ON THE UNIFICATION OF SUBSTITUTIONS IN
TYPE-INFERENCE

BRUCEJ. MCADAM*

Technical Report ECS-LFCS-98-384
Department of Computer Science
University of Edinburgh

March 26, 1998

Abstract

Traditional type-inference and type-checking algorithms work well with cor-
rectly typed programs, but their results when given programs containing types-err
can be unpredictable. This leads to a problem with implementations of type-cbecke
they are often inaccurate when announcing the apparent locations of mistakes in
programs, tending to notice problems towards the end of the the program even if
the source occurs much earlier. This is a particular problem with programmmg |
guages with Hindley-Milner type-systems such as used in Standard ML.

A common technique in type-inference and type-checkinmifcation Unify-
ing types creates a substitution which is applied to a type-environment. Thé subst
tutions which have been applied to the type-environment can influence the detection
of type-errors in different subexpressions of the program.

This paper defines the operationwfifying substitutionand shows how type-
inference algorithms can be modified to use this operation to delay the appiichti
substitutions to the type-environment. This removes the bias to detecting &¥or
wards the end of the program. Two different type-inference algorithms for Hindley-
Milner type-inference are modified in this way and the potential for improvest e
reporting is shown.

*e-mail: bjm@dcs.ed.ac.uk, WWW: http://www.dcs.ed.ac.uk/home/bjm/

1 Introduction

Many modern programming languages are equipped witilpa-systermwhich is a set of rules
for assigning types to parts of programs. The type-system is implemented in ecsvgid used
for several purposes. Programs which do not have types can be rejected by centipderser
can be informed of the types of their programs (assuring them of one aspect of casgctne
and the compiler uses type information to optimise code. The focus of this paper isstlo fi
these uses of type-systems: the rejection of programs without types (whichoteeretve type
errors or inconsistencigs A difficulty many programmers find in programming is that when
their program is rejected they are not given enough information to easilyel@at repair the
mistakes they have made.

Many type-inference algorithms (for different type-systems) make useinifeationoper-
ation. This takes types as parameters (usually a pair of types) and returnsimsabsnapping
type-variables to types which can make two or more types equal. Substituteapplied to
free type-variables in the type-environment before type-checking further subsixpres

This paper deals primarily with the family éfindley-Milnertype-systems used in functional
programming languages such as Standard ML. Though these provide polymorphic types, much
of their type-inference is concerned with the use of unification to find the types of nmpbi
parts of the program (such as function parameters and particular instances ofogahyen
functions). The process of type-checking programs in implicitly typed languages s&tharad-
ard ML is a process diype-inferencereconstructing the type constraints the programmer would
have been required to give in an explicitly typed language (this is the task afatrofi and sub-
stitution). In Section 2 we shall see that informing the user of the reasoyerdhecking failure
(and of possible locations where the programmer may have made a mistakeplesemntly dif-
ficult task in these systems. With Hindley-Milner type-inference, usdehafomplain that the
‘location’ of a problem as given by the compiler (for example when it reports “canpplya
f tox on line 3”) is only tenuously related to the location at which they actually naaohés-
take (e.g. another use bfseveral pages ago). Section 3 examines the type-inference algorithm
and shows why the apparent location of errors can be wrong — it has a &fbtie-right bias
towards detecting problems late in the code and this bias is caused by the wagtiomfand
substitutions are used.

The solution to this problem of the conventional inference algorithm is a new typesintie
algorithm designed from a pragmatic perspective. The key idea applied hibat ik algorithm
should besymmetric treating subexpressions identically so that there is no bias causing errors
to tend to be reported in one part of a program rather than another. The new algorstism re
upon the novel concept of the unification of substitutions to allow the symmetricrieea of
subexpressions. Section 4 introduces the operatiomidfing substitutionand discusses how it
will remove the left-to-right bias from type-inference.

Section 5 presents a variation of the classic type-inference algorithmifatidy-Milner
type-systems and shows that the bias has been eliminated.

Programmers frequently view their programs in a slightly different way frobendemantics
of languages (and from compilers). In functional programming languages programmesrs oft
write curried applications which are a succession of applications in aWiven a programmer

1

mentally parses his program he will see the curried expression as a wholeyamiséakes are
likely to be related to this structure whereas the compiler sees ar¢tigraf applications and
error messages are based on this view of the code. It is desirable to makparehecker view
the program in a similar manner to the programmer, so that error messaafesoghe program-
mer’s view of the program. Section 6 shows how the new algorithm given in Segtiam be
extended so that it treats entire curried expressions symmetricallfurssional programming
languages also use constructions such as tuples, and because the type-infersrioethdee
are similar to those for applications, the algorithm can also be extendegbtocomponents of
tuples symmetrically.

There are many other type inference algorithms which use unification and hdt«caright
bias. Some of these are discussed in Section 7. Further extensions to thiseidiéscassed in
Section 8 and finally a summary of this paper’s conclusions can be found in Section 9.

2 Motivation

As mentioned in the introduction, type-systems play an important role in softfesedopment
both from the perspective of the programmer (who has simple static propertieegraprs
machine-checked) and the compiler (which can optimise on the basis of types)m@orant
aspect of type-checking is that it allows the compiler to reject badly typed samgy+— these are
not guaranteed to have a meaningful interpretation in the language semantiostesmay be
run-time errors.

The problem with this is that the burden of correcting the program lies in the progeash
hands and often there is little help the compiler can give. Compilers typtediithe programmer
at which pointin the program the error was found, but generally this is not the part ofdgeapn
in which the programmer made the mistake and it is unclear why type-checkiad &tithis
point.

2.1 An Inherent Problem with Hindley-Milner

Two key features of Hindley-Milner type-systems are of particular intecethis paper.

Implicit typing means that the programmer need not say what type an expression or identifier
should have, the type-system (and inference algorithm) can infer most typesmytia
small number of typing assertions needed.

Polymorphic typing means that types can be flexible, for example a function might take a value
of any type,«, and return a value of the same type. In this case the function can take type
a — « for any typea. It is not necessary for the programmer to specify that a function is
polymorphic, type-inference will discover this fact.

From the point of view of finding the location of mistakes in a program, these feages
weaknesses. The only way to detect a mistake is to find an inconsistencgelbetwo parts
of the program, whereas in explicit type-systems the inconsistency is typitilyeen the use

of a name and the declaration of its type. So in Hindley-Milner based languadpes taan
being able to establish that either the use of an identifier or its declaratiocorrect (and more
often than not it is the use), there are three possibilities: the first expnesegy be incorrect,
the second may be incorrect, or the problem may lie in the context they are inyeaursding
expressions, or the way they are connected). Because of polymorphism some prograemfsagm
which contain errors in them will have still have a type — but not the type the prageam
expected. This can lead to a cascading effect as spurious errors are annateiced |

2.2 Examples

Let us first consider a simple-calculus example. The function should take a real number and
return the sum of the original number and its square root.

Aa.add a (sqrt a)
The error message from the type-checker is
Cannot applysqrt : real — realtoa : int.

The programmer, seeing this message, is confusedsi®uld be aeal so the problem is
not thatsqrt is being applied ta, it is that something else causago appear to be amt.
The problem will become apparent if we look at the type-environment the expressiuecissd
inside:

add : int—int — int
sqrt : real — real

The programmer’s mistake has been to use integer addition where he actuatiéytovadd two
real numbers.

Clearly in this case the error message is inappropriate as there is egleevithaa should
be areal as there is that it should be amt. The type-checker has incorrectly given priority to
the information derived from the leftmost subexpression — it has a lefigta-bias. It would
have been more informative in the example if the type-checker has pointed outé¢hatitas
an inconsistencpetweerthe two subexpressions, instead ofwrongly claiming that either was
internally inconsistent.

The second example is a short fragment of a Standard ML program which is intended to
createthelisf1, 2, 3, 4, 5, 6, 7] by flattening a list of lists onto another list

List.foldl (op @ [[1, 2], [3, 4]]1 [5, 6, 7]
The error message is

Cannot apply: List.foldl (op @ [[1, 2], [3, 4]]
to: [5, 6, 7]

Required argument type: int list list |ist

Actual argunent type: int Iist

3

A programmer could be perplexed by this message if they thinklthat . f ol dl expects a
list and then a start value, i.e. that the type-environment contains

List.foldl : (("a* 'b) ->"'b) ->"alist ->'hb

(Both’ a and’ b are intended to bent 1i st). Li st. f ol dl in fact expects its parameters
in the other order:

List.foldl : ("a* 'b) ->"b) ->"b ->"a list

This is an easy mistake to make as different libraries provide diftevariations of this fold
function.

The problem is caused by instantiating the type of the lists take@dsi nt i st |i st
as soon as the list of lists has been seen. The compiler then complains about tyediicakion
instead of an inconsistency in the use@fA better error message would tell the programmer
that the parameters are incompatible with each other when they are all ptitdnge

A classic example used to illustrate the monomorphism of function paramsters i

Al.(I3,1 true)

The programmer has written a function which expects the identity function asaenptar, this
is not possible in Hindley-Milner type-systems as parameters cannot be used polysatyphi
When a compiler is faced with this expression it type-checks from lefgtat rfirst establishing
that/ must have a type of the formt — (and then finding that cannot, therefore, be applied
totrue : bool. The user will be given an error message of the form

Cannot apply : int — « to true : bool.

This message implies that there is an inconsistency inSitlee, whereas there is actually an
inconsistency in the use dfbetween the two subexpressions. The algorithm in this paper will
find this inconsistency in the uses bf Type-checking tuples is similar to type-checking curried
expressions and is discussed later.

The examples here have been selected to avoid unnecessary complexitystratdlithe key
idea that curried expressions should be treated symmetrically. In realapneghis is much
more important as expressions can be extremely large and it is not so easgdbahet repair
the mistake given the error message.

The next section explains where in the type-inference algorithm these problems ari

3 Type-Systems and the Inference Algorithm

An introductory discussion of the type-systems and the inference algorithm can beri¢Gad37].
Proofs of the algorithnii’’s correctness can be found in [Dam85)].

3.1 Types, Type-Schemes and Type-Environments

In this paper we will consider types which are built from type-variabtess(. . .) (hence types
are polymorphic); type constantsif, real and others); and the function type constructer

The form of polymorphism in Hindley-Milner type-systems arises from the usey/pd-
schemes These are types with some (or all) of their type-variables universally digahtfor
examplevVa.a — (. A type,r’, is ageneric instancef a type scheme{a; - - - a,.7, if 7/ can
be obtained from by (consistently) substituting types for the type-variables- - . In this
paper, we will not be particularly concerned with type-schemes.

Type-inference starts from a type-environmdntwhich is a map from identifiers to type-
schemes.I' can be augmented with new terms, for example after a declaration, and can hav
terms removed from itl{,, is I" with any term forz removed).

Type-schemes are obtained from typesimsinga type under a type-environmeit(r) (the
closure ofr underl) is the type schem&q; - - - a,,.7 Wherea; - - - a,, are the type-variables
occuring in7 but which do not occur free i'. In particular, closing a type under a type-
environment with no free type-variables results in every type-variabtae type being univer-
sally quantified.

Figure 1 Components of type-systems.

| Component | Values |
Type-Variables a,fB,...
Types Ti= a | 1p—m7 | int | real |...
Type-Schemes oc=Vay-- a,.T
Type-Environments I'={ag— 00, -, an, = 0y}

3.2 Type-Systems

Hindley-Milner type-systems are formulated as non-deterministic transstystems. In this pa-
per, we will look at a simpla-with-let-calculus (as in Figure 2) and will be particularly interested
in the rule for deriving types of applications. The type-system is in Figure 3.

Figure 2 Syntax of the\-with-let-calculus.

= =z
| eoen
| Az.e
|

let x = eg in e

Figure 3 Type derivation rules.

[(x)>7
'Fx:7
ke :7 —71 ke : 7
F|_€0€]Z7'
F,u{z:m}Fe:mn
I'EAx.e:mg— 1
F'Fey:m I,Uu{z:T(r)} e m
' letz=¢ine : 7y

The type-inference rule farye, states that if (given the type-environméntsubexpression
ey has typer’ — 7 (it is a function), and then similarly that, has typer’ under the same
type-environment (it is a suitable argument for the function), then the applicatignog; has
type 7. The non-determinism in this case arises from the function argumenttypéwe are
attempting to show I ege; : 7, there is no way of knowing what to use in the sub-derivation
for each ofey ande; .

3.3 Substitutions

As well as types, type-schemes and type-environments, the type-inferencéhatgoiakes ex-
tensive use obBubstitutions A substitution is a finite mapping from type-variables to types.
Substitutions are denoted by a set of mappiRgs,— i, - - - «,, — 7, }. A substitution repres-
ents a means of refining types (and of refining our knowledge of the forms of types associate
with expressions). If we know that a certain type (containing type-varialdexsgsociated with
an expression, and that a substitution is also associated with it themvegply the substitution
to the type to refine it. Both Damas’s algorithm and the new algorithm in this pape by
refining types using substitutions.

All substitutions must meet a well-formedness criteria.

Definition 1 (Well-formedness) A substitutionS is well-formed ifidom(S) N FV(S) = {}.

This restriction prevents us from getting ‘infinite’ types (i.e. types which @iorthemselves).
Substitutions can be combine#. S, is the substitution which has the same effect as applying
first Sy and thenS;. S;5; exists iff it is well formed, so as well as both conjuncts being well
formed it is necessary th@l’ (S;) N dom(Sy) = {}.
We define an ordering on types: > 7' iff 35 : ST = 7'. A type-environment[’, has an
instance]”, iff 45 : ST =1".

3.4 The Inference Algorithm

The inference algorithmi/, is a deterministic simulation of the derivation rules. For a partic-
ular type-environment and expression, it attempts to find a type for the expressi@sard
stitution of types for type-variables such that the expression has the type under ttieiwds
type-environment. The algorithm traverses the structure of the expressiomuiidisubstitu-
tions and types. This paper is concerned with the case of the algorithm which hanut&erf
applications:

W(F,ege1) = let
(S[),To) — W(F,eo)
(51,7'1) = W(ng,el)
7'[,) == S]’Tg

V =U(r,, 71 — () for new 3

(VS] SUa V/g)

The most significant part of this case is the usemfication The algorithmU returns the
most general substitution which when applied to each of its parameterpratllice the same
type, for examplé/(int — «, 3 — real) = {a — real, § — int}. A survey of applications
and techniques for unification can be found in [Kni89]. Type inference fails if no urfists.
Inference could also fail in either of the recursive calls. When infexdats, implementations
print error messages indicating a problem with the subexpression of currensintere

The result of type-inference shown to the programmer is a polymorphic type-scheiel{pr
ing inference succeeds). I returns(S, 7) then the type-scheme B (7). Sincel typically
does not have any free type-variables, all type-variables in the result tyijpeownally be uni-
versally bound.

The action of the algorithm satisfies two theorems.

Theorem 1 (Soundness oft’) If W(T',e) succeeds withiS, 7) then there is a derivation of
S'Fe:T.

Theorem 2 (Completeness oft’) Given (T',e) let IV be an instance of' and n be a type-
scheme such that F e : 7.
Then

1. W(T', e) succeeds
2. IfW(T,e) = (P,) then for somer: ' = RPT, andy is a generic instance d& PT' ().

Proofs of these theorems can be found in [Dam85]. We will revisit these theatersthe
algorithm is modified later in the paper.

4 New Algorithm

We have already seen some examples demonstrating the left-to-right bidsaofl have seen
how the algorithm works, so we now know why the bias arises (in the case of applicat
the problem is caused as the substitution from a left-hand subexpression is apphedype-
environment before traversing the right-hand expression.

The objective of the new algorithm is to allow us to infer types and substitutionsafcin
subexpression independently. The new algorithndeals with combining substitutions, the next
section shows how to modify}’ to make use of it and Section 6 shows how to further extend the
algorithm to produce better error messages (and suggestions of how to correct @ogram
algorithm can be applied to other type-inference algorithms and other type-syasened| (as
shown in Section 7).

4.1 The ldea — Unifying Substitutions

To treat the subexpressiong ande; independently in a modified version of, the recursive
calls must béV (T', ey) andW (T, e1). This will yield two result pairs(S,, 7o) and(Sy, 7). Itis
necessary then to

e check that the two substitutions are consistent

e apply terms fromS, to ; and fromS; to 7y so that the resulting types have no free type-
variable in the domain of either substitution, and

e return a well-formed substitution containing entries from h&grand.s; .

The second of these operations cannot be done simply by comitingnd S; 7, because
this could leave unwanted free type variables, likewise the third of tisesetisimplysS; S, or
SoS1. The essence of these three operations can be summarised in these tworegtsire

e check the substitutions are consistent, and if they are
e create a substitution which contains the effect of both.

We mustunify the two substitutions.

4.2 Examples

Before we look at the algorithm for unifying substitutions, it will be worthwhileisgesome
examples.
The simplest case is where the two substitutions are completely independent.

Sy = {()’}—>|nt}

S = {B=n7}
Us(So,S1) = {aw—int, 3 v}

8

If the domains ofS, andS; contain a common element, we must unify the relevant types:

So = {a—int— 5}
S = {aw—y—real}
Us(Sp. 51) = {8+ real,y — int}

Note that equivalent results cannot be obtained simply by composing the substitStiSns(
S1S0). That example would have occured inside the lambda terfnz).(f 1) + ((f =) + 0.1).
Sy is the substitution produced frorfl and.S; comes from(f x) + 0.1 (« is the type-variable
related tof).

Substitution unification can fail, for example with

So = {08+~ a—real}
S1 = {f+ real — real,a — int}

There is an inconsistency between the instantiationsiofthis case.
Unification could also fail with accurserror.
So = {a—int— 5}
S = {B—int— a}

Clearly the two substitutions here imply thaiand should be infinite types.

4.3 Formal Definition

A substitution,S’, unifies substitutionsy, andSs, if S’Sy, = S'S;. In particular the most general
unifier of a pair of substitutions iS’ such that

(S'Sy = S'S1) A (VS" 1 (S"Sy = 5"S;) — (AR : 8" = RS"))

i.e. S" unifies S, andS;, andS’ can be augmented to be equivalent to any other unifying substi-
tution.

The unified substitution$’S,, has the effect of botls, and.S; since(S'Sya < Syar) and
(S'Spa < Sh1a), for all a.

4.4 Algorithm Ug

Algorithm Ugs computes the most general unifier of a pair of substitutions.

To see how the algorithm works, note that the domain of the result consists of threapar
shown in Figure 4. The algorithm you are about to see deals with each of the thigefihe
domain separately.

Figure 4 The domain ofUs (S, S1) consists of three parts. The disjoint parts of the domains of
Sop and S, and the free variables in their ranges where their domains overlap.

S

So

dom

FV

The free variables in the range of the unifier are free in eithear S; and are in the domains

of neither.

Here is the algorithm, commented in italics.

US(SOa S])

let
First split the domains into three parts:
Dy = dom(Sy) — dom(Sy) To ={ar— Spa: a € Dy}
D, = dom(S;) — dom(Sy) Ty ={ar Sia:a€ D}
Dn = dom(Sp) Ndom(Sy)
Remember?V (T) N dom(Sy) = {}, similarly for 73.
Start with7;, and add terms foD, one at a time,
always producing well formed substitutions:
Sy =T {aor =1 oy = 1} =T
Sipq = let
Remove elements of do#t) from 7, 4,
and removey; . ; from S:
Ti’+1 = SiTit
If a;1q € FV(71],,) terminate (occurs error)
in {1 = 7,4}
S} is the unifier forly and7;.
Now deal with items D = {f; - - - B }:
Uy =S
Uiy = let
70 = U;SofBis1 71 = UiS18i1
If 5,1 € FV(19) U FV(r) terminate (occurs error)
V =U(r, 1)
in VU;
in U,

10

4.5 \Verification of Ug

We must show thal/s does indeed compute the most general unifier of a pair of substitutions,
the propositions in this section are similar to those you will see in Sectiofirbbbth cases they

are a pair of soundness and completeness results, showing that the algorithmves/angiong
answer and that if an answer exists then the algorithm will give an answer).

Theorem 3 For any pair of substitutions$, and S, if Us(Sp, S1) succeeds then it returns a
unifying substitution.

Theorem 4 If S” unifiesS, and .S, then
1. Us(So, S7) succeeds returning’, and

2. there is somé& such thatS” = RS'.

Proofs of both these propositions can be found in Appendix A

4.6 Unifying Sets of Substitutions

Us can be extended to take a set of substitutions and to return the most generalairttirer
entire set. We will write/s{ Sy, S; - - - S,,} for the application of this extended versionlé§.
A naive implementation based on the p@iyfunction is shown below.

Us{So---S,} = let

Generate sequence of substituticfis - - S}

S(’) = Sg

Sylz+1 = US(S;» Si+1)

in S;,

This algorithm will not generally be suitable as if it fails, we are unableatpaccurately which
pair of substitutions conflicted (it has a left-to-right bias which allows us tmlyay that some
substitution,S;, conflicts with some other substitution before it whereas we would wish to be
able to tell exactly which pair conflicted). A real implementation shouldrbexdended version
of the pairl/s function. The disjoint areas of the domains can be treated as before, while the

overlapping areas will need to be handled by a type-unification algorithm whiels & set of
types rather than a pair of types.

4.7 Implementation Note

The proofs regarding algorithiiig show that the most general unifier of a pair of substitutions
is computable. This algorithm is not, however, particularly efficient and isoitable for the
representation of substitutions used in many compilers.

11

Rather than having explicit substitutions passed as parameters and retamefdrictions,
it is common to use references to implement substitutions. A type-varisiépresented by a
reference, and to apply a substitution the reference is updated to point to dkypés intended
to be more efficient than representing types as data-types and substitutionglgxadi¢say)
lists. The substitution is applied to every type as soon as it is created.

There has been some discussion of whether it is worthwhile implementing subgestusing
references. The Glasgow Haskell compiler [PW93] found ‘spectaculadapsewere attained
by using monadic arrays in the compiler, whereas Tofte [Tof89] found that for a gnugdict
written in Standard ML the type-checker was more efficient without imperatata structures.

This representation of types and substitutions, however, represgmeedystrategy which
is incompatible with the principle being applied here. The intention of the algotithbe in-
troduced in the next situation is to avoid applying substitutions until this is eak@ntorder to
check that two subexpressions are consistent with each other and to find théy@swoif their
application). The intention of using references on the other hand is to have sutissiaplied
to every type as soon as the substitution is created.

The great advantage in representing substitutions explicitly is that the typkerhreeed not
apply them immediately and can choose which substitutions to apply to any type.giVhs
the potential for many variations on conventional algorithms, for example a typeker could
backtrack in order to find possible locations for mistakes. A second advanttus e substi-
tution contains important information which could help the programmer debug theirgmogr
explicit substitutions allow easier manipulation and analysis of this infoomat

Though it is not possible to represent all types and substitutions using refereribethavi
algorithm in this paper, the techniques found in other type-checkers could be apphéu i
to speed it up.

5 The New Version ofiV

Now that we know what it means to unify two substitutions and have seen that gassible, so
let us now look at the new algorithrid/’. This differs from¥ only in the case for applications

W'(T,epe;) = let
(So, 70) = W'(T, e)
(S1,m1) =W'(T, e)
S" = Us(Sy, S1)
70 =879 m=.8"n
V =U(ry, 7y — () fornew 3
in

(V5'So, V)

As stated earlier, the algorithm treatsande; symmetrically and featurd$s in an analogous
manner to (and in addition ta@).

12

Now that we have exploretd’ informally and given the algorithm, we will proceed to ex-
amine it in a formal manner in the next section .

5.1 \Verification of W’

Algorithm W' should produce the same resultsiés To verify this it is necessary to prove the
soundness and completeness theoremsdifar These theorems are the same as those Damas
proved forlV.

The algorithm is sound if every answer it gives is a type for the parameter sxpmasder
the type-environment obtained from applying the substitution to the original type-enwerdnm

Theorem 5 (Soundness oft”’) If W'(T', e) succeeds withiS, 7) then there is a derivation of
ST'He:T.

This theorem is proved in Appendix B. Now that we know the algorithm never givesisire
onable answers, we must show that if a type exists for an expression, the algattinnsa type
which is at least as general as the type known to exist. This is the compketesat.

Theorem 6 (Completeness ofi’') GivenI’ ande, letI” be an instance of andn be a type-
scheme such that F e : 7.
Then

1. W'(T', e) succeeds

2. IfW'(T',e) = (P, n) then for somek: I = RPT, and is a generic instance a8 PT ().

The proof of this theorem can be found in Appendix B.

BecauséV' satisfies the same soundness and completeness theordmaiad we know that
the solutions of these theorems are unique (from the principal type-scheme theorem8#])D
we know thati’”’ always produces the same resultdlas

Corollary 1 (W' and W are equivalent) For any pair, (T',e), W(T',e) succeeds and returns
(S, 7) ifand only if W’(T", e) succeeds and returr{s, 7).
6 Curried Expressions and Tuples

The intention ofi/’ is to type-check subexpressions independently so that the compiler can make
a better estimate of the source of inconsistencies. It does this at a coarskagtg considering

only the two components of an application. This section extéiidso that it examines the
program in more detail by looking at more than two subexpressions at a time.

13

6.1 Curried Expressions

Computations in functional programs are composed of curried applications with thedor- - - ¢,,,
i.e. a sequence of values to be applied in succession. Standard ML and tha-tygledlus treat
these expressions as a hierarchy of applications(((eqe1)es)es) - - -)e, as shown in the first
part of Figure 5. This section extends the principléif (looking at subexpressions independ-
ently) to curried applications with many terms. The second part of the figuresshow the user
views curried expressions, the modifidd will use this pattern for its recursive calls.

Figure 5 The language semantics (and compiler) view curried expressions differemthytire
programmer. The algorithii’” takes the second view of expressions.

Semantic view Pragmatic view
.
PN T T
€En €y €1 €9 €3 €En
€3
€9
€0 €1

6.2 Algorithm for Curried Expressions

Given a curried expressiofye; - - - ¢,, we can independently infer a substitution and type for
each subexpression. Then thesubstitutions can be unified, and failure at this point indicates
an inconsistency between two (or more) subexpressions. The substitutions for ticatapyd
and the final result for the whole expression can then be evaluated. Failure poihi would
indicate that some argument is not suitable.

The first part of the algorithm is a routine to collect all the subexpression sastdta list

collectT',;e) = appendcollectT, ey), W"(T',e1)) if e = epey
= W"(T,e) otherwise

The new algorithmi?V” first generates a unified substitution (using the versiorifptaking
sets of substitutions mentioned earlier), then checks that the applicatiahdsad returns the
result type,

14

W"(T,epe;) = let
(S0, 70) -+ (Sn,) = collect(T, egey)
S"=Us{So---Sn}
V=U(Sr,S"(rn—m 1 — () news

(VS VD)

6.3 Tuples and Records

Tuples are used in programming languages not only as a way of representing dataesrsioth

as vectors but also as temporary constructions used to pass parameaiadit;ms. For example
the Standard ML basis library provides the functioinst . t ake which expects a pair of an
integer and a list, the pair is a transient value used only to pass two val@ehihction. So,

in programming languages with record and tuple types, the situation for prograrhecasies

complicated and it is often necessary to remember the arrangement ofgparsufor many func-
tions (it is not sufficient simply to know what information a function requires,dsb to know

the order of parameters and whether any of them should be together as a tuple).

The new type-inference algorithm can be extended to handle any arrangement of subexpres
sions, such as tuples. This is a trivial matter involving changing the secondfpért so that it
collates the types into a tuple or record instead of returning the final return type.

Given the types and substitutions for subexpressions, it should be possible for an automat
program repair system to attempt to rearrange the subexpressions to try taiimidea program
which can be typed. For examgle st . t ake expects a tuple of typent * "a |ist,itis
easytosee howi st.take [1, 2, 3, 4] 2 canbe converted by looking at the types of
subexpressions and the obvious ways to rearrange them.

6.4 Example error messages

Recall the examples from earlier. Previously the expression
Aa.add a(sqrt a)

Would have complained
Cannot applysqrt : real — real toa : int

(Recall thatadd is integer addition busqgrt is real number square-root).
A modified version ofi¥” would respond

add a requiresa to have typent, butsgrt « requiresa to have typeaeal so they
are inconsistent.

15

The expression:
A .(I3,1true)

Would have produced a message of the form
Cannot apply to true sincel has typéant — «a.

In a modified version oV’ (one which can deal with tuples), the message would be produced
when the substitutions from8 and/ true fail to unify. The message would be like

I 3 is inconsistent withl true sincel is applied to amnt in the former and &ool
in the latter.

7 Ug and Other Algorithms

Us can be applied to other algorithms which make use of subsitution.

7.1 Unification usingUg

We can write a symetric unification algorithms which makes udéof

Ula.B) = {am B)

Ula,7) = {a—rT1}

Ulr,a) = {a—rT1}
Ul =, — 1) = let

S[):U(T[),T(/)) S] :U(’H,T{)

(Us(So, S1))So

One advantage of implementifgthis way is that any error information generatedibyand
Us is likely to be in the same format. This does, of course, also eliminatethto-right bias
which can occur in unification. Note also that there is no need for an occurs hecés this is
handled by the checks rig.

7.2 Another Type-Inference Algorithm

An alternative type-inference algorithm for Hindley-Milner type-systems8/is[LY98]. This
is a top-down algorithm which attempts to check that an expression has a typelestidr its
context. The algorithm takes type-environmeéntexpressions;, and target typey, a