 and I"2. Note tha t
in this paper, we use z and y for the original variable names and use X~ and Yj
for the variable names renamed from x and y, respectively.

A s ta tement in a program has a unique node in the corresponding CFG.
Hence, in this paper, we will use s ta tements and nodes (in CFG) interchangeably

227

$1: z ; $1: X1 ;
$2: i f (z > 0) y = z + 1 0 ; .~2: i f (X 1 > 0) Y ~ = X ~ + 1 0 ;
$3: else y = z - 1 0 ; $3: else Y~ = X z - 1 0 ;
s, : ~,: y. = r Y.);
&: = = = + y ; ~5: X 2 = X ~ + Y 3 ;

Fig. 1. An Example program and Its SSA Form

when the meaning is clear. Our results are equally applicable to the case when
a CFG node represents a basic block, which could contain multiple statements.

P r o p e r t y 1 Let n be a node in CFG with a def of X~, and m be a node in
CFG with a use of X~ that is a user statement, i.e. not a C-function parameter.
Then,

1. n dominates m; and
2. there is no node I with a def of �9 such that I dominates m and is in turn

dominated by n.

D e f i n i t i o n 6. Given a variable v and user statement S of a procedure in SSA
form, reaching_clef(S, v) is the def of v that reaches the statement S. For So,
which is the entry of the procedure, reaching_clef(So, v) is V0, a def of v assumed
to reach the entry of the procedure (interprocedurally).

Since S is a user program statement and not a C-function, reaching_def(S, v) is
unique and strictly dominates S. For Xi at a CFG node n to be reaching_def(m, z),
node n and node m must satisfy Property 1.

P r o p e r t y 2 Let n be a node in CFG with a def of Xi, and m be a node in
CFG with a use of X~ that is a C-function parameter. Then,

1. m is a dominance frontier of n; and
2. Xi = reaching_clef(S, v), where S is a predecessor statement of m in CFG,

if S does not have a def of ~; or X~ is the def of z at S.

4 Incremental SSA Algorithms

This section explores general incremental properties of SSA. Given an insertion
or deletion of a variable def or use, Section 4.1 presents algorithms for restoring
correct SSA form. Section 4.2 generalizes these algorithms to work for updates
of an interval.

228

4.1 I n c r e m e n t a l SSA T e c h n i q u e s

When a variable def is deleted (inserted), C-funct ions may have to be deleted
(inserted) to restore minimal SSA form. 4 For example, in Figure 2, if the state-
ment $5 is deleted in (a), C-funct ions at statements $4, $7 and $9 must also
be deleted, resulting in program (b). Similarly, inserting a def of z at location
~5 in (b) results in the inverse transformation. This insertion update procedure
requires using the dominance frontier relation, and all four incremental algo-
r i thms presented below use the dominator tree. The variable def that reaches
the change site plays a special role.

T h e o r e m 7. Suppose a def of v is deleted (inserted) at s tatement S in an SSA-
correct program P. Let /5 be the resulting SSA-correct program after the deletion
(insertion), and r = reaching_clef(S, v) in /5 (p) . Then all modified statements
in both P a n d / 3 are dominated by r or are in the iterated dominance frontier
of r. []

P r o o f i It follows from Property 1 and Property 2. []
In Figure 2, X1 is reaching_def(Sh, z) in (b), and dominates all modified

statements. (Note that (b) corresponds to the transformed program/3 when S
is deleted, and to the initial program P when S is inserted.)

SI: XI SI: XI

$2: if ... ~2: if ...

$3 : repeat $3 : repeat

S5: Xs ~5:

$6: until . . . ~6: until . . .
sT: x. = r x~ , x.) ~ :

$8: endif $8: endif

sg: x , = r ~9:
SIO: X5 SiO: Xl

Ca) (b)

Fig. 2. SSA form before and after deletin 8 a def Xs.

A C-function represents the merge of different value defs, which can become
redundant if one or more of the defs get deleted. For example, the C-functions at
$4 and $7 in Figure 2 represent the merge of defs X1 and X3, and will become

4 By minimal SSA form, we mean the SSA form that would be constructed by the
exhaustive algorithm in [8].

229

redundant if X3 gets deleted. A formal definition of a redundant C-function is
given as follows:

D e f i n i t l o n 8 . A C-function F is redundant if all the parameters, except those
identical to the target of the C-function, are the same renamed variable.

Examples of redundant C-functions are:

= x j) , = r

In the incremental SSA update algorithms specified below, it is assumed
that same-named variables are represented by def-use chains after variable re-
naming. Specifically, Uses(d) is the set of uses reached by the def d. Using
doubly-linked list representations for the Uses sets, adding and deleting uses
can be performed in constant time. Computing r = reaching_clef(S, v) can be
performed by searching ancestors in the dominator tree, so that the cost is pro-
portional to the height of the tree.
D e l e t e u se u o f v a r i a b l e v a t s t a t e m e n t S: Remove u from Uses(r) .
I n s e r t u se u o f v a r i a b l e v a t s t a t e m e n t S: Add u to Uses(r).
D e l e t e d e f d o f v a r i a b l e v a t s t a t e m e n t S: Like the original SSA algorithm
in [8], the incremental update algorithm works in several steps:

i. Update Uses sets: All uses of d, including parameters of C-functions, become
uses of r, which is reaching_clef(S, v).

2. Delete redundant C-functions: If any C-function F becomes redundant, F
will be deleted and the whole process of (a) and (b) repeats, with the target
of F as the new d.

Ezample: To illustrate this algorithm, we delete $5 in Figure 2(a). Xa in $5 is
used in C-functions at $4 and $7, and initially reaching_clef(S5, m) = X~..
Substituting X~. for X3, $4 becomes redundant and deleted. Step (a) is ap-
plied recursively with X~. as the newly deleted d. The new reaching_clef(S4, m)
is X1, which is propagated to the C-function at $7, where X2 appears as an
input operand after the first iteration. Statement $7 is deleted as being re-
dundant, and X1, as the new reaching_def(S7, m), substitutes the use of X4
at $9, resulting in a redundant C-function at $9. With X5 at $9 deleted,
the use of X5 at S10 becomes that of X1, resulting in Figure 2(b)

I n s e r t clef d o f v a r i a b l e v a t s t a t e m e n t S:

1. Insert new C-functions: For each node in the dominance frontier of S, if
there is no r for v create a new r and perform this
step recursively. (All the input operands of new C - f u n c t i o n s are initially
assumed to be uses of r. Adjustments are made in step (c), when correct
reaching defs are known.) For inserting defs at multiple nodes, a linear t ime
algorithm for computing iterated dominance frontiers of these nodes can be
used for placing C-functions [18].

2. Update Uses sets for all uses dominated by S, or all uses dominated by any
of the new defs of the new C-function assignments. This is done by walking
down the dominator tree from each of these defs and identifying uses that ,
along with the def, satisfy Property 1.

230

3. Update each use that is a parameter of the newly created r
according to Property 2.

Ezample: To illustrate this insertion algorithm, we insert 'z ' at $5 in
Figure 2(b) and rename it X3. $5 has two dominance frontiers: $4 and $7,
at which we insert new r We then rename the new def of z at
$4 as X2, and the one at $7 as X4, which recursively creates a new def of z
at its dominance frontier 5r as Xs.
We now update Uses sets for these new defs. None of X2, X3, or X4 has
uses dominated by them. However, X5 has a use dominated by it at S10,
which used to be a use of X1, that now becomes a use of Xs. The resulting
SSA form is the same as that in Figure 2(a).

The cost of the insert and delete use algorithms is linear in the height of the
dominator tree. The cost of the insert (delete) definition algorithm is linear in the
size of the subgraph that is dominated by r (~) or is in the iterated dominance
frontier of r (~). It is in the worst case as expensive as the exhaustive algorithm,
but is often much more efficient.

Our incremental algorithm produces minimal SSA form when the CFG is
reducible. For an irreducible CFG, restoring minimal SSA form, after a deletion
of a def, requires an additional step of identifying and removing a set of e-
functions that have as their parameters only themselves plus a single, identical
renamed variable. [7]

4.2 Incremental SSA for Updat ing an Interval

In this section, we generalize the above algorithms to handle arbitrary update
of an interval. If interval I is transformed into interval I , restoring correct SSA
form involves: a) rebuilding SSA form of . / and b) incrementally updating SSA
as needed for intervals nested in i and intervals containing i .

We use augmented control flow graph (CFGa~,g) as the program representa-
tion. As compared to the original CFG, CFG~,g makes loop (interval) structure
evident via preheader and postezit nodes [1, 16]. These extra nodes also provide
convenient locations for summarizing data flow information for the loop. An in-
terval I has a single preheader node, denoted by prehdr(I), and there is an edge
from the prehdr(I) to hdr(I), the header node. There is a postexit node for
each distinct loop exit target. Also, for each interval node n which may exit the
interval, there is an edge from n to the corresponding postexit node. Figure 3
shows an example code segment and the corresponding CFGaug. More details
on how to compute CFGaug of a CFG are given in [1, 16].

Incremental ly Updat ing Inner and Outer Intervals We first consider how
to update the SSA form of inner untransformed intervals.

Def in i t ion9 . A use of variable A at node n is upwards-ezposed at m if there
is a CFG~,g path P,~,~ : m - - n along which A is not defined. A use in I is
upwards-ezposed in the interval if it is upwards-exposed at hdr(I).

231

Note that if interval I has no def of A, Aj, the unique def of A reaching prehdr(I),
will reach all the uses of A in I: all the uses of A in I will be converted into
uses of Aj in the SSA form, which are all upwards-exposed at hdr(I) as well as
at prehdr(1). If I has any def of A in it, there will be a def ehAd~ at hdr(I). In
this case, Aj is still upwards-exposed at hdr(I) as a parameter of the .4 ehdr" The
following theorem follows from the above observations.

T h e o r e m 10. If an inner interval I ' is nested in a transformed interval, then
restoring correct SSA form for I ' involves updating upwards-exposed uses in I '
only. o

Now we consider the effect of a transformation on the SSA form of outer
intervals. If a variable A is defined in I but not in I , r cA at the
postexit node of I becomes redundant and need be deleted. Correct SSA form
for A in outer intervals can be restored by the procedure specified in Section 4.1
for deleting the def c A at the postexit node of I. Similarly, if A is defined in

but not in I, a .clef (c A) need inserted at the postexit node of I, so that the
incremental insert-definition procedure in Section 4.1 can be applied.

I n t e r v a l - b a s e d SSA A l g o r i t h m Correct SSA form for the new interval ~f is
restored by performing the steps below. Following [8], S is a set of stacks of defs
reaching the current CFGau9 node. For each variable A, S(A) initially contains
reaching ~e f (p~ehdr(I), A).

1. Rebuild CFG~ug dominator tree for .f.
2. Compute dominance frontier for ~f.
3. Update r in I.
4. Rename variables in/*, using an algorithm similar to [8], but without modi-

lying the SSA structure of inner loops except for the upwards-exposed uses
of variables in them.

5. Incrementally update SSA for outer intervals, using the algorithms in Sec-
tion 4.1, for variables defined in/~ and not in I, and vice versa.

In many common cases, the set of variables defined in the interval does not
change and hence the SSA form of outer intervals need not be updated. We call
this the conservative change property. For example, this property is satisfied by
the loop transformations discussed in Section 5. For such loop transformations,
the cost of updating SSA form incrementally using this algorithm is on average
linear in N~ +UE(I), where N~ is the size of interval I, and UE(I) is the number
of upwards-exposed uses in intervals nested in I.

5 E f f i c i e n t S S A U p d a t e f o r C o m m o n L o o p

T r a n s f o r m a t i o n s

In this section, we discuss many popular loop-oriented program transformations,
and present incremental update algorithms that can be even more efficient than
the algorithms in Section 4 for these special-case loop transformations.

232

a =

�9 ~ ~

do i = e 1, e2, e3
BODY

endo

eel = e l
ee2 = e2
ee3 = e3
i = eel N.~e.'~

I

Fig. 3. Schemata of Loop Construct, its C F G ~ , g , and its SSA numbering

5.1 Def ini t ion of Loop Construct

Before discussing the various loop transformations, we define the basic loop
construct assumed as input to the loop transformations. This loop construct is
essentially a well-structured loop with a single entry, single exit, and a single
back edge. An example of such a loop construct is a Fortran do-loop with no
premature exits. Figure 3 contains schemata of the loop construct, its augmented
control flow graph (C F G ~ g) , and SSA numbering for all variables that have at
least one clef contained within the loop.

We assume that the scope of the index variable (i) is local to a loop construct
thus making it unnecessary to perform SSA numbering for loop index variables
(since each use of an index variable is associated with a unique loop construct).
For convenience, we assume the existence of temporary variables, e e l , ee2, ee3

to capture the values of el , e2, e3 on loop entry and thus keep those values
invariant of the i loop.

We use the name .4 in Figure 3 to generically represent any variable (other
than the index variable) that has at least one def contained within the loop. The
four defs of variable .4 that are noteworthy are: def .40 reaches the loop header
from loop entry, def .41 reaches the loop header from the back edge (-40 and `41
may be user defs or r def A2 = r A1) is the value of A used at the
start of the loop body, and def As = r A1) is the value of A at loop exit.
For all such variables A, there is a C - f u n c t i o n a Chdr at the interval header, and
a r cpA at the postexit node. In this example, A2 is Chad,, and As is

233

5.2 Loop Interchange

The effect of loop interchange [20] is to interchange two perfectly nested loops
as shown below in Fortran-like syntax:

do i = e l , e2, e3 do j = eT, e8, e9
do j = e4, eS, e6 do i = e lO, e l l , e l 2

BODY ---> BODY

enddo enddo
enddo enddo

The loop body is unchanged by the transformation.
If the loop nest is rectangular (i.e. if expressions e4, e5, e6 are independent

of variable i), then the bounds expressions are not modified but only relocated
(e7 = e4, e8 = e5, e9 -- e6, el0 -- el, e l l -- e2, el2 = e3). All SSA Uses sets
remain unchanged after this transformation. The numbering for defs and uses of
generic variable A is unchanged by the transformation even though the relative
positions of loops i and j have been switched. Since we do not perform SSA
numbering for loop index variables, there are no other SSA Uses sets that need
to be changed. This incremental SSA result is also applicable to any general
permutation of n rectangular loops.

In general, we have to consider cases when the loops are triangular or trape-
zoidal loops (i.e. cases in which e4, e5 are linear functions of i, and e3, e6 are
compile-time constants). In such a case, it becomes necessary to generate new
loop bound expressions that are different from the old loop bound expressions
as in the following example ~om [2~:

d o i = 1, n, 1
do j = i , n+i, 1

BODY --->

enddo

enddo

do j = 1, n+n, 1
do i = max(l,j-n), min(j,n), 1

BODY

enddo

enddo

We observe that a def of a non-index-variable that is used in any of eT, e8,
e9, el0, e l l , el2 must also have been used in one of el, e2, e3, e4, e5, e6 (since
e7, e8, eg, el0, e l l , el2 are derived from el, e2, e3, e4, e5, e6). Therefore, the
algorithm for updating Uses sets in trapezoidal loop interchange is equivalent to
repeated application of the Insert-use and Delete-use algorithms in Section 4.1),
such that uses of non-index-variables in el, e2, e3, e4, e5, e6 are replaced by
uses of the corresponding non-index-variables in e7, eS, eg, el0, e l l , el2.

5.3 Genera l I t e r a t ion -Reorde r ing Loop Trans format ion

Any iteration-reordering loop transformation such as interchange, reversal,
skewing, unimodular, blocking, coalescing or any combination thereof can be
represented by the schema shown in Figure 4 for transforming a set of n per-
fectly nested loops into a set of n' perfectly nested loops with initialization

234

do r = ~1~ IL1, 81

BODY

do z~ -- l~, u~, s~

:

Xn : f ~ (z l , . . . , z~ ,)
BODY

Fig. 4. General structure of Iteration-reordering Loop Transformations

statements that map the new index variables ~ , . . . , z~, to the old index vari-
ab]es z l , . . . , z,~ [17]. From our earlier assumption that an index variable is local
in scope to its loop construct, we can assume that variables z l , . . . , ~,~ are local
in scope to the loop body of the transformed loop nest shown in Figure 4.

As in Section 5.2, we observe that a def of a non-index-variable that is used
in the transformed loop nest must also have been used in the original loop nest.
Therefore, the algorithm for updating Uses sets in a general iteration-reordering
transformation is as follows:

1. For each non-index variable A that has at least one def in BODY do
Ca) Let Ao = def of A that reaches entry to the original loop nest, and A1 =

def of A that reaches end of BODY (as in Figure 3). Also let A,~ = d e f
of A on exit from original loop nest. Defs A0, A1, A,~ will be preserved
by the SSA update.

(b) For each loop 1 < i < n in the original loop nest, delete the ~b-function
associated with A at the entry of loop i (corresponding to ~b-def A2 in
Figure 3).

(c) For each loop 2 < i < n in the original loop nest, delete the ~b-function
associated with A at the exit of loop i (corresponding to ~b-def As in
Figure 3). Note that the exit ~b-function for the outermost loop (A,~) is
not deleted.

(d) For each loop 1 ~ i t __ n' in the transformed loop nest, create a t -
function associated with A at the entry of the loop�9

(e) For each loop 2 < i ' _< n ' in the transformed loop nest, create a t -
function associated with A at the exit of the loop. ~b-def Am will continue
to be used as the exit ~b-function for the outermost loop, i ~ = 1.

s.t . l < i < r d d o 2. For each use u I of a non-index-variable in If, u~, s~
(a) Let u = corresponding use in one of l~, ui, s~.
(b) Insert u' in the Uses set that u belongs to (this operation takes constant

time with a doubly-linked list representation).
3. For each use u of a non-index-variable in li, ui, si s.t. 1 < i < n do

(a) Delete u from the Uses set that it belongs to (this operation takes con-
stant t ime with a doubly-linked list representation).

235

:=r I I
BODY-I I I

r
Fig. 5. SSA update for Loop Fusion

These updates will result in Uses sets that are identical to the Uses sets
that would be obtained by exhaustively recomputing SSA form after the trans-
formation. Even though the C-functions associated with a generic variable A are
changed, the defs Ao, At, Am remain unchanged after the transformation. The
above algorithm ensures that all uses in l~, ui, s~, l~, u~, s~ are properly adjusted.
Since we do not perform SSA numbering for loop index variables, there are no
other SSA Uses sets that need to be changed.

This SSA update has O(n 2 + n '2) execution-time complexity, which is inde-
pendent of the size of the loop body.

5.4 Loop Fusion

The effect of loop fusion [2] is to fuse together the bodies of two adjacent con-
formable loops to obtain a single fused loop body:

a ~

do i = el, e2, e3 a =

BODY-I do i = el,

enddo ---> BODY- 1

do i = el, e2, e3 BODY-2

BODY-2 enddo

enddo

e2, e3

For simplicity, the above schema makes the following assumptions:

1. The two loops together form a single-entry, single-exit region.
2. The two loops use the same index variable and have identical loop bounds

expressions.

Figure 5 outlines the low-level control flow and SSA numbering for the loop
configurations before and after loop fusion.

236

The algorithm for updating Uses sets after a loop fusion transformation is
as follows:

1. Combine A2 = r A1) and As = r A4) into a new C-function As =
r A4)

2. Combine A3 = r A1) and As = r A4) into a new C-function A6 =
r A4).

3. Append uses(As) list into uses(A1) list (this operation takes constant time
with a doubly-linked list representation).

4. Delete defs A3 and As.

6 Conclus ions

SSA form is a compact intermediate program representation that is well suited
to a large number of compiler analysis and optimization algorithms. Though the
current SSA construction algorithm has linear execution-time complexity, it is
an exhaustive algorithm. For an intermediate form to be practical, it must be
efficiently restorable after program transformations. We have therefore exam-
ined the question of incrementally maintaining correct SSA form after a number
of common program transformations. We have concentrated on program state-
ments and intervals as the basic units of incrementality. By treating intervals
as collapsed statements, incremental SSA-updating for intervals can be seen as
a generalization of incremental SSA-updating for statements. Finally, we have
shown that it is possible to customize SSA-updating for common transforma-
tions of structured loops resulting in more efficient algorithms. In some cases
(e.g. loop interchange, fusion), the cost is independent of the size of the loop
body. In other cases, (e.g. loop distribution) the cost is proportional to the loop
body sizes. These sample transformations illustrate that incremental SSA up-
dating is a reasonable approach for a practical compiler: the advantages of SSA
form can be repeatedly exploited without multiple costly reconstructions.

References

1. Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante.
An overview of the ptran analysis system for multiprocessing. Proceedings of the
ACM 1987 International Conference on Supercomputing, 1987. Also published in
The Journal of Parallel and Distributed Computing, Oct., 1988, 5(5) pages 617-640.

2. Frances Allen and John Cocke. A catalogue of optimizing transformation. Design
and Optimization of Compilers, pages 1-30, 1972.

3. Bowen Alpcrn, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality
of variables in programs. Fifteenth A CM Principles of Programming Languages
Symposium, pages 1-11, January 1988. San Diego, CA.

4. M.G. Burke and B.G. Ryder. A critical analysis of incremental iterative data flow
analysis algorithms. IEEE Transactions on So, ware Engineering, 16(7):723-728,
July 1990.

237

5, Michael Burke. An interval-based approach to exhaustive and incremental inter-
procedural data-flow analysis. A CM Transactions on Programming Languages and
Systems, 12(3):341-395, July 1990.

6. Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of
sparse data flow evaluation graphs. Conference Record of the Eighteenth Annual
A CM Symposium on Principles of Programming Languages, January 1991.

7. Ron Cytron. private communication.
8. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and Systems,
October 1991.

9. Ron Cytron and Reid Gershbein. Efficiently accommodating may-alias information
in ssa form. Proceedings of the A CM Conference on Programming Language Design
and Implementation, 1993.

10. Robert Giegerich, Ulrich Moencke, and Reinhard Wilhelm. Invariance of approx-
imative semantics with respect to program transformation. 11th GI Annual Con-
ference, Informatik-Fachberichte 50, pages 1-10, October 1981.

11. William G. Griswold and David Notkin. Automated Assistance for Program
Restructuring. ACM Transactions on Software Engineering and Methodology,
2(3):228-269, July 1993.

12. T. J. Marlowe and B. Ryder. An efficient hybrid algorithm for incremental data
flow analysis. ACM SIGPLAN Syrup. on Principles o] Programming Language,
pages 184-196, January 1990.

13. Thomas J. Marlowe. Data Flow Analysis and Incremental Iteration. PhD thesis,
Rutgers University, October 1989.

14. David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for su-
percomputers. Communications of the ACM, 29(12):1184-1201, December 1986.

15. Barbara G. Ryder and Martin D. Carroll. Incrementally updating the dominator
tree of a rooted diagraph. Technical report, Rutgers U., December 1986. Center
for Computer Aids for Industrial Productivity Technical Report CAIP-TR-029.

16. Vivek Sarkar. The ptran parallel programming system. Parallel Functional Pro-
gramming Languages and Compilers, pages 309-391, 1991.

17. Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering
loop transformations. Proceedings of the ACM SIGPLAN '9~ Conference on Pro-
gramming Language Design and Implementation, pages 175-187, June 1992.

18. Vugranam C. Sreedhar and Guang R. Oao. A linear time algorithm for placing
C-nodes. In BBnd Annual ACM SIGACT-SIGPLAN Symposium on the Principles
of Programming Languages, pages 62-73, January 1995.

19. Mark Wegman and Ken Zadeck. Constant propagation with conditional branches.
A CM Transactions on Programming Languages and Systems, pages 181-210, April
1991.

20. Michael J. Wolfe. Optimizing Supercompilersfor Supercomputers. Pitman, London
and The MIT Press, Cambridge, Massachusetts, 1989.

21. Wuu Yang, Susan Horwitz, and Thomas Reps. Detecting program components
with equivalent behaviors. Technical report, University of Wisconsin, Madison,
April 1989. Computer Sciences Technical Report Number 840.

