
Supporting Precise Garbage Collection in Java Bytecode-
to-C Ahead-of-Time Compiler for Embedded Systems

Dong-Heon Jung

Sung-Hwan
Bae

Jaemok Lee

Soo-Mook
Moon

JongKuk Park

School of Electrical Engineering and Computer Science
Seoul National University, Seoul 151-742, Korea

{clamp,uhehe99,seasoul,jaemok,smoon}@altair.snu.ac.kr

Abstract
A Java bytecode-to-C ahead-of-time compiler (AOTC) can
improve the performance of a Java virtual machine (JVM) by
translating bytecode into C code, which is then compiled into
machine code via an existing C compiler. Although AOTC is
effective in embedded Java systems, a bytecode-to-C AOTC
could not easily employ precise garbage collection (GC) due to a
difficulty in making a GC map, which keeps information on
where each root live object is located when GC occurs. This is
one of the reasons why all previous JVMs using a bytecode-to-C
AOTC employed conservative GC, which can lead to poorer GC
performance with more frequent memory shortage, especially in
embedded systems where memory is tight.

In this paper, we propose a way of allowing precise GC in a
bytecode-to-C AOTC by generating additional C code which
collects GC map-equivalent information at runtime. In order to
reduce this runtime overhead, we also propose two optimization
techniques which remove unnecessary C code. Our experimental
results on Sun’s CVM indicate that we can support precise GC
for bytecode-to-C AOTC with a relatively low overhead.

Categories and Subject Descriptors
D3.3 [Programming Languages]: Language Constructs and
Features; D.3.4 [Processors]: Compilers, Run-time
environments; D.4.7 [Operating Systems]: Organization and
Design-real-time and embedded systems;

General Terms
Design, Experimentation, Performance, Languages

Keywords
Bytecode-to-C, ahead-of-time compiler, precise garbage
collection, Java virtual machine, J2ME CDC

1. Introduction
Java has been employed popularly as a standard software

platform for many embedded systems, including mobile phones,

digital TVs, and telematics [19]. The advantage of Java as an
embedded platform is three folds. First, the use of a virtual
machine allows a consistent runtime environment for a wide
range of devices that have different CPUs, OS, and hardware
(e.g., displays). Secondly, Java has an advantage in security such
that it is extremely difficult for a malicious Java code to break
down a whole system. Finally, it is much easier to develop
software contents with Java due to its sufficient, mature APIs
and its language features that increase software stability such as
garbage collection and exception handling.

The advantage of platform independence is achieved by using
the Java virtual machine (JVM), a program that executes Java’s
compiled executable called bytecode [1]. The bytecode is a
stack-based instruction set which can be executed by
interpretation on any platform without porting the original
source code. Since this software-based execution is obviously
much slower than hardware execution, compilation techniques
for executing Java programs as native executables have been
used, such as just-in-time compiler (JITC) [15] and ahead-of-
time compiler (AOTC) [7]. JITC translates bytecode into
machine code at runtime while AOTC translates before runtime.
AOTC is more advantageous in embedded systems since it
obviates the runtime translation overhead and the memory
overhead of JITC, which consume the limited computing power
and memory space of embedded systems.

There are two approaches to AOTC. One is translating
bytecode directly into machine code, referred to as bytecode-to-
native [2-6]. The other approach is translating bytecode into C
code first, which is then compiled into machine code by an
existing compiler, referred to as bytecode-to-C (b-to-C) [7-10].
The approach of b-to-C allows faster development of a stable,
powerful AOTC by resorting to full optimizations of an existing
compiler and by using its debugging and profiling tools. It also
allows a portable AOTC that can work on different CPUs.

There is one important issue in designing a b-to-C AOTC
related to garbage collection (GC) [11], though. A JVM that
supports precise GC requires a GC map at each program point
where GC can possibly occur, which is a data structure describing
where each root live object is located at that point. Since a b-to-C
AOTC normally translates such locations that have root references
into C variables, it is difficult to know where the C compiler
places those C variables in the final machine code. All previous
JVMs using a b-to-C AOTC employed conservative GC [7, 9, 10],
which is simpler to implement but can lead to poorer GC
performance than precise GC.

This paper proposes a method to support precise GC in a b-to-
C AOTC by generating C code that records references in a stack

This research was supported in part by Samsung Electronics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES'06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010...$5.00.

35

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1176760.1176767&domain=pdf&date_stamp=2006-10-22

frame whenever a reference-type C variable is updated. In order
to reduce the runtime overhead caused by the additional C code,
we also propose two optimization techniques. We evaluated the
proposed technique on a CVM in Sun’s J2ME CDC environment
which requires precise GC. We developed a b-to-C AOTC in this
environment and performed experiments with it.

The rest of this paper is organized as follows. Section 2
reviews precise GC and our b-to-C AOTC. Section 3 introduces
the proposed solution to allow precise GC with a b-to-C AOTC.
Section 4 describes two optimization techniques to reduce the
overhead of our solution. Section 5 shows our experimental
results. A summary follows in Section 6.

2. Precise GC and Bytecode-to-C AOTC
In this section, we briefly review our b-to-C AOTC and issues in
precise GC. Then, we discuss why it is difficult to support
precise GC with a b-to-C AOTC.

2.1 Overview of JVM and Our Bytecode-to-C
AOTC

The Java VM is a typed stack machine [14]. Each thread of
execution has its own Java stack where a new activation record
is pushed when a method is invoked and is popped when it
returns. An activation record includes state information, local
variables and the operand stack. Method parameters are also
local variables which are initialized to the actual parameters by
the JVM. All computations are performed on the operand stack
and temporary results are saved in local variables, so there are
many pushes and pops between the local variables and the
operand stack.

In our b-to-C AOTC, each local variable is translated into a C
variable (which we call a local C variable). Also, each stack slot
is also translated into a C variable (which we call a stack C
variable). Since the same stack slot can be pushed with
differently-typed values during execution, a type name is
attached into a stack C variable name such that a stack slot can
be translated into multiple C variables. For example, s0_ref is
a C variable corresponding to a reference-type stack slot 0, while
s0_int is a C variable corresponding to an integer-type stack
slot 0.

Our AOTC first analyzes the bytecode and decides the C
variables that need to be declared. It then translates each
bytecode one-by-one into corresponding C statements, with the
status of the operand stack being kept track of. For example,
aload_1 which pushes a reference-type local variable 1 onto
the stack is translated into a C statement s0_ref = l1_ref;
if the current stack pointer points to the zero_th slot when this
bytecode is translated. Figure 0 shows an example.

Our AOTC can work with the interpreter, so AOTC methods
and interpreter methods can co-exist during execution. This is
useful for an environment where we also need to download class
files dynamically (e.g., in digital TVs the Java middleware is
AOTCed while the xlets downloaded thru the cable line is
executed by the interpreter). How to pass parameters between
AOTC methods and interpreter methods and the translation
details are described in [20].

(a) Java Method (b) Bytecode
public int max(int a,
int b) {
 return (a>=b)? a:b;
}

 0: iload_0
1: iload_1
2: if_icmplt 9
5: iload_0
6: goto 10
9: iload_1
10:ireturn

(c) Translated C Code

Int Java_java_lang_Math_max_II(JNIEnv
*env, int l0_int, int l1_int)
{
int s0_int;
int s1_int;

 s0_int = l0_int; // 0:
 s1_int = l1_int; // 1:
 if(s0_int < s1_int) goto L9; // 2:
 s0_int = l0_int; // 5:
 goto L10; // 6:
L9: s0_int = l1_int; // 9:
L10: return s0_int; // 10:
}

Figure 0. An example of Java code and translated C code

2.2 Precise GC
As an object-oriented language, Java applications tend to

allocate objects at a high rate while the memory space of
embedded systems is tight, so GC should reclaim garbage objects
efficiently. Most GC techniques first trace all reachable objects on
a directed graph formed by program variables and heap-allocated
objects where program variables constitute the root set of the
graph [11]. In Java, the roots are located in the operand stack slots
and local variables of all methods in the call stack, whose types
are object references. So, GC traces all reachable objects starting
from the root set and reclaims all unreachable objects. There are
two approaches to tracing reachable objects: conservative and
precise [12].

Conservative GC regards all word-size data items saved in the
JVM as references, which simplifies the identification of the root
set and makes the GC module easily portable [13]. However, non-
reference numeric values can be misunderstood as references,
which might cause incomplete reclamation of garbage objects.

Precise GC can reclaim all garbage objects completely by
computing the root set precisely with a help from the JVM or from
the compiler. The GC module is thus more complicated to
implement, yet there is no misunderstanding of numeric values as
references [12].

The biggest advantage of precise GC is that it allows using a
GC algorithm that can move objects during GC, such as copying
GC [17], mark-and-compact GC [18], and generational GC [12].
These moving GC algorithms do not cause fragmentation. Also,
they are known to be faster than non-moving GC algorithms and
have a better locality of memory accesses [11].

Moving GC algorithms cannot be used with conservative GC
since it is not safe to update potentially misunderstood references
after moving the referenced object. In fact, non-moving GC can be
a serious defect in embedded systems since it can easily cause
memory shortage due to fragmentation. For example, the first
version of Sun’s CLDC reference implementation which did not

36

employ a compacting GC has often suffered from memory shortage.
Since a compacting GC was employed from the CLDC 1.03 version,
however, memory shortage rarely occurred.

Sun’s CVM is designed to support precise GC only. CVM
introduces the idea of a GC-point for precise GC, which means a
point in the program where GC can possibly occur. Examples of
GC-points are memory allocation requests, method calls, method
entries, loop backedges, or synchronization points. The CVM can
start GC only when every thread waits at one of its GC points since
otherwise GC cannot find all reachable objects precisely [12]. So,
when a thread’s memory allocation request at a GC-point cannot be
satisfied, it will request GC and wait at the GC-point. Other threads
are supposed to check if there is any pending GC request whenever
they pass through a GC-point, so they will also eventually wait at
their GC-points. Then, the CVM starts GC by first computing the
root set from the call stack of methods and class static fields,
followed by tracing all reachable objects.

2.3 Precise GC with a Bytecode-to-C
As explained, we need to compute the root set for each thread

when all threads are stopped at their GC-points. The root set
includes the roots of all methods in the call stack. In order to
compute the root set, GC needs a data structure describing the
location of each root at the GC-point, which is called a GC-map in
CVM. When GC occurs if only the interpreter is being used, the
interpreter first analyzes the bytecode for each method in the call
stack to compute the GC-map at every GC-point in the method. It
then saves the GC-map at the method block so that it can be reused
if GC occurs again in the future. The GC-map is actually a bit map
describing which local variables and stack slots are references at that
point (1 means a reference and 0 means a non-reference). GC
consults with this bit map to decide which stack slots and local
variables in the activation record are reference-typed, thus including
root references [14].

If the AOTC translates the bytecode into machine code, these stack
slots and local variables will eventually be translated into memory
locations or registers. So, this time the compiler must prepare for the
GC-map in order to help GC compute the root set. The bytecode-to-
native AOTC can compute the GC-map easily since the AOTC itself
allocates variables to registers or spills to memory, so at each GC
point it knows where root references are located. In the C program
translated by the b-to-C AOTC, however, roots are in local C
variables and stack C variables whose types are object references. It
is not easy for the AOTC to figure out where the C compiler will
allocate these variables in the machine code, so it cannot prepare for
the GC-map.

3. Supporting Precise GC for Bytecode-to-C
AOTC
Unlike the precise GC environment where the interpreter or the

bytecode-to-native AOTC can prepare for the GC-map, the b-to-C
AOTC cannot provide the GC-map by itself. This section describes
our proposed solution to cope with this lack of the GC-map.

3.1 Saving Reference Variables at the Java
Stack
The simplest way to support precise GC without a GC-map would

be using JNI (Java native interface) [1]. JNI provides an interface to
declare references in the native code so that those referenced objects
in the native code are not deallocated during GC. We can simply
declare all reference variables in the translated C code using the JNI

interface, which can achieve the effect of precise GC. However, this
approach is not a viable solution because it is too slow due to
indirect accesses of all referenced objects in JNI.

Our idea is having the AOTC generate additional C code that saves
the values of reference variables in some area which the GC module
can access, so that GC can easily get all roots within the translated
methods. There are a couple of issues with this idea.

First, we need to decide where to save the reference values. Since
GC is supposed to look for root references from the Java stack in the
interpreter mode and our AOTC methods run concurrently with
interpreted methods, saving references at the Java stack would be a
natural choice. In fact, Java stack frame is needed anyway in CVM
even for AOTC methods for other purposes, so we just need to
allocate additional space for saving references.

Secondly, we need to decide which reference variables need to be
saved at which locations. All live reference variables at each GC-
point must have been saved at the Java stack before reaching the
GC-point. One solution is saving all reference-type variables
declared in the method just before entering each GC-point. This is
obviously involved with too much overhead since only a subset of
those variables will be live at a GC-point. Our solution is saving a
reference variable at the stack frame only when it is updated. For
each GC-point, this will ensure saving only those references that
were newly created on the execution path from the method entry to
the GC-point (when combined with our liveness analysis in Section
4.2, it will minimize useless saves).

In order to implement this solution, the AOTC generates the
following additional C code.

 At the method entry, a Java stack frame must be allocated by
calling pushJavaStackFrame() which is a macro for reserving
a frame space (expands it if not enough space is available)

 Whenever a C statement that updates a reference-type
variable is generated, another C statement that saves the
variable into a stack frame is also generated.

 At a GC-point, a GC check code for a pending GC request is
generated which stops the thread and waits if there is any.

 At the method exit, the Java stack frame is deallocated by
calling popJavaStackFrame(), which is also a macro for
releasing the stack frame space.

Figure 1 depicts the C code generated by the AOTC, where a
statement that saves s0_ref at the stack frame is added at (3) when
it is updated at (2). Macro calls to allocate and deallocate the stack
frame are generated at (1) and (5), respectively. At the GC-point,
GC-check code is generated as in (4) (more explanation on s0_ref
= frame[0]; will follow shortly).

For each reference variable in a method, there is a reserved slot in
the stack frame, so when there is an update for a reference variable,
it is saved at its reserved slot. The number of slots allocated at the
beginning of a method thus should be the same as the number of
reference variables in it. At each GC-point, the AOTC prepared for a
GC map-equivalent information on which refernce C variables,
hence which frame slots, are live at that point, so that GC regard
only them as roots.

When GC occurs, all stack frames in the call stack are scanned by
GC to compute the root set.

37

Additional C code added for a method
 // Stack frame is allocated at the beginning of a method

(1) frame = pushJavaStackFrame(1);

 ….

(2)
// There is an update for a reference variable s0_ref
s0_ref = s0_ref->myField;

(3)

// Save the reference at the stack frame
frame[0] = s0_ref;

 …

(4)
// At a GC-point
if (pending_request) {
 stop_the_thread_and_wait_GC();
 s0_ref = frame[0]; // Copying back if
moving GC is used
}

 // Stack frame is deallocated at the end of a method
(5) popJavaStackFrame();

Figure 1. An example of additional C code to support precise
GC.

3.2 Dealing with Moving GCs
A moving GC algorithm can be employed with precise GC such

that objects can be moved during GC. As objects are moved, GC
updates their references (addresses) including root references. This
requirement causes an issue in our proposed precise GC. Since all
root references are copied from the reference C variables into the
Java stack frames before GC occurs, if GC moves root objects, GC
will update references in the stack frames, not the reference C
variables. This means that reference variables may no longer have
valid references after GC. Figure 2 depicts this scenario where after
GC so_ref is not pointing the object any more.

Figure 2. A problem when moving GC is employed

In order to handle this problem, updated references existing at Java
stack frames should be copied back to the corresponding reference
variables after GC. This can be done by adding C statement at the
GC-point, and Figure 1 shows the copying C statement s0_ref =
frame[0] in the GC-check code in (4). One caution is that we
need to declare the frame[] as a volatile array; otherwise, the
compiler might delete some added statements with optimizations.

4. Optimizations to Reduce the Runtime
Overhead
Although we can support precise GC with a b-to-C AOTC by

adding C code, the runtime overhead caused by the additional C
code can be significant. There are three kinds of runtime overhead.
The first one is saving the value of a reference variable into the Java
stack frame whenever it is updated. The second one is copying the
reference value from the stack frame into a reference variable when
a moving GC algorithm is employed. The last overhead is allocating

and deallocating the Java stack frame at the beginning and at the end
of a method, respectively. In this section, we propose optimization
techniques to reduce these overheads.

4.1 Copy Propagation
Since the JVM supports object-oriented computation on the

operand stack, there are many pushes and pops of object references
between local variables and the operand stack in the bytecode. In our
b-to-C AOTC, these pushes and pops are translated into copy
statements between the local C variables and the stack C variables.
For example, a Java statement, Object dest = src.f,
accesses a reference-type field f of an object referenced by a
variable src and saves it to a variable dest. The bytecode for this
statement is composed of aload_1 (which pushes the local
variable src), agetfield f (which pushes the field f), and
astore_2 (which pops and saves at the local variable dest).
Finally, this bytecode sequence is translated into the following C
statement sequence: s0_ref =l1_ref; s0_ref =s0_ref-
>f; l2_ref= s0_ref; as shown in Figure 3.

(a) Java source code (b) Bytecode
Object dest = src.f aload_1

agetfield f
astore_2

(c) Translated C code
s0_ref = l1_ref;
s0_ref = s0_ref->f;
l2_ref = s0_ref;.

Figure 3. An example Java source code, bytecode, and
translated C code.

We are supposed to save a reference into the Java stack frame
whenever a reference-type C variable is updated, as shown in Figure
4 (a). However, many of those updates are, in fact, copying of
(already-saved) references, thus being useless. For example, the save
of l2_ref frame[1] = l2_ref after the statement l2_ref
= s0_ref is useless since the value of s0_ref have already
saved in the stack frame in the previous statement frame[0] =
s0_ref.

In order to reduce this useless reference saves, we need to remove
as many copies as possible so as to keep only essential computations
and copies. In fact, the optimizing compiler that translates the C
code into machine code will remove many of these copies.
Unfortunately, the AOTC does not know which copies will be
removed and which will remain by the compiler, thus unable to add
the reference-saving C statements selectively. So, we need to add C
statements everywhere, as shown in Figure 4 (a). The final machine
code does not have any copies as in Figure 4 (b), yet all the frame-
saving store instructions remain since the compiler cannot easily
optimize and remove them (also frame[] array is volatile).

(a) C code with reference
saves (b) Compiled machine code

s0_ref = l1_ref;
frame[0] = s0_ref;
s0_ref = s0_ref->f;
frame[0] = s0_ref;
l2_ref = s0_ref;
frame[1] = l2_ref;

// copy was deleted
sw $t1, $frame+0
lw $t2, $t1+offset_of_f
sw $t2, $frame+0
// copy was deleted
sw $t2, $frame+4

Figure 4. How the C code added with reference saves is
compiled

(a) Before GC

s0_ref

frame[0]

s0_ref

frame[0] object

(b) After GC

object

38

Our idea is performing copy propagation by the AOTC in order
to remove useless copies in the translated C code, thus removing
useless reference saves. We use a conventional copy propagation
algorithm based on simple data flow analysis [9]. If we do copy
propagation for our example, there will be a single C statement
l2_ref = l1_ref->f with a single reference save statement
as shown in Figure 5, thus obviating useless savings.

(a) Copy-propagated C code
l2_ref = l1_ref->f;
frame[0] = l2_ref;

(b) Compiled machine code
lw $t2, $t1+offset_of_f
sw $t2, $frame+0

Figure 5. Optimization based on copy propagation

4.2 Removal of Reference Saves via Liveness
Analysis
In addition to removing unnecessary reference copies, we can

also reduce the reference saves via liveness analysis [16].
Although we save references whenever a reference variable is
updated, a GC-point is supposed to keep references live only at
that point. So, if an updated reference variable is not live at any
GC-points, we do not have to save it. In fact, a stack variable
generally has a short live range due to Java’s stack machine model
where the stack keeps a value temporarily, so it would be rare for a
stack reference variable to be live across a GC-point.

We perform live variable analysis for this optimization such that
if a reference variable defined at some location is not live at any
GC-points, it is not saved at the stack frame there. Figure 6 shows
an example where s1_ref does not need to be saved since it is
not live at the GC-point.

(a) C code before
optimization

(b) C code after
optimization

s0_ref = l1_ref;
frame[0] = s0_ref;
s1_ref = l2_ref;
frame[1] = s1_ref;
…
[GC-point]
// s0_ref is live,
s1_ref is dead here

s0_ref = l1_ref;
frame[0] = s0_ref;
s1_ref = l2_ref;
// no need to save
s1_ref
…
 [GC-point]
// s0_ref is live,
s1_ref is dead here

Figure 6. Optimization based on liveness analysis

4.3 Removal of Stack Frame Allocation
If all reference saves in a method are completely eliminated by

the two optimizations, the allocation of stack frame itself can be
obviated. Since the stack frame allocation includes a significant
amount of work in order to follow the CVM’s stack allocation
convention, it is very important to remove the overhead. In order
to promote this optimization opportunity, when a method call
includes a reference-type variable as a parameter, we pass a
reference saved at the stack frame, instead of the variable itself. In
Figure 7, for example, we pass &frame[0] as an argument
instead of passing s0_ref in the caller. When l0_ref is
initialized to the argument *ptr in the callee foo(*ptr), we
do not have to save l0_ref at the callee’s stack frame since the
*ptr is already at the caller’s stack frame. Restoration of
l0_ref at the GC-point after GC can also be made from the

argument *ptr since it (frame[0] in the caller) should have
already been updated during GC. If l0_ref is the only reference
updated in foo(), we do not even have to allocate frame for foo()
since there is no reference save, which will remove the allocation
overhead (the actual code is somewhat different from Figure 7,
which is just for illustration of the idea).

(a) Caller code
s0_ref = …
frame[0] = s0_ref
…..
foo (&frame[0]);//insteadf of
foo(so_ref)
if (GC occurred in foo()) {

s0_ref = frame[0];
}

(b) Callee code
foo(*ptr)
10_ref= *ptr; // No need to save
l0_ref
…
// At a GC-point
if (pending_request) {
stop_the_thread_and_wait_GC();
10_ref = *ptr; // copy back after GC
}

Figure 7. Optimized argument passing

5. Experimental Results
Previous sections described our proposed solution to allow

precise GC with a bytecode-to-C AOTC by adding C code that
saves live references in the stack frame. They also proposed
optimization techniques to reduce the overhead of additional C
code via copy propagation and liveness analysis on the translated
C code. In this section, we evaluate our proposed solution and the
optimization techniques.

5.1 Experimental Environment
We experimented with Sun’s CVM for which we implemented

a bytecode-to-C AOTC. The CVM employs generational GC
which is a moving GC algorithm, so we need to add reference
restoration code in Section 3.2. Since CVM supports precise GC
only, we could not compare with conservative GC (comparing
both GCs is beyond the scope of this paper).

The experiments were performed on an Intel Pentium4 2.40
GHz CPU with 512M RAM and the OS is Debian Linux with
kernel 2.6.8-2. The translated C code is compiled by GNU C
compiler (GCC) version 3.3.5. The CVM is constrained to have
32M memory. The benchmarks we used are SPECjvm98 (except
for mpegaudio for which CVM cannot read its class files).

5.2 Performance Impact of Optimization
We first evaluate the effectiveness of the two optimization

techniques. Tables 1 shows the number of dynamic reference saves
at the stack frame for four cases with: no optimizations, copy
propagation only, liveness analysis only, and both optimizations. It
shows that the number of reference saves decreases significantly
with either optimization. With both optimizations the number of
reference saves decreases by an average of 88%.

We also examined the whole Java stack frame at each GC-check
point during execution if there are any duplicate references.

39

Duplicate references would mean that there are more than one
save of the same references, probably via copies. We found there
are few instances of duplicate references (somewhat more in
javac and mtrt which are unavoidable due to inherent
duplication of this pointer using dup), meaning that reference
saves were made efficiently.

As the reference saves in a method are completely removed by

these optimizations, the allocation of stack frame can also be
removed for that method. Table 2 shows the dynamic number of
stack frame allocation requests for each benchmark for the four
cases. The table shows that the number of stack frame allocation
can be reduced by an average of 55% with both optimizations,
although the reduction rate varies significantly from benchmark to
benchmark.

Table 1. Number of dynamic reference saves at the Java stack frame (millions)

benchmarks No optimization Copy Propagation Liveness Analysis Both Optimizations
compress 4,073 1,469 238 217

jess 703 228 201 93

db 817 413 200 133

javac 650 160 182 79

mtrt 799 236 279 55

jack 283 78 98 45

Table 2. Number of dynamic Java stack frame allocation requests (millions)

benchmarks No optimization Copy Propagation Liveness Analysis Both Optimizations
compress 226 226 20 20

jess 104 83 58 54

db 72 65 61 58

javac 84 65 63 56

mtrt 278 102 34 12

jack 41 28 29 24

Runtime

0

5

10

15

20

25

30

35

40

compress jess db javac mtrt jack
Benchmark

Se
c

No Optimization Copy Propagation Liveness Analysis Both Optimizations

Figure 8. Running time of benchmarks for each case.

40

Figure 8 shows the total running time (in seconds) of each
benchmark for the four cases. It shows that the performance
improves with optimizations turned on, more significantly for
compress, javac, and mtrt, which is consistent with the
reduction of the number of reference saves and the number of
frame allocation, depicted in Table 1 and Table 2, respectively.

We also estimated for the optimized code with both
optimizations how much of its running time is spent for reference
saves and stack frame allocation. For this analysis, we ran an
experiment with both optimizations turned on, but with no
removal of stack frame allocation. The difference of running time
between this experiment and the original experiment in Figure 8
divided by the difference of their numbers of stack frame
allocations gives the unit time spent for a single stack allocation. If
this unit time is multiplied by the number of stack allocations left
in the optimized in Table 2, it will give an estimate for stack
allocation overhead within the total running time in Figure 8.
Similarly, we can also estimate the overhead of reference saves.

Table 3 shows the percentage of those two overheads against the
total running time. It shows that stack allocation overhead is much
more serious than reference saves (except for compress where
there is a very small number of hot spot methods unlike others). This
is no wonder since a single stack frame allocation requires more
than 20 x86 instructions for the most probable case while a reference
save is a single store instruction. The combined overheads constitute
from 4.3% to 21.4% of the running time with an average of 13.2%,
which is still not trivial but would be something that we can pay if
we can avoid fatal memory shortage by using precise GC.

Table 3. Percentage of overheads after optimization against
total running time.

benchmarks saving references stack allocation
compress 7.1% 5.7%
jess 0.8% 17.0%
db 0.4% 12.7%
javac 0.9% 20.5%
mtrt 1.5% 2.8%
jack 0.7% 9.1%

We need to reduce these overheads further. As to the Java stack
frame allocation requests, we found that many of them request just
one or two frames as shown in Table 4. So, additional removal of
reference saves are likely to reduce the overhead of stack frame
allocation. Also, the frame allocation task itself should be more
light-weighted considering the frequent requests of small number
of frames. We are currently working on these issues.

Table 4. Percentage of one or two frame allocation requests

benchmarks saving references stack allocation
compress 0.0% 50.0%
jess 5.6% 33.9%
db 5.4% 0.1%
javac 15.3% 47.9%
mtrt 20.0% 7.3%
jack 20.3% 32.6%

6. Summary
A bytecode-to-C AOTC is one of the most promising approaches

to embedded Java acceleration and embedded Java requires
precise GC for the best utilization of limited memory. We
proposed a solution to allow precise GC with a bytecode-to-C
AOTC and two code optimization techniques to reduce the
overheads of reference saves and stack allocation. Although the
overhead after optimization is still not trivial, we could say that it
can be compensated by complete reclamation of garbage objects
as well as by using moving GCs, which might avoid fatal memory
shortage in embedded systems.

We also found by analysis that the overhead of stack frame
allocation is much more serious than that of reference saves. We
are working on reducing this overhead.

References
[1] J. Gosling, B. Joy, and G. Steele, The Java Language

Specification Reading: Addison-Wesley, 1996.

[2] Instantiations Inc. , "Jove: super optimizing deployment
environment for Java."

[3] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and D.
Tarditi, "Marmot: An Optimizing Compiler for Java,"
Software Practice and Experience, vol. 30, pp. 199-232, 2000.

[4] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta,
"Quicksilver: a quasi-static compiler for Java," ACM
SIGPLAN Notices, vol. 35, pp. 66-82, 2000.

[5] D. J. Scales, K. H. Randall, S. Ghemawat, and J. Dean, "The
Swift Java Compiler: Design and Implementation," WRL
Research Report 2000/2, 2000.

[6] V. Mikheev, A. Yeryomin, N. Lipsky, D. Gurchenkov, P.
Pavlov, V. Sukharev, A. Markov, S. Kuksenko, S. Fedoseev,
and D. Leskov, "Overview of excelsior JET, a high
performance alternative to java virtual machines," presented at
Proceedings of the 3rd international workshop on Software and
performance, 2002.

[7] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T.
Newsham, and S. A. Watterson, "Toba: Java for Applications
A Way Ahead of Time (WAT) Compiler," presented at
Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, Portland, Oregon, 1997.

[8] M. Weiss, X. Spengler, F. d. Ferrière, B. Delsart, C. Fabre, F.
Hirsch, E. A. Johnson, V. Joloboff, F. Roy, and F. Siebert,
"TurboJ, a Java Bytecode-to-Native Compiler," presented at
Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, 1998.

[9] G. Muller and U. P. Schultz, "Harissa: A Hybrid Approach to
Java Execution," IEEE Software, vol. 16, pp. 44-51, 1999.

[10] A. Varma and S. S. Bhattacharyya, "Java-through-C
Compilation: An Enabling Technology for Java in Embedded
Systems " presented at Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
Designers (DATE), 2004.

 [11] R. Jones and R. Lins, Garbage Collection Algorithms for
Automatic Dynamic Memory Management: JOHN WILEY &
SONS, 1996.

41

[12] Sun Microsystems, "CDC Foundation Porting Guide."

[13] H. -J. Boehm and M. Weiser, "Garbage Collection in an
Uncooperative Environment," Software Practice and
Experience vol. 18, pp. 807-820, 1988.

[14] F. Yellin and T. Lindholm, The Java Virtual Machine
Specification, 2nd ed: Addison Wesley, 1999.

[15] J. Aycock. "A Brief History of Just-in-Time", ACM
Computing Surveys, 35(2), Jun 2003

[16] Aho, A., R Sethi, and J. Ullman. “Compilers-Principles,
Techniques, and Tools”. Addison-Wesley, Reading, Mass.,
1985

[17] R. Fenichel and J. Yochelson. “A lisp garbage-collector for
virtual-memory computer systems”. Communications of the
ACM, 12(11):611.612, November 1969.

[18] COHEN, J., AND NICOLAU, A. Comparison of compacting
algorithms for garbage collection. ACM Transactions on
Programming Languages and Systems 5, 4 (1983), 532.553.

[19] Sun Microsystems, White Paper “CDC: An Application
Framework for Personal Mobile Devices”

[20] S. Bae. “Design and implementation of an ahead-of-time
compiler for embedded systems”. MS Thesis, Seoul National
University, Feb. 2005

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

