
Accurate Garbage Collection
in an Uncooperative Environment

Fergus Henderson
Department of Computer Science and Software Engineering

The University of Melbourne
Victoria 3010, Australia

fjh@cs.mu.oz.au

ABSTRACT
Previous attempts at garbage collection in uncooperative
environments have generally used conservative or mostly-
conservative approaches. We describe a technique for do-
ing fully type-accurate garbage collection in an uncooper-
ative environment, using a “shadow stack” to link structs
of pointer-containing variables, together with the data or
code needed to trace them. We have implemented this in
the Mercury compiler, which generates C code, and present
preliminary performance data on the overheads of this tech-
nique. We also show how this technique can be extended to
handle multithreaded applications.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—memory
management (garbage collection); D.3.2 [Programming
Languages]: Language Classifications—C

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance, Reliability, Languages

Keywords
Garbage Collection, Programming Language Implementa-
tion, Multithreading, C

1. INTRODUCTION
New programming language implementations usually

need to support a variety of different hardware architectures,
because programmers demand portability. And because pro-
grammers also demand efficiency, new programming lan-
guage implementations often need to eventually generate
native code, whether at compile time, as in a traditional
compiler, or run time, for a JIT compiler.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’02,June 20-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-539-4/02/0006 ...$5.00.

However, implementing compiler back-ends or JITs that
generate efficient native code for a variety of different hard-
ware architectures is a difficult and time-consuming task.
Furthermore, a considerable amount of ongoing maintenance
is required to generate efficient code for each new chip with
different performance characteristics or a new architecture.

Because of this, few programming language implementors
try to implement their own native-code generators. Instead,
many programming language implementors reuse one of the
existing back-end frameworks, in one of several ways: by
generating another more-or-less high-level language, such as
Java or C; by generating an intermediate language such as
C-- [16], Java byte-code, or MSIL (the intermediate language
of the .NET Common Language Runtime); or by interfacing
directly with a reusable back-end, such as GCC (the GNU
Compiler Collection back-end) or ML-RISC.

Unfortunately, however, most of these systems, and es-
pecially most of the more mature and popular of them, do
not have any direct support for garbage collection, and the
ones that do, such as Java and MSIL, have their own draw-
backs, such as poor performance or being available only on
a restricted set of platforms.

Implementing garbage collection in systems that do not
have direct support for it poses some difficult challenges; in
particular, it is hard for the garbage collector to trace the
system stack.

One widely-used solution to the problem of garbage col-
lection in uncooperative environments is the approach of
using conservative [4] or mostly-conservative [1, 22] collec-
tion. This approach can often deliver good performance.
However, conservative collection has some drawbacks; the
most significant of these is that the probabilistic nature of
conservative collection makes it unsuitable for very high-
reliability applications, but it also requires a small degree
of cooperation from the back-end, because certain compiler
optimizations are not safe in the presence of conservative
collection.

Another solution which has been used when compiling to
C [20] is to entirely avoid storing data on the C stack. This
can be done by implementing a virtual machine, with its
own stack and registers (which can be implemented as e.g.
C global variables). The source language is then compiled
to code which manipulates the virtual machine state; proce-
dure calls and parameter passing are handled by explicitly
manipulating the virtual machine stack and registers, rather
than using C function calls.

With this approach, the collector only needs to trace the

virtual machine stack, not the C stack. Since the source
language compiler has full control over the virtual machine
stack, tracing that stack is relatively straight-forward, and
so traditional techniques for accurate garbage collection can
be used. This approach also has the advantage that it can
overcome some of the other drawbacks of C, e.g. the lack of
support for proper tail recursion optimization [5]. However,
this approach discards many of the advantages of compiling
to a high-level language [13]. The source language com-
piler must do its own stack slot and register allocation, and
the generated C code is very low-level. To make the code
efficient, non-portable features must be used [14], and the
resulting system is complex and fragile. Furthermore, the
use of a different calling convention makes interoperability
more difficult.

We propose an alternative approach that allows fully type-
accurate and liveness-accurate garbage collection, thus al-
lowing the use of a normal copying collector, without re-
quiring any support from the back-end target language, and
while still generating code that uses the normal C function
calling mechanism. We describe this approach in the context
of compiling to C, although it would also work equally well
when interfacing directly to a compiler back-end framework,
such as the GCC back-end.

Our technique is formulated as a transformation on the
generated C code, which modifies the C code in such a way
as to insert calls to perform garbage collection when nec-
essary, and to provide the garbage collector with sufficient
information to trace and if necessary update any pointers on
the C stack. (The transformation is not entirely independent
of the front-end language, however; it requires information
from the source language front-end compiler about how to
trace each local variable.)

We have implemented this technique in the Mercury com-
piler, and we have run a number of benchmarks of this im-
plementation to investigate the overheads and performance
of our technique.

Section 2 describes our technique, showing how the code
is transformed and explaining how this avoids the difficul-
ties with compiler optimizations that can cause problems for
conservative collection. Section 3 describes how the tech-
nique can be extended to support multithreaded applica-
tions. Section 4 evaluates the performance of our technique.
Section 5 discusses related work.

2. THE GC TRANSFORMATION
The basic idea is to put all local variables that might

contain pointers in structs, with one struct for each stack
frame, and chain these structs together as a linked list. We
keep a global variable that points to the start of this chain.
At GC time, we traverse the chain of structs. This allows
us to accurately scan the C stack.

For each function, we generate a struct for that function.
Each such struct starts with a sub-struct containing a couple
of fixed fields, which allow the GC to traverse the chain:

struct function name_frame {
struct StackChain fixed_fields;

...

};

The fixed fields are as follows:

struct StackChain {

struct StackChain *prev;

void (*trace)(void *locals);

};

The ‘prev’ field holds a link to the entry for this function’s
caller. The ‘trace’ field is the address of a function to trace
everything pointed to by this stack frame.

To ensure that the garbage collector does not try to tra-
verse uninitialized fields, we insert code to zero-initialize any
uninitialized fields of each struct before inserting it into the
chain.

We need to keep a link to the topmost frame on the stack.
There are two possible ways that this could be handled. One
way is to pass it down as a parameter. Each function would
get an extra parameter ‘stack chain’ which points to the
caller’s struct. An alternative approach is to just have a
global variable ‘stack chain’ that points to the top of the
stack.

extern void *stack_chain;

We insert extra code to set this pointer when entering and
returning from functions. To make this approach thread-
safe, the variable would actually need to be thread-local
rather than global. This approach would probably work best
if the variable is a GNU C global register variable, which
would make it both efficient and thread-safe. If GNU C ex-
tensions are not available, the function parameter approach
is probably best.

In our implementation in the Mercury compiler, we are
currently just using a global variable, for simplicity.

2.1 Example
If we have a function

RetType

foo(Arg1Type arg1, Arg2Type arg2, ...)

{
Local1Type local1;

Local2Type local2;

...

local1 = new_object(...);

...

bar(arg1, arg2, local1, &local2);

...

}

where new object() is the allocation primitive that allo-
cates garbage collected objects, and where say Arg1Type

and Local1Type might contain pointers, but Arg2Type and
Local2Type don’t, then we would transform it as follows:

struct foo_frame {
StackChain fixed_fields;

Arg1Type arg1;

Local1Type local1;

...

};

static void

foo_trace(void *frame) {
struct foo_frame *locals = frame;

/* code to trace locals->arg1

and locals->local1 */

trace_Arg1Type(&locals->arg1);

trace_Local1Type(&locals->local1);

}

RetType

foo(Arg1Type arg1, Arg2Type arg2, ...)

{
struct foo_frame locals;

Local2Type local2;

locals.fixed_fields.prev = stack_chain;

locals.fixed_fields.trace = foo_trace;

locals.arg1 = arg1;

locals.local1 = NULL;

stack_chain = &locals;

...

locals.local1 = new_object(...);

...

bar(locals.arg1, arg2,

locals.local1, &local2);

...

stack_chain = ((struct StackChain *)

stack_chain)->prev;

}

Here we are following Goldberg’s approach to tag-free
garbage collection for strongly typed languages [11];
trace Arg1Type() and trace Local1Type() are type-
specific garbage collection routines that are generated by
the front-end compiler. However, unlike Goldberg, we are
primarily interested in adapting this approach to an unco-
operative environment; our technique would apply equally
well if using a tagged representation (in that case, only a
single trace object() function would be needed, instead of
one for each type) or if using a table-driven approach [7]
rather than a function per frame (in that case, the ‘trace’
field of the ‘StackChain’ struct would be a data table rather
than a function pointer).

Finally, the code in the runtime system to traverse the
stack frames is as follows:

void

traverse_stack(struct StackChain *stack_chain)

{
while (stack_chain != NULL) {

(*stack_chain->trace)(stack_chain);

stack_chain = stack_chain->prev;

}
}

The details of new object() will depend on the particular
garbage collection algorithm chosen. In our implementation,
new object() first checks for heap exhaustion, and then al-
locates memory by incrementing a global heap pointer:

typedef char byte;

extern byte *heap_pointer;

#define new_object(type,size) \

(GC_check(size), \

heap_pointer += (size), \

(type *) (heap_pointer - (size)))

Here GC check() compares the global heap pointer to an-
other global variable which points to the end of the heap,
and calls garbage collect() if the heap is near exhaustion.

extern byte *heap_gc_threshold;

#define GC_check(size) \

(heap_pointer + (size) \

>= heap_gc_threshold \

? garbage_collect() : (void)0)

As is well known, it is possible to the reduce the overhead of
checking for heap exhaustion by combining multiple checks
into a single check. However, our current implementation
does not perform that optimization.

The garbage collect() routine in our current implemen-
tation implements a very simple copying collector [21].

byte *from_heap;

byte *to_heap;

void

garbage_collect(void)

{
/* swap the "to" heap

with the "from" heap */

byte *tmp;

tmp = from_heap;

from_heap = to_heap;

to_heap = tmp;

/* reset the "to" heap */

heap_pointer = to_heap;

heap_gc_threshold =

to_heap + HEAP_SIZE;

/* copy the live objects

from the "from" heap

to the "to" heap */

traverse_global_roots();

traverse_stack(stack_chain);

}

Note that we keep a separate list of global roots, which is
used for global variables that might contain pointers, in ad-
dition to the ‘stack chain’ list.

2.2 Safety
Why, you might ask, doesn’t this technique suffer from the

same problems with back-end compiler optimization that
cause trouble with conservative collection?

The reason that this technique works is that we are not
going behind the back-end compiler’s back; everything is
done in strictly conforming C code. Conservative collectors
use non-portable techniques to trace the stack, but with our
approach the collector can trace the stack just by traversing
our linked list of structs. Although the code contains some
pointer casts, the behaviour of these casts is defined by the
C standard.

The back-end compiler cannot do any unsafe opti-
mizations on pointer variables such as locals.arg1 and
locals.local1, because we’ve stored the address of locals
in a global variable, and so it must assume that any call to
a function whose body is not known might update the fields
of locals.

Of course, inhibiting such optimizations in this way is a
two-edged sword. The advantage is that it ensures correct-
ness. The disadvantage is that it hurts performance.

The back-end compiler is free to perform function inlin-
ing (or outlining, for that matter); our own “shadow stack”
of linked structs need not have any direct relationship with
the stack frames in the underlying machine code. Further-
more, the back-end compiler can do whatever fancy opti-
mizations it wants on non-pointer variables, such as arg2

and local2, and it can cache the values of pointer vari-
ables such as locals.arg1 and locals.local1 in registers
between function calls (if it does appropriate alias analysis).
But in general it cannot cache the values of pointer variables
in registers across calls to non-inlined functions. This can
have a significant impact on performance.

A key contribution of this work is to measure the impact
on performance that this transformation has.

2.3 Improvements
The scheme described above is naive in certain respects.

There are several ways in which this scheme can be opti-
mized. Rather than putting all variables that might contain
pointers in the shadow-stack structs, it is sufficient to do
this only for such variables which are going to be live across
a point where garbage collection could occur, i.e. live across
an allocation or function call.

Another optimization is to not bother allocating a struct
for leaf functions that do not contain any functions calls or
memory allocations.

Another possible optimization would be to use local vari-
ables to cache the fields of the shadow-stack struct, if they
are referenced multiple times in a sequence of code where no
garbage collection could occur, so that the C compiler could
then allocate the local variables in registers.

The only one of these optimizations implemented in our
current implementation is not allocating structs for func-
tions that do not have any pointer-containing variables.

2.4 Nested scopes and liveness-accuracy
An issue that we have not yet discussed is how to handle

variables declared in nested scopes within a function.
One way to handle them is to ignore the nesting and just

put all pointer-containing variables in the struct, regardless
of their scope. This requires first ensuring that no function
contains two declarations of the same variable name with
different types in different scopes (e.g. by renaming apart if
needed).

This approach is the one that we have used in our current
implementation. But it has two drawbacks: first, by ex-
tending the lifetime of such variables to the whole function,
we may increase stack usage; and second, since the collector
will scan them, this may in turn also lead to unnecessary
heap retention.

The second drawback could be solved by inserting code to
zero out these variables when their scope is exited, or when
they are otherwise statically known to be dead. This would
ensure that the collector is “liveness-accurate” with respect
to the liveness of the local variables in the C code before
applying our transformation. Note that if such variables
were represented just as local variables in the final C code,
as would be the case when using a conservative collector,
it might not help to add code to assign zero to them at
the end of their lifetime, since the C compiler could just

“optimize” away the assignments. But with our approach,
where such variables are represented as fields of the ‘locals’
struct, whose address has been taken and stored in a global
variable, we’re safe from such unwanted optimizations.

Another way to handle nested scopes would be to use
unions to ensure that the storage for pointer-containing vari-
ables declared in non-overlapping scopes is shared. However,
in order for the collector to be able to trace these unions,
we would need to store a discriminant for the union, which
recorded which scope (if any) was active, so that the trace()
function would know which union element to trace. Code
would need to be inserted to initialize these discriminants
on function entry, and to set the corresponding discriminant
on entry/exit from each nested scope.

A third way to handle nested scopes would be to treat each
nested scope as a separate stack frame, with the pointer-
containing variables allocated in a separate struct for each
nested scope. This would require adding code at the entry
point(s) of each nested scope to link the corresponding struct
into the stack chain list, and adding code at the exit point(s)
to remove it from the chain.

For both the second and third alternatives, the collector
would be to some degree liveness-accurate, in the sense that
variables would definitely not be scanned after their scope
has exited. However, if proper static liveness-accuracy is
desired, then for any pointer-containing variables which are
statically known to die before their scope has exited, ad-
ditional code would need to be inserted to zero out such
variables at the point of their death. (If the last use of such
a variable is as a function call argument, this implies copying
the variable from the stack frame struct to a local tempo-
rary, zeroing out the stack frame struct field, and then using
the local temporary in the call; zeroing out the stack frame
struct field after the call would be too late.)

3. MULTITHREADING
This system can also be extended to support multi-

threading (using a “stop the world” approach to collection)
in a fairly straight-forward manner, with little additional
overhead.

The “stop the world” approach means that when garbage
collection occurs, every mutator thread must advance to a
safe point, and stop executing the program; when all muta-
tor threads are stopped at a safe point, garbage collection
can begin. The collector itself can be either sequential or
parallel (single- or multi-threaded). The important thing
about this approach is that the collector never runs in par-
allel with the mutator.

In our case, the “safe points” are the calls to
garbage collect().

To avoid the need for synchronization at allocations,
there should be a separate area of free heap space
for each thread. The ‘stack chain’, ‘heap pointer’,
and ‘heap gc threshold’ variables all need to be made
thread-local. When one thread runs out of free heap
space, it can schedule a garbage collection by set-
ting the ‘heap gc threshold’ variables for every other
thread to point a sentinel value (such as the start of
the heap) which will cause those threads to enter the
garbage collection() function when they next invoke
GC check(). The garbage collection() function can han-
dle the necessary synchronization with other threads.

To ensure that each thread will invoke GC check() within

Program Lines Number Execution time Ratios
of of (in seconds) hlc.gc hlc.agc hlc.agc

code iterations hlc hlc.gc hlc.agc / hlc / hlc / hlc.gc
cqueens 91 35000 0.70 1.29 1.28 1.84 1.83 0.99
crypt 132 20000 2.72 5.06 5.00 1.86 1.84 0.99
deriv 126 70000 0.15 0.75 0.79 5.00 5.27 1.05
nrev 56 20000 0.18 0.80 0.86 4.44 4.78 1.07
poly 259 1200 0.57 2.89 3.37 5.07 5.91 1.17
primes 78 30000 1.12 2.03 2.58 1.81 2.30 1.27
qsort 64 100000 0.83 2.68 3.11 3.23 3.75 1.16
queens 85 100 2.31 4.78 4.55 2.07 1.97 0.95
query 96 30000 3.92 3.95 4.09 1.01 1.04 1.04
tak 32 3000 2.60 2.62 2.63 1.01 1.01 1.00

Harmonic mean 1.99 2.08 1.06

Figure 1: Benchmark results

a bounded amount of time, the compiler will need to in-
sert an additional call to GC check() in the body of any
long-running loops that does not do any heap allocation.
Operating systems calls that can block will also need spe-
cial handling (space limits prevent us from elaborating on
that point here).

As mentioned earlier, ‘stack chain’ and ‘heap pointer’
can be GCC global register variables; this remains the case
even with multithreading. However, ‘heap gc threshold’
cannot be put in a register; it needs to be addressable so
that it can be assigned to by other threads. In addition,
because it can be modified by other threads, it needs to be
declared ‘volatile’.

To summarize, the changes required to support multi-
threading are these: the extra synchronization code in-
side garbage collection(), the ‘volatile’ qualifier on the
‘heap gc threshold’ variables, the extra calls to GC check()

for loops that don’t do any heap allocation, and special han-
dling for OS calls that may block. While the extra synchro-
nization code in garbage collection() may be somewhat
costly, collections should not be too frequent, so the amor-
tized cost is small. Loops that don’t do any heap allocation
are also likely to be rare, and in most cases the cost of an
extra GC check per loop iteration will be relatively small; if
the loop is small, the cost of checking can be amortized over
multiple loop iterations by performing loop unrolling prior
to inserting the extra GC checks. Finally, the cost of the
special handling needed for blocking OS calls is likely to be
small in comparison to the cost of a system call. Hence we
expect that overall, this technique should have little addi-
tional overhead compared with the single-threaded version.

Since the C standard does not support multithread-
ing, it is not possible to do all this in strictly conform-
ing C. In addition to functions for creating and syn-
chronizing threads, such as provided by Posix threads,
the approach described above also requires that assign-
ments to the ‘volatile’, thread-local pointer variables
‘heap gc threshold’ be atomic. Technically this is not guar-
anteed by the C or Posix standards, but most current plat-
forms do make assignments to appropriately aligned pointers
atomic, so it should be pretty portable in practice.

4. PERFORMANCE
The benchmark machine was a Gateway Select 1200

PC, with a 1200MHz AMD Athlon CPU, 64kb L1 in-

struction cache, 64kb L1 data cache, 256k L2 cache,
and 256Mb RAM, running Debian GNU/Linux Woody
(testing), GNU libc 2.1, gcc 2.95.4, and Mercury rotd-
2002-04-19. Each benchmark was compiled with ‘mmc -O5

--no-reclaim-heap-on-failure --no-deforestation’.
Times shown are each the best of three successive runs, on
an unloaded machine.

We used a set of small benchmarks that has previously
been used in benchmarking Mercury implementations [18].
Since the time for many of these benchmarks is very small,
we ran each benchmark for many iterations, and measured
the total time to execute all iterations.

(Ideally, it would be better to test with larger benchmarks.
But our current implementation does not yet support the
full Mercury language — higher-order code and type classes
are not supported because tracing of closures is not yet im-
plemented. This makes it difficult to find large benchmark
programs that work with our implementation.)

We compared three variants (“grades”) of the Mercury
compiler. The ‘hlc’ grade allocates memory by just incre-
menting a heap pointer, as described in this paper, but the
code does not test for heap overflow, and instead of perform-
ing garbage collection, memory is reclaimed by just resetting
the heap pointer after each iteration of the benchmark. This
is not a realistic memory management strategy for most real
applications, but it represents a useful baseline.

The ‘hlc.gc’ grade uses the Boehm (et al) conservative
collector [4].

The ‘hlc.agc’ uses the accurate garbage collection tech-
nique described in this paper. The collector is a simple
two-space copying collector. The heap size used was 128k
per space (i.e. 256k in total).

The results are shown in Figure 1.
On most of these benchmarks, the conservative collector

is a little faster than the accurate collector. On some, the
accurate collector is slightly faster. When averaged over
all the benchmarks, the conservative collector is 6% faster.
Both the conservative collector and the accurate collector
are much slower than the version which just resets the heap
pointer after each benchmark iteration.

Profiling indicates that for the ‘hlc.agc’ grade, very little
time (less than 1%) is spent in the garbage collection()

function. The slow-down compared to the ‘hlc’ grade prob-
ably results from decreased locality and from the overhead
of storing local pointer variables on the stack rather than in

registers.
Given that the Boehm collector has had years of tweak-

ing and tuning, whereas our implementation is not yet well
optimized (e.g. it does not yet use GCC global register
variables), we consider this to be a reasonable result. We
conjecture that with additional work on optimization, this
approach can achieve performance as good as the Boehm
collector on most benchmarks. But the increased portabil-
ity and reliability of our approach make it desirable for some
uses regardless of whether there is a performance advantage
one way or the other.

In our current implementation, we have not yet obtained
the main benefit for logic programming languages of a copy-
ing collector, namely that copying collectors can allow cheap
heap reclamation on backtracking, by just saving and restor-
ing the heap pointer. Doing this requires some additional
care in the garbage collector, to update the saved heap point-
ers after garbage collection, which we have not yet imple-
mented properly.

5. RELATED WORK
The accepted wisdom of the community is that conser-

vative collection is the only approach that works in unco-
operative environments. For example, the highly experi-
enced and respected language implementor Robert Dewar
wrote “you can’t do any kind of type accurate GC with-
out information from the compiler back end” (noting that
tagged architectures such as the CDC 6000 were an excep-
tion) [6]. Similarly, in the Garbage Collection FAQ [10],
David Chase states that when compiling to C or C++, re-
location of objects is “not generally possible” even if active
pointers are registered, “because compiler-generated tempo-
raries may also reference objects”. However, this is certainly
not a problem for our technique, as explained in Section 2.2,
so this section of the FAQ is at best misleading.

A big part of the contribution of this paper is to dispute
that accepted wisdom, by demonstrating that it is possible
to implement fully type-accurate garbage collection within
such an environment.

A lot of earlier work in the literature addresses issues
which are quite close to the issues that we address, but using
different techniques, or uses very similar techniques, but for
a different purpose.

Boehm [4], Bartlett [1], and Yip [22] address the is-
sue of uncooperative environments, but use conservative or
mostly-conservative collection, rather than accurate collec-
tion. Boehm and Chase [2, 3] address the issue of safety of
conservative garbage collection in the presence of compiler
optimizations.

Shadow stacks have been used for debugging in the Berke-
ley Sather [19] implementation, and in cdb [12]. But these
systems do not use shadow stacks for garbage collection;
Berkeley Sather uses the Boehm (et al) conservative collec-
tor.

Shadow stacks have been used for hand-coded garbage
collection in several systems that we are aware of, in partic-
ular Emacs, GCC, and RT++ [8, 9, 17]. In these systems,
unlike ours, the code to register local variables is inserted
manually, and the shadow stack is a list or array of individual
variables rather than a list of frames. These systems are per-
haps closest to ours, but we are interested in automating this
technique as part of a programming language implementa-
tion, rather than using it to implement a garbage collection

library for a language with manual memory management.
As far as we know there has been no published work com-

paring the performance of these hand-coded shadow stack
approaches with conservative collection. And as far as we
are aware, none of the published work on these addresses
multithreading.

Tarditi et al [20] describe an ML to C compiler that sup-
ports accurate garbage collection. However, this compiler
works by emulating a virtual machine, rather than using
the normal C calling convention; this has the drawbacks
mentioned in the introduction.

The Glasgow Haskell compiler [15] has accurate garbage
collection and can compile via GNU C; but it relies on highly
non-portable techniques that involve munging the generated
assembler file after the GNU C back-end has finished with
it. The success of such techniques relies on continued coop-
eration from the back-end compiler.

C-- [16], a portable assembly language that supports
garbage collection, is another approach that relies on co-
operation from the back-end compiler.

Wilson’s GC survey [21] discusses a variety of different
garbage collection techniques, such as mark-sweep collection
and copying collection, but does not address the issue of how
to locate roots on the stack.

6. CONCLUSIONS
We have presented a scheme for performing accurate

garbage collection in an uncooperative environment, by a
simple transformation on the code passed to the uncooper-
ative compiler back-end framework. We have implemented
this scheme in the Mercury compiler, and measured its per-
formance, which is similar to that of the Boehm (at al)
conservative collector [4] on most of our benchmarks, even
though there are several important optimizations that we
have not yet implemented.

We have also described how this scheme can be extended
to handle multithreaded applications.

The source code for our system is freely available on
the web at <http://www.cs.mu.oz.au/mercury/download/

rotd.html>.

Acknowledgments
I would like to thank Tom Lord, for his comments on the
gcc mailing list about the advantages of precise collection;
Zoltan Somogyi, Andreas Rossberg, Tyson Dowd, Ralph
Becket, Jon Dell’Oro and the anonymous referees for their
comments on earlier drafts of this paper; and Microsoft and
the Australian Research Council, for their financial support.

7. REFERENCES
[1] Joel F. Bartlett. Mostly-Copying garbage collection

picks up generations and C++. Technical Note
TN–12, Digital, Western Research Laboratory, 1989.

[2] Hans Boehm. Simple garbage-collector-safety. In
Proceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation,
1996.

[3] Hans Boehm and David Chase. A proposal for
garbage-collector-safe C compilation. Journal of C
Language Translation, 4:126–141, December 1992.

[4] Hans Boehm and Mark Weiser. Garbage collection in
an uncooperative environment. Software — Practice
and Experience, 18:807–820, 1988.

[5] William D. Clinger. Proper tail recursion and space
efficiency. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 174–185, 1998.

[6] Robert Dewar. Mail to the GCC mailing list
(<gcc@gcc.gnu.org>). URL: <http://gcc.gnu.org/
ml/gcc/2001-07/msg01990.html>, July 2001.

[7] Tyson Dowd, Zoltan Somogyi, Fergus Henderson,
Thomas Conway, and David Jeffery. Run time type
information in Mercury. In Proceedings of the 1999
International Conference on the Principles and
Practice of Declarative Programming, pages 224–243,
Paris, France, September 1999.

[8] Daniel R. Edelson and Ira Pohl. A copying collector
for C++. In USENIX C++ Conference Proceedings,
pages 85–102, 1991.

[9] Daniel Ross Edelson. Dynamic storage reclamation in
C++. Technical Report UCSC-CRL-90-19, UCSC,
June 1990.

[10] David Chase (et al?). GC FAQ (garbage collection
frequently asked questions). URL:
<http://www.iecc.com/gclist/GC-faq.html>.

[11] Benjamin Goldberg. Tag-free garbage collection for
strongly typed programming languages. In Proceedings
of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation,
pages 165–176, Toronto, Ontario, Canada, June 26–28,
1991.

[12] David R. Hanson and Mukund Raghavachari. A
machine-independent debugger. In Software —
Practice and Experience, volume 26, pages 1277–1299,
November 1996.

[13] Fergus Henderson and Zoltan Somogyi. Compiling
Mercury to high-level C code. In Nigel Horspool,
editor, Proceedings of the 2002 International
Conference on Compiler Construction, Grenoble,
France, April 2002. Springer-Verlag.

[14] Fergus Henderson, Zoltan Somogyi, and Thomas
Conway. Compiling logic programs to C using GNU C
as a portable assembler. In Proceedings of the ILPS
’95 Postconference Workshop on Sequential
Implementation Technologies for Logic Programming
Languages, Portland, Oregon, December 1995.

[15] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond,
Will Partian, and Phil Wadler. The Glasgow Haskell
compiler: a technical overview. In Proceedings of the
UK Joint Framework for Information Technology
(JFIT) Technical Conference, Keele, 1993.

[16] Simon Peyton Jones, Norman Ramsey, and Fermin
Reig. C--: a portable assembly language that supports
garbage collection. In International Conference on
Principles and Practice of Declarative Programming,
September 1999. Invited paper.

[17] Wolfgang Schreiner. RT++ — higher order threads
for C++, tutorial and reference manual. Technical
Report 96-9, RISC-Linz, 1996. URL:
<http://www.risc.uni-linz.ac.at/software/rt++/

index 131.html>.

[18] Zoltan Somogyi, Fergus Henderson, and Thomas

Conway. The execution algorithm of Mercury, an
efficient purely declarative logic programming
language. Journal of Logic Programming, 1997.

[19] David Stoutamire and Matt Kennel. Sather revisited:
A high-performance free alternative to C++.
Computers in Physics, 9:519–524, Sep/Oct 1995.

[20] David Tarditi, Anurag Acharya, and Peter Lee. No
assembly required: Compiling Standard ML to C.
Technical Report CMU-CS-90-187, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, November 1990.

[21] Paul R. Wilson. Uniprocessor garbage collection
techniques. In Yves Bekkers and Jacques Cohen,
editors, Proceedings of International Workshop on
Memory Management, volume 637 of Lecture Notes in
Computer Science, pages 16–18, St Malo, France,
September 1992. Springer-Verlag.

[22] G. May Yip. Incremental, generational mostly-copying
garbage collection in uncooperative environments.
Technical Report 91/8, Digital, Western Research
Laboratory, June 1991. Masters Thesis – MIT,
Cambridge, MA, 1991.

