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Abstract 
A Java bytecode-to-C ahead-of-time compiler (AOTC) can 
improve the performance of a Java virtual machine (JVM) by 
translating bytecode into C code, which is then compiled into 
machine code via an existing C compiler. Although AOTC is 
effective in embedded Java systems, a bytecode-to-C AOTC 
could not easily employ precise garbage collection (GC) due to a 
difficulty in making a GC map, which keeps information on 
where each root live object is located when GC occurs. This is 
one of the reasons why all previous JVMs using a bytecode-to-C 
AOTC employed conservative GC, which can lead to poorer GC 
performance with more frequent memory shortage, especially in 
embedded systems where memory is tight. 

In this paper, we propose a way of allowing precise GC in a 
bytecode-to-C AOTC by generating additional C code which 
collects GC map-equivalent information at runtime. In order to 
reduce this runtime overhead, we also propose two optimization 
techniques which remove unnecessary C code. Our experimental 
results on Sun’s CVM indicate that we can support precise GC 
for bytecode-to-C AOTC with a relatively low overhead. 

Categories and Subject Descriptors 
D3.3 [Programming Languages]: Language Constructs and 
Features; D.3.4 [Processors]: Compilers, Run-time 
environments; D.4.7 [Operating Systems]: Organization and 
Design-real-time and embedded systems;  

General Terms 
Design, Experimentation, Performance, Languages 

Keywords 
Bytecode-to-C, ahead-of-time compiler, precise garbage 
collection, Java virtual machine, J2ME CDC 

1. Introduction 
Java has been employed popularly as a standard software 

platform for many embedded systems, including mobile phones, 

digital TVs, and telematics [19]. The advantage of Java as an 
embedded platform is three folds. First, the use of a virtual 
machine allows a consistent runtime environment for a wide 
range of devices that have different CPUs, OS, and hardware 
(e.g., displays). Secondly, Java has an advantage in security such 
that it is extremely difficult for a malicious Java code to break 
down a whole system. Finally, it is much easier to develop 
software contents with Java due to its sufficient, mature APIs 
and its language features that increase software stability such as 
garbage collection and exception handling. 

The advantage of platform independence is achieved by using 
the Java virtual machine (JVM), a program that executes Java’s 
compiled executable called bytecode [1]. The bytecode is a 
stack-based instruction set which can be executed by 
interpretation on any platform without porting the original 
source code. Since this software-based execution is obviously 
much slower than hardware execution, compilation techniques 
for executing Java programs as native executables have been 
used, such as just-in-time compiler (JITC) [15] and ahead-of-
time compiler (AOTC) [7]. JITC translates bytecode into 
machine code at runtime while AOTC translates before runtime. 
AOTC is more advantageous in embedded systems since it 
obviates the runtime translation overhead and the memory 
overhead of JITC, which consume the limited computing power 
and memory space of embedded systems. 

There are two approaches to AOTC. One is translating 
bytecode directly into machine code, referred to as bytecode-to-
native [2-6]. The other approach is translating bytecode into C 
code first, which is then compiled into machine code by an 
existing compiler, referred to as bytecode-to-C (b-to-C) [7-10]. 
The approach of b-to-C allows faster development of a stable, 
powerful AOTC by resorting to full optimizations of an existing 
compiler and by using its debugging and profiling tools. It also 
allows a portable AOTC that can work on different CPUs. 

There is one important issue in designing a b-to-C AOTC 
related to garbage collection (GC) [11], though. A JVM that 
supports precise GC requires a GC map at each program point 
where GC can possibly occur, which is a data structure describing 
where each root live object is located at that point. Since a b-to-C 
AOTC normally translates such locations that have root references 
into C variables, it is difficult to know where the C compiler 
places those C variables in the final machine code. All previous 
JVMs using a b-to-C AOTC employed conservative GC [7, 9, 10], 
which is simpler to implement but can lead to poorer GC 
performance than precise GC.  

This paper proposes a method to support precise GC in a b-to-
C AOTC by generating C code that records references in a stack 
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frame whenever a reference-type C variable is updated. In order 
to reduce the runtime overhead caused by the additional C code, 
we also propose two optimization techniques. We evaluated the 
proposed technique on a CVM in Sun’s J2ME CDC environment 
which requires precise GC. We developed a b-to-C AOTC in this 
environment and performed experiments with it.  

The rest of this paper is organized as follows. Section 2 
reviews precise GC and our b-to-C AOTC. Section 3 introduces 
the proposed solution to allow precise GC with a b-to-C AOTC. 
Section 4 describes two optimization techniques to reduce the 
overhead of our solution. Section 5 shows our experimental 
results. A summary follows in Section 6.  

2. Precise GC and Bytecode-to-C AOTC 
In this section, we briefly review our b-to-C AOTC and issues in 
precise GC. Then, we discuss why it is difficult to support 
precise GC with a b-to-C AOTC. 

2.1 Overview of JVM and Our Bytecode-to-C 
AOTC 

The Java VM is a typed stack machine [14]. Each thread of 
execution has its own Java stack where a new activation record 
is pushed when a method is invoked and is popped when it 
returns. An activation record includes state information, local 
variables and the operand stack. Method parameters are also 
local variables which are initialized to the actual parameters by 
the JVM. All computations are performed on the operand stack 
and temporary results are saved in local variables, so there are 
many pushes and pops between the local variables and the 
operand stack.  

In our b-to-C AOTC, each local variable is translated into a C 
variable (which we call a local C variable). Also, each stack slot 
is also translated into a C variable (which we call a stack C 
variable). Since the same stack slot can be pushed with 
differently-typed values during execution, a type name is 
attached into a stack C variable name such that a stack slot can 
be translated into multiple C variables. For example, s0_ref is 
a C variable corresponding to a reference-type stack slot 0, while 
s0_int is a C variable corresponding to an integer-type stack 
slot 0.  

Our AOTC first analyzes the bytecode and decides the C 
variables that need to be declared. It then translates each 
bytecode one-by-one into corresponding C statements, with the 
status of the operand stack being kept track of. For example, 
aload_1 which pushes a reference-type local variable 1 onto 
the stack is translated into a C statement s0_ref = l1_ref; 
if the current stack pointer points to the zero_th slot when this 
bytecode is translated. Figure 0 shows an example. 

Our AOTC can work with the interpreter, so AOTC methods 
and interpreter methods can co-exist during execution. This is 
useful for an environment where we also need to download class 
files dynamically (e.g., in digital TVs the Java middleware is 
AOTCed while the xlets downloaded thru the cable line is 
executed by the interpreter). How to pass parameters between 
AOTC methods and interpreter methods and the translation 
details are described in [20]. 

 

 

(a) Java Method  (b) Bytecode 
public int max(int a, 
int b) { 
  return (a>=b)? a:b; 
}  

 0: iload_0 
1: iload_1 
2: if_icmplt 9 
5: iload_0 
6: goto 10 
9: iload_1 
10:ireturn 

(c) Translated C Code   

Int Java_java_lang_Math_max_II(JNIEnv 
*env, int l0_int, int l1_int)  
{ 
int s0_int; 
int s1_int; 

 
  s0_int = l0_int;                 // 0: 
  s1_int = l1_int;                 // 1: 
  if(s0_int < s1_int) goto L9;   // 2: 
  s0_int = l0_int;                 // 5: 
  goto L10;                         // 6: 
L9: s0_int = l1_int;              // 9: 
L10: return s0_int;           // 10: 
} 

Figure 0. An example of Java code and translated C code 

2.2 Precise GC 
As an object-oriented language, Java applications tend to 

allocate objects at a high rate while the memory space of 
embedded systems is tight, so GC should reclaim garbage objects 
efficiently. Most GC techniques first trace all reachable objects on 
a directed graph formed by program variables and heap-allocated 
objects where program variables constitute the root set of the 
graph [11]. In Java, the roots are located in the operand stack slots 
and local variables of all methods in the call stack, whose types 
are object references. So, GC traces all reachable objects starting 
from the root set and reclaims all unreachable objects. There are 
two approaches to tracing reachable objects: conservative and 
precise [12].  

Conservative GC regards all word-size data items saved in the 
JVM as references, which simplifies the identification of the root 
set and makes the GC module easily portable [13]. However, non-
reference numeric values can be misunderstood as references, 
which might cause incomplete reclamation of garbage objects.  

Precise GC can reclaim all garbage objects completely by 
computing the root set precisely with a help from the JVM or from 
the compiler. The GC module is thus more complicated to 
implement, yet there is no misunderstanding of numeric values as 
references [12].  

The biggest advantage of precise GC is that it allows using a 
GC algorithm that can move objects during GC, such as copying 
GC [17], mark-and-compact GC [18], and generational GC [12]. 
These moving GC algorithms do not cause fragmentation. Also, 
they are known to be faster than non-moving GC algorithms and 
have a better locality of memory accesses [11]. 

Moving GC algorithms cannot be used with conservative GC 
since it is not safe to update potentially misunderstood references 
after moving the referenced object. In fact, non-moving GC can be 
a serious defect in embedded systems since it can easily cause 
memory shortage due to fragmentation. For example, the first 
version of Sun’s CLDC reference implementation which did not 
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employ a compacting GC has often suffered from memory shortage. 
Since a compacting GC was employed from the CLDC 1.03 version, 
however, memory shortage rarely occurred.  

Sun’s CVM is designed to support precise GC only. CVM 
introduces the idea of a GC-point for precise GC, which means a 
point in the program where GC can possibly occur. Examples of 
GC-points are memory allocation requests, method calls, method 
entries, loop backedges, or synchronization points. The CVM can 
start GC only when every thread waits at one of its GC points since 
otherwise GC cannot find all reachable objects precisely [12]. So, 
when a thread’s memory allocation request at a GC-point cannot be 
satisfied, it will request GC and wait at the GC-point. Other threads 
are supposed to check if there is any pending GC request whenever 
they pass through a GC-point, so they will also eventually wait at 
their GC-points. Then, the CVM starts GC by first computing the 
root set from the call stack of methods and class static fields, 
followed by tracing all reachable objects.  

2.3 Precise GC with a Bytecode-to-C 
As explained, we need to compute the root set for each thread 

when all threads are stopped at their GC-points. The root set 
includes the roots of all methods in the call stack. In order to 
compute the root set, GC needs a data structure describing the 
location of each root at the GC-point, which is called a GC-map in 
CVM. When GC occurs if only the interpreter is being used, the 
interpreter first analyzes the bytecode for each method in the call 
stack to compute the GC-map at every GC-point in the method. It 
then saves the GC-map at the method block so that it can be reused 
if GC occurs again in the future. The GC-map is actually a bit map 
describing which local variables and stack slots are references at that 
point (1 means a reference and 0 means a non-reference). GC 
consults with this bit map to decide which stack slots and local 
variables in the activation record are reference-typed, thus including 
root references [14]. 

If the AOTC translates the bytecode into machine code, these stack 
slots and local variables will eventually be translated into memory 
locations or registers. So, this time the compiler must prepare for the 
GC-map in order to help GC compute the root set. The bytecode-to-
native AOTC can compute the GC-map easily since the AOTC itself 
allocates variables to registers or spills to memory, so at each GC 
point it knows where root references are located. In the C program 
translated by the b-to-C AOTC, however, roots are in local C 
variables and stack C variables whose types are object references. It 
is not easy for the AOTC to figure out where the C compiler will 
allocate these variables in the machine code, so it cannot prepare for 
the GC-map. 

3. Supporting Precise GC for Bytecode-to-C 
AOTC 
Unlike the precise GC environment where the interpreter or the 

bytecode-to-native AOTC can prepare for the GC-map, the b-to-C 
AOTC cannot provide the GC-map by itself. This section describes 
our proposed solution to cope with this lack of the GC-map. 

3.1 Saving Reference Variables at the Java 
Stack 
The simplest way to support precise GC without a GC-map would 

be using JNI (Java native interface) [1]. JNI provides an interface to 
declare references in the native code so that those referenced objects 
in the native code are not deallocated during GC. We can simply 
declare all reference variables in the translated C code using the JNI 

interface, which can achieve the effect of precise GC. However, this 
approach is not a viable solution because it is too slow due to 
indirect accesses of all referenced objects in JNI. 

Our idea is having the AOTC generate additional C code that saves 
the values of reference variables in some area which the GC module 
can access, so that GC can easily get all roots within the translated 
methods. There are a couple of issues with this idea. 

First, we need to decide where to save the reference values. Since 
GC is supposed to look for root references from the Java stack in the 
interpreter mode and our AOTC methods run concurrently with 
interpreted methods, saving references at the Java stack would be a 
natural choice. In fact, Java stack frame is needed anyway in CVM 
even for AOTC methods for other purposes, so we just need to 
allocate additional space for saving references. 

Secondly, we need to decide which reference variables need to be 
saved at which locations. All live reference variables at each GC-
point must have been saved at the Java stack before reaching the 
GC-point. One solution is saving all reference-type variables 
declared in the method just before entering each GC-point. This is 
obviously involved with too much overhead since only a subset of 
those variables will be live at a GC-point. Our solution is saving a 
reference variable at the stack frame only when it is updated. For 
each GC-point, this will ensure saving only those references that 
were newly created on the execution path from the method entry to 
the GC-point (when combined with our liveness analysis in Section 
4.2, it will minimize useless saves). 

In order to implement this solution, the AOTC generates the 
following additional C code. 

 At the method entry, a Java stack frame must be allocated by 
calling pushJavaStackFrame() which is a macro for reserving 
a frame space (expands it if not enough space is available) 

 Whenever a C statement that updates a reference-type 
variable is generated, another C statement that saves the 
variable into a stack frame is also generated. 

 At a GC-point, a GC check code for a pending GC request is 
generated which stops the thread and waits if there is any. 

 At the method exit, the Java stack frame is deallocated by 
calling popJavaStackFrame(), which is also a macro for 
releasing the stack frame space. 

Figure 1 depicts the C code generated by the AOTC, where a 
statement that saves s0_ref at the stack frame is added at (3) when 
it is updated at (2). Macro calls to allocate and deallocate the stack 
frame are generated at (1) and (5), respectively. At the GC-point, 
GC-check code is generated as in (4) (more explanation on s0_ref 
= frame[0]; will follow shortly). 

For each reference variable in a method, there is a reserved slot in 
the stack frame, so when there is an update for a reference variable, 
it is saved at its reserved slot. The number of slots allocated at the 
beginning of a method thus should be the same as the number of 
reference variables in it. At each GC-point, the AOTC prepared for a 
GC map-equivalent information on which refernce C variables, 
hence which frame slots, are live at that point, so that GC regard 
only them as roots. 

When GC occurs, all stack frames in the call stack are scanned by 
GC to compute the root set. 
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Additional C code added for a method 
 // Stack frame is allocated at the beginning of a method 

(1) frame = pushJavaStackFrame(1); 

 …. 
 

(2) 
// There is an update for a reference variable s0_ref 
s0_ref = s0_ref->myField; 

 
(3) 

// Save the reference at the stack frame 
frame[0] = s0_ref; 

  … 
 

(4) 
// At a GC-point 
if (pending_request) { 
    stop_the_thread_and_wait_GC(); 
    s0_ref = frame[0]; // Copying back if 
moving GC is used 
} 

 // Stack frame is deallocated at the end of a method 
(5) popJavaStackFrame(); 

Figure 1. An example of additional C code to support precise 
GC. 

3.2 Dealing with Moving GCs 
A moving GC algorithm can be employed with precise GC such 

that objects can be moved during GC. As objects are moved, GC 
updates their references (addresses) including root references. This 
requirement causes an issue in our proposed precise GC. Since all 
root references are copied from the reference C variables into the 
Java stack frames before GC occurs, if GC moves root objects, GC 
will update references in the stack frames, not the reference C 
variables. This means that reference variables may no longer have 
valid references after GC. Figure 2 depicts this scenario where after 
GC so_ref is not pointing the object any more. 

 
Figure 2. A problem when moving GC is employed 

In order to handle this problem, updated references existing at Java 
stack frames should be copied back to the corresponding reference 
variables after GC. This can be done by adding C statement at the 
GC-point, and Figure 1 shows the copying C statement s0_ref = 
frame[0] in the GC-check code in (4). One caution is that we 
need to declare the frame[] as a volatile array; otherwise, the 
compiler might delete some added statements with optimizations. 

4. Optimizations to Reduce the Runtime 
Overhead 
Although we can support precise GC with a b-to-C AOTC by 

adding C code, the runtime overhead caused by the additional C 
code can be significant. There are three kinds of runtime overhead. 
The first one is saving the value of a reference variable into the Java 
stack frame whenever it is updated. The second one is copying the 
reference value from the stack frame into a reference variable when 
a moving GC algorithm is employed. The last overhead is allocating 

and deallocating the Java stack frame at the beginning and at the end 
of a method, respectively. In this section, we propose optimization 
techniques to reduce these overheads.  

4.1 Copy Propagation 
Since the JVM supports object-oriented computation on the 

operand stack, there are many pushes and pops of object references 
between local variables and the operand stack in the bytecode. In our 
b-to-C AOTC, these pushes and pops are translated into copy 
statements between the local C variables and the stack C variables. 
For example, a Java statement, Object dest = src.f, 
accesses a reference-type field f of an object referenced by a 
variable src and saves it to a variable dest. The bytecode for this 
statement is composed of aload_1 (which pushes the local 
variable src), agetfield f (which pushes the field f), and 
astore_2 (which pops and saves at the local variable dest). 
Finally, this bytecode sequence is translated into the following C 
statement sequence: s0_ref =l1_ref; s0_ref =s0_ref-
>f; l2_ref= s0_ref; as shown in Figure 3. 

(a) Java source code (b) Bytecode 
Object dest = src.f aload_1 

agetfield f 
astore_2 

(c) Translated C code 
s0_ref = l1_ref; 
s0_ref = s0_ref->f; 
l2_ref = s0_ref;. 

Figure 3. An example Java source code, bytecode, and 
translated C code. 

We are supposed to save a reference into the Java stack frame 
whenever a reference-type C variable is updated, as shown in Figure 
4 (a). However, many of those updates are, in fact, copying of 
(already-saved) references, thus being useless. For example, the save 
of l2_ref frame[1] = l2_ref after the statement l2_ref 
= s0_ref is useless since the value of s0_ref have already 
saved in the stack frame in the previous statement frame[0] = 
s0_ref. 

In order to reduce this useless reference saves, we need to remove 
as many copies as possible so as to keep only essential computations 
and copies. In fact, the optimizing compiler that translates the C 
code into machine code will remove many of these copies. 
Unfortunately, the AOTC does not know which copies will be 
removed and which will remain by the compiler, thus unable to add 
the reference-saving C statements selectively. So, we need to add C 
statements everywhere, as shown in Figure 4 (a). The final machine 
code does not have any copies as in Figure 4 (b), yet all the frame-
saving store instructions remain since the compiler cannot easily 
optimize and remove them (also frame[] array is volatile).  

(a) C code with reference 
saves (b) Compiled machine code 

s0_ref = l1_ref;  
frame[0] = s0_ref; 
s0_ref = s0_ref->f; 
frame[0] = s0_ref; 
l2_ref = s0_ref; 
frame[1] = l2_ref; 

// copy was deleted 
sw $t1, $frame+0 
lw $t2, $t1+offset_of_f 
sw $t2, $frame+0 
// copy was deleted 
sw $t2, $frame+4 

Figure 4. How the C code added with reference saves is 
compiled 

(a) Before GC 

s0_ref 

frame[0] 

s0_ref 

frame[0] object

 

(b) After GC

 
object 
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Our idea is performing copy propagation by the AOTC in order 
to remove useless copies in the translated C code, thus removing 
useless reference saves. We use a conventional copy propagation 
algorithm based on simple data flow analysis [9]. If we do copy 
propagation for our example, there will be a single C statement 
l2_ref = l1_ref->f with a single reference save statement 
as shown in Figure 5, thus obviating useless savings. 

(a) Copy-propagated C code 
l2_ref = l1_ref->f; 
frame[0] = l2_ref; 

(b) Compiled machine code 
lw $t2, $t1+offset_of_f 
sw $t2, $frame+0 

Figure 5. Optimization based on copy propagation 

4.2 Removal of Reference Saves via Liveness 
Analysis 
In addition to removing unnecessary reference copies, we can 

also reduce the reference saves via liveness analysis [16]. 
Although we save references whenever a reference variable is 
updated, a GC-point is supposed to keep references live only at 
that point. So, if an updated reference variable is not live at any 
GC-points, we do not have to save it. In fact, a stack variable 
generally has a short live range due to Java’s stack machine model 
where the stack keeps a value temporarily, so it would be rare for a 
stack reference variable to be live across a GC-point. 

We perform live variable analysis for this optimization such that 
if a reference variable defined at some location is not live at any 
GC-points, it is not saved at the stack frame there. Figure 6 shows 
an example where s1_ref does not need to be saved since it is 
not live at the GC-point.  

(a) C code before 
optimization 

(b) C code after 
optimization 

s0_ref = l1_ref; 
frame[0] = s0_ref; 
s1_ref = l2_ref; 
frame[1] = s1_ref; 
… 
[GC-point] 
// s0_ref is live, 
s1_ref is dead here 

s0_ref = l1_ref; 
frame[0] = s0_ref; 
s1_ref = l2_ref; 
// no need to save 
s1_ref 
… 
 [GC-point] 
// s0_ref is live, 
s1_ref is dead here 

Figure 6. Optimization based on liveness analysis 

4.3 Removal of Stack Frame Allocation 
If all reference saves in a method are completely eliminated by 

the two optimizations, the allocation of stack frame itself can be 
obviated. Since the stack frame allocation includes a significant 
amount of work in order to follow the CVM’s stack allocation 
convention, it is very important to remove the overhead. In order 
to promote this optimization opportunity, when a method call 
includes a reference-type variable as a parameter, we pass a 
reference saved at the stack frame, instead of the variable itself. In 
Figure 7, for example, we pass &frame[0] as an argument 
instead of passing s0_ref in the caller. When l0_ref is 
initialized to the argument *ptr in the callee foo(*ptr), we 
do not have to save l0_ref at the callee’s stack frame since the 
*ptr is already at the caller’s stack frame. Restoration of 
l0_ref at the GC-point after GC can also be made from the 

argument *ptr since it (frame[0] in the caller) should have 
already been updated during GC. If l0_ref is the only reference 
updated in foo(), we do not even have to allocate frame for foo() 
since there is no reference save, which will remove the allocation 
overhead (the actual code is somewhat different from Figure 7, 
which is just for illustration of the idea). 

(a) Caller code 
s0_ref = … 
frame[0] = s0_ref 
….. 
foo (&frame[0]);//insteadf of 
foo(so_ref) 
if (GC occurred in foo()) { 

s0_ref = frame[0]; 
} 

(b) Callee code 
foo(*ptr)  
10_ref= *ptr; // No need to save 
l0_ref 
… 
// At a GC-point 
if (pending_request) { 
stop_the_thread_and_wait_GC(); 
10_ref = *ptr; // copy back after GC 
} 

Figure 7. Optimized argument passing 

5. Experimental Results 
Previous sections described our proposed solution to allow 

precise GC with a bytecode-to-C AOTC by adding C code that 
saves live references in the stack frame. They also proposed 
optimization techniques to reduce the overhead of additional C 
code via copy propagation and liveness analysis on the translated 
C code. In this section, we evaluate our proposed solution and the 
optimization techniques. 

5.1 Experimental Environment 
We experimented with Sun’s CVM for which we implemented 

a bytecode-to-C AOTC. The CVM employs generational GC 
which is a moving GC algorithm, so we need to add reference 
restoration code in Section 3.2. Since CVM supports precise GC 
only, we could not compare with conservative GC (comparing 
both GCs is beyond the scope of this paper). 

The experiments were performed on an Intel Pentium4 2.40 
GHz CPU with 512M RAM and the OS is Debian Linux with 
kernel 2.6.8-2. The translated C code is compiled by GNU C 
compiler (GCC) version 3.3.5. The CVM is constrained to have 
32M memory. The benchmarks we used are SPECjvm98 (except 
for mpegaudio for which CVM cannot read its class files). 

5.2 Performance Impact of Optimization 
We first evaluate the effectiveness of the two optimization 

techniques. Tables 1 shows the number of dynamic reference saves 
at the stack frame for four cases with: no optimizations, copy 
propagation only, liveness analysis only, and both optimizations. It 
shows that the number of reference saves decreases significantly 
with either optimization. With both optimizations the number of 
reference saves decreases by an average of 88%. 

We also examined the whole Java stack frame at each GC-check 
point during execution if there are any duplicate references. 
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Duplicate references would mean that there are more than one  
save of the same references, probably via copies. We found there 
are few instances of duplicate references (somewhat more in 
javac and mtrt which are unavoidable due to inherent 
duplication of this pointer using dup), meaning that reference 
saves were made efficiently. 

As the reference saves in a method are completely removed by 

these optimizations, the allocation of stack frame can also be 
removed for that method. Table 2 shows the dynamic number of 
stack frame allocation requests for each benchmark for the four 
cases. The table shows that the number of stack frame allocation 
can be reduced by an average of 55% with both optimizations, 
although the reduction rate varies significantly from benchmark to 
benchmark. 

Table 1. Number of dynamic reference saves at the Java stack frame (millions) 

benchmarks No optimization Copy Propagation Liveness Analysis Both Optimizations 
compress 4,073 1,469 238 217 

jess 703 228 201 93 

db 817 413 200 133 

javac 650 160 182 79 

mtrt 799 236 279 55 

jack 283 78 98 45 

Table 2. Number of dynamic Java stack frame allocation requests (millions) 

benchmarks No optimization Copy Propagation Liveness Analysis Both Optimizations 
compress 226 226 20 20 

jess 104 83 58 54 

db 72 65 61 58 

javac 84 65 63 56 

mtrt 278 102 34 12 

jack 41 28 29 24 
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Figure 8. Running time of benchmarks for each case. 
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Figure 8 shows the total running time (in seconds) of each 
benchmark for the four cases. It shows that the performance 
improves with optimizations turned on, more significantly for 
compress, javac, and mtrt, which is consistent with the 
reduction of the number of reference saves and the number of 
frame allocation, depicted in Table 1 and Table 2, respectively. 

We also estimated for the optimized code with both 
optimizations how much of its running time is spent for reference 
saves and stack frame allocation. For this analysis, we ran an 
experiment with both optimizations turned on, but with no 
removal of stack frame allocation. The difference of running time 
between this experiment and the original experiment in Figure 8 
divided by the difference of their numbers of stack frame 
allocations gives the unit time spent for a single stack allocation. If 
this unit time is multiplied by the number of stack allocations left 
in the optimized in Table 2, it will give an estimate for stack 
allocation overhead within the total running time in Figure 8. 
Similarly, we can also estimate the overhead of reference saves. 

Table 3 shows the percentage of those two overheads against the 
total running time. It shows that stack allocation overhead is much 
more serious than reference saves (except for compress where 
there is a very small number of hot spot methods unlike others). This 
is no wonder since a single stack frame allocation requires more 
than 20 x86 instructions for the most probable case while a reference 
save is a single store instruction. The combined overheads constitute 
from 4.3% to 21.4% of the running time with an average of 13.2%, 
which is still not trivial but would be something that we can pay if 
we can avoid fatal memory shortage by using precise GC. 

Table 3. Percentage of overheads after optimization against 
total running time. 

benchmarks saving references stack allocation 
compress 7.1% 5.7% 
jess 0.8% 17.0% 
db 0.4% 12.7% 
javac 0.9% 20.5% 
mtrt 1.5% 2.8% 
jack 0.7% 9.1% 

 

We need to reduce these overheads further. As to the Java stack 
frame allocation requests, we found that many of them request just 
one or two frames as shown in Table 4. So, additional removal of 
reference saves are likely to reduce the overhead of stack frame 
allocation. Also, the frame allocation task itself should be more 
light-weighted considering the frequent requests of small number 
of frames. We are currently working on these issues. 

Table 4. Percentage of one or two frame allocation requests 

benchmarks saving references stack allocation 
compress 0.0% 50.0% 
jess 5.6% 33.9% 
db 5.4% 0.1% 
javac 15.3% 47.9% 
mtrt 20.0% 7.3% 
jack 20.3% 32.6% 

6. Summary 
A bytecode-to-C AOTC is one of the most promising approaches 

to embedded Java acceleration and embedded Java requires 
precise GC for the best utilization of limited memory. We 
proposed a solution to allow precise GC with a bytecode-to-C 
AOTC and two code optimization techniques to reduce the 
overheads of reference saves and stack allocation. Although the 
overhead after optimization is still not trivial, we could say that it 
can be compensated by complete reclamation of garbage objects 
as well as by using moving GCs, which might avoid fatal memory 
shortage in embedded systems. 

We also found by analysis that the overhead of stack frame 
allocation is much more serious than that of reference saves. We 
are working on reducing this overhead. 
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