
Inline Caching meets Quickening

Stefan Brunthaler

Institut für Computersprachen
Technische Universität Wien

Argentinierstraße 8, A-1040 Wien
brunthaler@complang.tuwien.ac.at

Abstract� Inline caches effectively eliminate the overhead implied by
dynamic typing. Unfortunately, inline caching is mostly used in code
generated by just-in-time compilers. We present efficient implementation
techniques for using inline caches without dynamic translation, thus en-
abling future interpreter implementers to use this important optimization
technique—we report speedups of up to 1.71—without the additional
implementation and maintenance costs incurred by using a just-in-time
compiler.

1 Motivation

Many of the currently popular programming language interpreters execute with-
out dynamic code generation. The reason for this lies in their origins: Many of
these languages were implemented by single developers, who maintained their—
often extensive—standard libraries, too. Therefore, it was usually not an issue
for them to substantially increase the a) the complexity and b) the maintenance
efforts of their implementations by adding just-in-time compilers. Perl, Python,
and Ruby are among the most popular of these programming languages that live
without a dynamic compilation subsystem, but, nevertheless, seem to be major
drivers behind many of advances in the internet’s evolution.

In 2001, Ertl and Gregg found that there are certain optimization techniques
for interpreters, e.g., threaded code [1,5], that cause them to perform at least
an order of magnitude better than others [6]. Actually, their examination of
Perl finds that its interpreter is not particularly efficient—which led us to sub-
sequently analyze a similar interpreter [2]. Our analysis of the Python 3.0 in-
terpreter shows that because of the nature of its interpreter, the application of
exactly those techniques that cause other interpreters to perform significantly
better, results in a comparatively lower speedup. Vitale and Abdelrahman re-
port cases where the application of threaded code in the Tcl interpreter actually
results in a slowdown [16].

This is due to the differing abstraction levels of the respective interpreters:
While the Java virtual machine [14] reuses much of the native machine for oper-
ation implementation—i.e., it is a low abstraction-level virtual machine—, the
interpreters of Perl, Python, and Ruby have a much more complex operation



implementation, which requires often significantly more native machine instruc-
tions; a characteristic of high abstraction-level interpreters. In consequence, op-
timization techniques that focus on minimizing the overhead in dispatching vir-
tual machine instructions have a varying optimization potential with regard to
the abstraction level of the underlying virtual machine. In low abstraction-level
virtual machines the overhead in instruction dispatch is big, therefore using
threaded code is particularly effective, resulting in reported speedups of a factor
of 2.02 [6]. On the other hand, however, the same techniques achieve a much
lower speedup in higher abstraction-level interpreters: the people implementing
the Python interpreter report varying average speedups of about 20< in bench-
marks, and significantly less (about 7<-8<) when running the Django� template
benchmarks—a real world application.

In consequence, our examination of the operation implementation in the
Python 3.x interpreter finds that there is substantial overhead caused by its
dynamic typing—a finding that was true for Smalltalk systems 25 years ago. In
1984, however, Deutsch and Schiffman [4] published their seminal work on the
“Efficient Implementation of the Smalltalk-80 System”. Its major contributions
were dynamic translation and inline caching. Subsequent research efforts on dy-
namic translation resulted in nowadays high performance just-in-time compilers,
such as the Java Virtual Machine. Via polymorphic inline caches and type feed-
back [11], inline caching became an important optimization technique by itself.
Unfortunately, inline caches are most often used together with dynamic trans-
lation. This paper presents our results on using efficient inline caching without
dynamic translation in the Python 3.1 interpreter.

Our contributions are:

– We present a simple schema for efficiently using inline caching without dy-
namic translation. We describe a different instruction encoding that is re-
quired by our schema. (Section 2).

– We subsequently introduce a more efficient inline caching technique using
instruction set extension (Section 3) with quickening (Section 3.1).

– We provide detailed performance figures on how our schemes compare with
respect to the standard Python 3.x distribution on modern processors (Sec-
tion 4). Our advanced technique achieves a speedup of up to 1.71. Using a
combination of inline caching and threaded code results in a speedup of up
to 1.92.

2 Basic Inline Caching without Dynamic Translation

In 1984, Deutsch and Schiffman describe their original version of inline caching [4].
During their optimization efforts on the Smalltalk-80 system, they observe a “dy-
namic locality of type usage”, i.e., for any bytecode instruction within a given
function or method, a call to the system default lookup routine is very likely
to evaluate to the same address as it did during its previous invocation. Using

� Django is a popular Python Web application development framework.



this observation, they use their dynamic translation scheme to rewrite native
machine call instructions from calling the system default lookup routine to di-
rectly calling its resulting target address. Like any caching technique, there is
a strategy for detecting that the cache is invalid and what is to be done about
that. For detecting an invalid inline cache entry, the interpreter ensures that
the call circumventing the system default lookup routine depends upon the class
operand—its receiver—having the same address as it did when the cache element
was initialized. If that condition does not hold, the interpreter calls the system
default lookup routine instead—which in turn takes care of properly updating
the corresponding inline cache element.

With the notable exception of the native instruction rewriting, the previous
paragraph does not indicate any prerequisites towards a dynamic translation
schema. In fact, several method lookup caches—most often hash-tables—have
been used in purely interpretative systems in order to cache a target address for
a set of given instruction operands. The interpreter requires an indirect branch
to call the address found in the cache. The premise is that the indirect branch
is less expensive than the call to the system default lookup routine. In case of a
cache-miss, the interpreter calls the system default lookup routine and places its
returned address in the cache. In consequence, using a function pointer via an
indirect call instruction eliminates the necessity of having a dynamic translator
at all.

Still, using hash-table based techniques is relatively expensive: you need to
deal with hashing in order to efficiently retrieve the keys, with collision when
placing an element in the hash table, etc. However, we show that we can com-
pletely eliminate the need for method caches, too: During dynamic translation,
a sequence of interpreter instructions is compiled to its corresponding native
machine representation. Within this representation, the inline cache effectively
specializes an interpreter instruction to a more efficient derivative—based on the
“dynamic locality of type usage”. Fortunately, we can project this information
back at the purely interpretative level: By storing an additional machine word
for every instruction within a sequence of bytecodes, we can lift the observed
locality to the interpreter level. Consequently, we obtain a dedicated inline cache
pointer for every interpreter instruction, i.e., instead of having immutable inter-
preter operation implementations, this abstraction allows us to think of specific
instruction instances. At the expense of additional memory, this gives us a more
efficient inline caching technique that is more in tune with the original technique
of Deutsch and Schiffman [4], too.

Figure 1(a) shows how the ad-hoc polymorphism is resolved in the BINARY ADD

instruction of the Python 3.x interpreter. Here, an inline cache pointer would
store the addresses of the leaf functions, i.e., either one of long add, float add,
complex add, and unicode concatenate, and therefore an indirect jump cir-
cumvents the system default lookup path (cf. Figure 1(b)). The functions at the
nodes which dominate the leaves need to update the inline cache element. In our
example (cf. Figure 1), the binary op function needs to update the inline cache
pointer to long add. If, there is no such dominating function (cf. Figure 1(a),



/a) Ad-hoc polymorphism in Python 3.x. /b) Basic Inline Caching long add.

Fig� 1� Illustration of our basic inline caching technique compared to the stan-
dard Python 3.x ad-hoc polymorphism.

right branch to unicode concatenate), we have to introduce an auxiliary func-
tion that mirrors the operation implementation and acts as a dedicated system
default lookup routine for that instruction.

Even though Deutsch and Schiffman [4] report that the “inline cache is ef-

fective about 95� of the time”, we need to account for the remaining 5< that
invalidate the cache. Our implementation changes the implementation of the
leaf functions to check whether their operands have their expected types. In
case we have a cache miss, e.g., we called long add with float operands, a call
to PyNumber Add will correct that mistake and properly update the inline cache
with the new information, i.e., the address of the float add function, along the
way.

PyObject *long_add(PyObject *v, PyObject *w) {

if (%(PyLong_Check(v) && PyLong_Check(w)))

return PyNumber_Add(v, w);

/* remaining implementation unchanged */

...

}

Finally, we show how we implement the inline cache pointer in Python 3.1.
The interpreter has a conditional instruction format: if an instruction has an
argument, i.e., its ordinal number is above some pre-defined threshold, the two
consecutive bytes are arguments to that instruction. If the opcode is below that
threshold, the next byte contains the next instruction. Hence, two instructions in
the array of bytecodes are not necessarily adjacent, which complicates not only
instruction decoding, but updating the inline cache pointers, too. Our implemen-
tation solves this by encoding the instruction opcode and its argument in one



machine word, and the inline cache pointer in the adjacent machine word. Thus,
all instructions have even offsets, while the corresponding inline cache pointers
have the subsequent odd offsets (cf. Figure 2).

��������� 	
�	
����������

� �����

Fig� 2� Changed instruction format.

In addition to being a more efficiently decode-able instruction format, this
enables us to easily update the inline cache pointer for any instruction without
having any expensive global references to that instruction. One minor change is
still necessary, however: Since we have eliminated the argument bytes from our
representation, jumps within the bytecode contain invalid offsets—they have to
be relocated to the new offsets in order to work properly.

Summing up, this describes a basic and simple, yet more efficient version of an
inline caching technique for interpreters without dynamic translation. This basic
technique requires significantly more memory space: Instead of one byte for the
instruction opcode, this technique requires two machine words per instruction.
Therefore, this classic example for trading space for time is not recommended to
be applied at all times. Our approach to compensating for this additional mem-
ory requirement is to use a simple low-overhead profiling technique to determine
which code benefits from inline caching and needs to use this more efficient
instruction format.

3 InstructionSet Extension

Our basic inline caching technique from Section 2 introduces an additional in-
direct branch per instruction that uses an inline cache. Though this indirect
branch is almost always cheaper than calling the system default routine, we can
improve on that situation and remove this additional indirect branch completely.
The new instruction format enables us to accommodate a lot more instructions
than the original one used in Python 3.1: Instead of just one byte, the new
instruction format encodes the opcode part in a half-word, i.e., it enables our
interpreter to implement many more instructions in common 32 bit architec-
tures (2�6 instead of 28). Although a 64 bit architecture could implement 232

instructions, for practical reasons it is unrealistic to even approach the limit of
2�6.

The original inline caching technique requires us to rewrite a call instruction
target. In an interpreter without a dynamic translator this equals rewriting an



interpreter instruction; from the most generic instance to a more specific deriva-
tive. Figure 3 shows how we can eliminate the inline cache pointer all together
by using a specialized instruction that directly calls the long add function.

/a) Basic Inline Caching
long add.

/b) New instruction with direct
call.

Fig� 3� Instruction-set extension illustrated for operands having long type.

Rewriting virtual machine instructions is a well known technique. In the
Java virtual machine, this technique is called “quick instructions” [14]. Usually,
quickening implies the specialization of an instruction towards an operand value,
whereas our interpretation of that technique uses specialization with respect to
the result of the system default lookup routine. Another significant difference
between the well known application in the Java virtual machine and our tech-
nique is that whereas the actual quickening in the JVM is used for intialization,
i.e., is only used once per affected bytecode, our technique requires instruction
rewriting per cache miss, i.e., in the 5< of cases where our “guess” was wrong,
we have to rewrite the instruction to match our new information.

Rewriting the bytecodes is somewhat the opposite of what we described in
the previous section. Which approach performs better depends on the underlying
native machine hardware. Since the rewriting approach increases the code size
of the interpreter dispatch loop, this may have negative performance impacts
on architectures with small instruction caches. For these architectures, the basic
technique of Section 2 might perform better because of fewer instruction cache
misses. On modern desktop and server hardware, however, the rewriting ap-
proach is clearly preferable. Figuratively speaking, both techniques are opposite
ends on the same spectrum, and the actual choice of implementation technique
largely depends on direct evaluation on the target hardware.



3�1 Inline Caching via Quickening

In Python, each type structure contains a list of function pointers that can be
used on arguments of that type. Our specialization technique focuses on three
sub-structures within that type structure that capture the context of the type:

1. Scalar/numeric context: this context captures the application of binary arith-
metical and logical operators to operands of a given type. Examples include:
add, subtract, multiply, power, floor, logical and, logical or, logical xor, etc.

2. List context: this context captures the use of a type in list context, e.g. list
concatenation, containment, length, repetition (i.e. operation of a list and a
scalar), etc.

3. Map context: this context captures the use of type in map context. Oper-
ations include the assignment of keys to values in a map, the fetching of
values given a key in the map, and the length of the map.

Context
Type Scalar List Map

PyLong Type x

PyFloat Type x

PyComplex Type x

PyBool Type x

PyUnicode Type x x x

PyByteArray Type x x

PyDict Type x

PyList Type x

PyMap Type x

PyTuple Type x x

PySet Type x

Table 1� Specialized types by context.

For each of the types in table 1, we can determine whether it implements
a scalar-/list-/map-context dependent function. For use in the scalar/numeric
context, each type has a sub-structure named tp as number, which contains a
list of pointers to the actual implementations, e.g., the nb add member points
to the implementation of the binary addition for that type. A concrete example
is for the integrated long type: PyLong Type.tp as number->nb add points to
the long add function, which implements the unbounded range integer addition
of Python 3.x. We have a short Python program in a pre-compile step that
generates the necessary opcode definitions and operation implementations for
several types. Currently, the program generates 77 specialized instructions for
several bytecode instructions.

Apart from the generation of dedicated instructions, we need to take care of
rewriting the instructions, too. In the previous Section 2, we already explained



that we need to instrument suitable places to update the inline cache pointer.
Our implementation has a function named PyEval SetCurCacheElement that
does that. This function already updates the inline cache pointer of the current
instruction, therefore adding code that changes the instruction opcode of the
current instruction is easy. Reusing this function as a means to rewrite instruc-
tion opcodes also ensures that we can reuse the cache-miss strategy of the basic
technique.

Unfolding the Comparison Instruction: Depending on its operand, Python’s
COMPARE OP instruction chooses which comparator it is going to use. It calls the
cmp outcome function which implements comparator selection using a switch
statement:

static PyObject *

cmp_outcome(int op, PyObject *v, PyObject *w) {

int res = 0;

switch (op) {

case PyCmp_IS: res = (v == w); break;

case PyCmp_IS_NOT: res = (v %= w); break;

case PyCmp_IN: res = PySequence_Contains(w, v);

if (res < 0) return NULL;

break;

case PyCmp_NOT_IN: res = PySequence_Contains(w, v);

if (res < 0) return NULL;

res = %res;

break;

case PyCmp_EXC_MATCH:

/* more complex implementation omitted% */

We eliminate this switch statement for the topmost four cases by promoting
them to dedicated interpreter instructions: COMPARE OP IS, COMPARE OP IS NOT,
COMPARE OP IN, COMPARE OP NOT IN. This is somewhat similar to an optimization
technique that is described by Allen Wirfs-Brock’s article on design decisions
for a Smalltalk implementation [13], where he argues that it might be more
efficient for an interpreter to pre-generate instructions for every (frequent) pair
of (opcode, oparg). Since the operand is constant for any specific instance of
the COMPARE OP instruction, we assign the proper dedicated instruction when
creating and initializing our optimized instruction encoding.

Unfolding the Iteration Instruction: Python has a dedicated instruction for
iteration, FOR ITER. It uses a function from the type structure (tp iternext)
of the top-of-stack element and calls this function with the top-of-stack element
as its argument. This function returns the next value for the iterator variable,
which is pushed onto the stack again.



TARGET(FOR_ITER)

/* before: [iter]; after: [iter, iter()] *or* [] */

v = TOP();

x = (*v->ob_type->tp_iternext)(v);

if (x %= NULL) {

PUSH(x);

DISPATCH();

}

if (PyErr_Occurred()) {

if (%PyErr_ExceptionMatches(PyExc_StopIteration))

break;

PyErr_Clear();

}

/* iterator ended normally */

x = v = POP();

Py_DECREF(v);

JUMPBY(oparg);

DISPATCH();

There is a set of dedicated types for use with this construct, and we have
extracted 15 additional instructions that replace the indirect call of the standard
Python 3.1 implementation with a specialized derivative, e.g. by the iterator over
a range object, PyRangeIter Type:

TARGET(FOR_ITER_RANGEITER)

v = TOP();

x = PyRangeIter_Type.tp_iternext(v);

/* unchanged body */

Combination of Variable Caches and Quickening There are several in-
structions in Python that deal with lookups in environments. For instance, when
we examine the LOAD GLOBAL implementation, we find that there is a prece-
dence lookup encoded, i.e., first there is a lookup in the f->f globals member,
and if the argument key was not found, a second lookup attempt using the
f->f builtins member is tried.

TARGET(LOAD_GLOBAL)

w = GETITEM(names, oparg);

if (PyUnicode_CheckExact(w)) {

/* Inline the PyDict_GetItem() calls. */

}

/* This is the un-inlined version of the code above */

x = PyDict_GetItem(f->f_globals, w);

if (x == NULL) {

x = PyDict_GetItem(f->f_builtins, w);

if (x == NULL) {



load_global_error:

format_exc_check_arg(

PyExc_NameError,

GLOBAL_NAME_ERROR_MSG, w);

break;

}

}

Py_INCREF(x);

PUSH(x);

DISPATCH();

Now, dictionary lookup using complex objects is an expensive operation. If
we can ensure that no destructive calls, i.e., calls invalidating an inline cached
version, occur during the execution, we can cache the resulting object in our
inline caching slot of Section 2 and rewrite the instruction to a faster version:

TARGET(FAST_LOAD_GLOBAL)

Py_INCREF(GET_INLINE_CACHE());

PUSH(GET_INLINE_CACHE());

DISPATCH();

Our current implementation checks whether there occur any STORE GLOBAL

instructions in the bytecode, and only then rewrites the instruction. This is a
simple way of dealing with this problem and we found no problems in building
Python with its standard library and our benchmarks. However, an industrial
strength implementation of this technique might require more sophisticated in-
validation mechanisms. The same optimization applies to the LOAD NAME instruc-
tion.

Unfolding the Call Instruction: The CALL FUNCTION instruction requires the
most work. In his dissertation, Hölzle already observed the importance of instruc-
tion set design with a case in point on the send bytecode in the �elf interpreter,
which he mentions to be too abstract for efficient interpretation [9]. The same
holds true for the Python interpreter: There are only a few bytecodes for calling
a function, and the compiler generates CALL FUNCTION instructions most often.
Aside from their use for calling host-level functions, the same bytecode is used for
calling C-functions. Because Python is a multi-paradigm programming language,
the first issue is complicated by the fact that the targets can be either Python
functions or methods—the latter being more complicated because of dynamic
binding. The second issue—calling C functions—is important because C function
targets can have a multitude of arguments, including variable arguments, as well
as named arguments. Since we cannot provide inline caching variants for every
possible combination of call types and the corresponding number of arguments,
we decided to optimize frequently occurring combinations (cf. Table 2).



Number of Arguments
Target 0 1 2 3

C std. args x x

C variable args x x x x

Python direct x x x

Python method x x x

Table 2� Specialized CALL FUNCTION instructions.

4 Evaluation

We used several benchmarks from the computer language shootout game [7].
Since the adoption of Python 3.x is rather slow in the community, we cannot
give more suitable benchmarks of well known Python applications, such as Zope,
Django, and twisted. All benchmarks were run on an Intel i7 920, with 2.6 GHz
running Linux 2.6.28-15 and gcc version 4.3.3. We used modified version of the
nanobench program of the computer language shootout game [7] to measure the
running times of each benchmark program. The nanobench program uses the
getrusage function to get timings for elapsed user and system time. We add
both values and use them as the basis for our benchmarks. In order to account
for proper measurement and cache effects, we ran each program 1000 successive
times with the Intel Turbo Boost technology turned off. This benchmark was
repeated 10 times and our data provides averages over those repetitions.

Figure 4 contains our evaluation results. We calculated the speedup by nor-
malizing against the standard Python 3.1 distribution with threaded code and
inline caching optimizations turned off. The labels indicate the name of the
benchmark and its command line argument combined into one symbolic iden-
tifier. The measured inline caching technique represents the technique of Sec-
tion 3.1 with the modified instruction format of Section 2.

With the exception of the fannkuch benchmark, the combined approach of
using threaded code with inline caching is always faster. From negligible improve-
ments (� 10<) in the case of the binarytrees, fasta, and mandelbrot benchmarks,
to a significant speedup (� 10<) in the case of the nbody, and spectralnorm
benchmarks. In the chameneosredux benchmark, we can see that threaded code
execution can result in negative performance, too. Yet, this particular bench-
mark is inline caching friendly, and therefore a combination of both techniques
results in a visible speedup.

We find that the particularly beneficial benchmarks contain only a few func-
tion calls in the interpreted programming language. To that end there are several
possible reasons for this: a) function calls requires the creation of stack frame
objects, as already observed in the BrouHaHa implementation of Smalltalk [15],
the creation of equivalent Smalltalk Context objects is expensive and therefore
an inline cached function call is less expensive; b) our profiling infrastructure is
too expensive, and c) our CALL FUNCTION inline caching schema is restricted to
the number of arguments and call types in Table 2, but in those benchmarks the



spectralnorm200

spectralnorm100

nbody100k

nbody50k

mandelbrot500

mandelbrot400

mandelbrot200

fasta100k

fasta50k

fannkuch9

fannkuch8

chameneosredux50k

chameneosredux30k

chameneosredux20k

chameneosredux10k

binarytrees14

binarytrees12

binarytrees10

Speedup

1.0 1.2 1.4 1.6 1.8

Combined

Inline Caching

Threaded Code

Fig� 4� Achievable speedups on various benchmarks.

expensive calls cannot be optimized and have to resort to the default method
lookup. Further investigation is necessary to identify the root cause.

5 Related Work

In his PhD thesis of 1994 [9], Hölzle mentions the basic idea of the data struc-
ture underlying our basic technique of Section 2. The major difference is that
we are not only proposing to use this data layout for send—or CALL FUNCTION

instructions in Python’s case—but for all instructions, since there is enough
caching potential in Python to justify that decision. Hölzle addresses the addi-
tional memory consumption issue, too. We use a simple low-overhead invocation
based counter heuristic to determine when to apply this representation, it is only
created in code we know is hot. Therefore, we argue that the increased memory
consumption is negligible—particularly since the memory consumption caused
by state of the art just-in-time compilers is much more intensive than what our
approach requires.

In 2008, Haupt et al. [8] published a position paper describing details of
adding inline caching to bytecode interpreters, specifically the Squeak inter-
preter. Their approach consists of adding dedicated inline caching slots to the



activation record, similar to dealing with local variables in Python or the con-
stant pool in Java. In addition to a one-element inline cache, they also describe
an elegant object-oriented extension that enables a purely interpretative solution
to polymorphic inline caches [10]. The major difference to our approach lies in
the relative efficiencies of the techniques: Whereas our techniques are tightly in-
terwoven with the interpreter infrastructure promising efficient execution, their
technique relies on less efficient target address lookup in the stack frame.

Regarding the use of lookup caches in purely interpretative systems, we refer
to an article detailing various concerns of lookup caches, including efficiency of
hashing functions, etc., which can be found in “Smalltalk-80: Bits of History,
Words of Advice” [13]. Kiczales and Rodriguez describe the use of per-function
hash-tables in a portable version of common lisp (PCL), which may provide
higher efficiency than single global hash tables [12]. The major difference to
our work is that our inline cache does not require the additional lookup and
maintenance costs of hash-tables.

Lindholm and Yellin [14] provide details regarding the use of quick instruc-
tions in the Java virtual machine. Casey et al. [3] describe details of quickening,
superinstructions and replication. The latter technical report provides interest-
ing details on the performance of those techniques in a Java virtual machine
implementation. The major difference to our use of instruction rewriting as de-
scribed in Section 3 is that we are using quickening for inline caching. We are
not aware of any other work in that area. However, our approach to replication
is similar to theirs, as is the use of a code generator to compensate for the in-
creased maintenance effort implied by adding new instructions. Our techniques
do not use any form of superinstructions.

6 Conclusion

Inline caching is an important optimization technique for high abstraction level
interpreters. We report achievable speedups of up to 1.71 in the Python 3.1 in-
terpreter. Our quickening based technique from Section 3 uses the instruction
format described in Section 2. Therefore, the measured performance includes the
compensation times for the profiling code and the creation of the new instruc-
tion format. However, it is possible to use the quickening based inline caching
approach without the new instruction format—thereby eliminating the compen-
sation overhead, which we expect to positively affect performance. Future work
on such an architecture will quantify these effects.

Efficient inline caching without dynamic translation is an optimization tech-
nique targeting operation implementation. Therefore, it is orthogonal to opti-
mization techniques focusing on instruction dispatch and both techniques can
be applied together. In the spectralnorm benchmark the application of both
techniques results in a speedup of 1.92—only slightly lower than the maximum
reported speedup of 2.02 achieved by efficient interpreters using threaded code
alone [6].



Acknowledgments

I want to thank Urs Hölzle for details regarding the history of the basic technique
of section 2. Furthermore, I am particularly grateful to Jens Knoop and Anton
Ertl for valuable discussions and feedback on earlier drafts of this paper.

References

1. Bell, J.R.: Threaded code. Communications of the ACM 16/6), 370–372 /1973),
the original reference for threaded code

2. Brunthaler, S.: Virtual-machine abstraction and optimization techniques. In: Pro-
ceedings of the 4th International Workshop on Bytecode Semantics, Verification,
Analysis and Transformation /BYTECODE ’09). pp. 19–30. Elsevier, York, UK
/March 2009)

3. Casey, K., Ertl, M.A., Gregg, D.: Optimizations for a java interpreter using in-
struction set enhancement. Tech. Rep. 61, Department of Computer Science, Uni-
versity of Dublin. Trinity College /September 2005), https://www.cs.tcd.ie/

publications/techreports/reports.05/TCDCS200561.pdf

4. Deutsch, L.P., Schiffman, A.M.: Efficient implementation of the Smalltalk-80 sys-
tem. In: Proceedings of the SIGPLAN ’84 Symposium on Principles of Program-
ming Languages /POPL ’84). pp. 297–302. ACM, New York, NY, USA /1984)

5. Ertl, M.A.: Threaded code variations and optimizations. In: EuroForth. pp. 49–55.
TU Wien, Vienna, Austria /2001)

6. Ertl, M.A., Gregg, D.: The structure and performance of efficient interpreters.
Journal of Instruction-Level Parallelism 5 /2003)

7. Fulgham, B.: The computer language benchmarks game. http://shootout.

alioth.debian.org/

8. Haupt, M., Hirschfeld, R., Denker, M.: Type feedback for bytecode interpreters.
Position Paper. /ICOOOLPS ’07). http://scg.unibe.ch/archive/papers/

Haup07aPIC.pdf /2008), http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf

9. Hölzle, U.: Adaptive Optimization for SELF: Reconciling High Performance with
Exploratory Programming. Ph.D. thesis, Stanford University, Stanford, CA, USA
/1995)

10. Hölzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In: Proceedings of the European
Conference on Object-Oriented Programming /ECOOP ’92). pp. 21–38. Springer-
Verlag, London, UK /1991)

11. Hölzle, U., Ungar, D.: Optimizing dynamically-dispatched calls with run-time type
feedback. In: Proceedings of the SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation /PLDI ’94). pp. 326–336 /1994)

12. Kiczales, G., Rodriguez, L.: Efficient method dispatch in PCL. In: Proceedings of
the 1990 ACM Conference on LISP and Functional Programming /LFP ’90). pp.
99–105. ACM, New York, NY, USA /1990)

13. Krasner, G. /ed.): Smalltalk-80: bits of history, words of advice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA /1983)

14. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Boston, MA, USA, first edn. /1997)



15. Miranda, E.: Brouhaha–a portable smalltalk interpreter. In: Proceedings of the
SIGPLAN ’87 International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications /OOPSLA ’87). pp. 354–365. ACM, New York,
NY, USA /1987)

16. Vitale, B., Abdelrahman, T.S.: Catenation and specialization for Tcl virtual ma-
chine performance. In: IVME ’04: Proceedings of the 2004 Workshop on Inter-
preters, virtual machines and emulators /IVME ’04). pp. 42–50. ACM, New York,
NY, USA /2004), General Chair-Michael Franz and Program Chair-Etienne M.
Gagnon


