Check for
Updates

Handles Revisited: Optimising Performance
and Memory Costs in a Real-Time Collector

Tomas Kalibera

Richard Jones

University of Kent, Canterbury
{t.kalibera, r.e.jones}@kent.ac.uk

Abstract

Compacting garbage collectors must update all references to ob-
jects they move. Updating is a lengthy operation but the updates
must be transparent to the mutator. The consequence is that no
space can be reclaimed until all references have been updated
which, in a real-time collector, must be done incrementally. One
solution is to replace direct references to objects with handles. Han-
dles offer several advantages to a real-time collector. They elim-
inate the updating problem. They allow immediate reuse of the
space used by evacuated objects. They incur no copy reserve over-
head. However, the execution time overhead of handles has led to
them being abandoned by most modern systems.

We re-examine this decision in the context of real-time garbage
collection, for which several systems with handles have appeared
recently. We provide the first thorough study of the overheads of
handles, based on an optimised implementation of different han-
dle designs within Ovm’s Minuteman real-time collector. We find
that with a good set of optimisations handles are not very expen-
sive. We obtained zero overhead over the widely used Brooks-style
compacting collector (1.6% and 3.1% on two other platforms) and
9% increase in memory usage. Our optimisations are particularly
applicable to mark-compact collectors, but may also be useful to
other collectors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Memory management (garbage collection);
C.3 [Special-Purpose and Application Based Systems]: Real-time
and embedded systems

General Terms Measurement, Performance, Algorithms

1. Introduction

A real-time garbage collector must address fragmentation. Some
collectors do this by splitting objects (Jamaica [37], Sun’s RTS [9]),
some move objects (Aonix’s PERC [30]) and some combine both
techniques (Metronome [3], Fiji [34], Ovm [2]). A real-time collec-
tor must also be incremental so as to cause only short and bounded
pauses of the mutator. This complicates object moving signifi-
cantly. After an object is moved, all direct references to it must
be updated but all mutator threads must see a consistent view of the
heap at all times.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’11, June 4-5, 2011, San Jose, California, USA.

Copyright © 2011 ACM 978-1-4503-0263-0/11/06. .. $10.00

89

If objects are referenced directly — the case for most virtual
machines today — reference updating is a lengthy operation that
involves scanning the stacks, global data and all live objects in the
heap. The mutator must to be allowed to run during this period.
The use of direct references typically requires that both the old and
the new copy of an object (or at least some portions of both) co-
exist during that time, since the mutator may have references to
both and the new location of an object is stored in the old copy.
This copy reserve leads to a memory usage overhead similar to
that of a copying collector [16] rather than that of a mark-compact
collector [20]. A mostly non-copying collector [3] may copy fewer
objects, but the worst-yet-unlikely-case overhead is still close to all
live objects plus floating garbage.

If two copies of an object may co-exist, the system has to
ensure that the application still runs as if there was only one.
This transparency can be achieved with indirections. With Brooks
forwarding [8], every read and write includes a dereference of a
forwarding pointer stored in the object header. Every access is then
performed on the newest copy of the object. With replication [19,
21, 29], any copies of a single object are kept in sync: writes
are executed on all copies, while reads can proceed without any
indirection. However, access to a field that is volatile or through
an atomic primitive is problematic. Some systems remove the need
for a copy reserve by calculating new addresses on the fly and
moving objects on demand, but this requires operating system or
hardware support and cannot provide real-time guarantees [11, 22].

In this paper, we explore how objects can be managed with han-
dles [31], unmovable entities that represent objects and include a
direct pointer to their contents. The heap, global data, and stacks
use only handles to refer to an object, and thus all accesses are in-
direct. If an object is moved, only its handle needs to be updated,
which is trivial and can be done atomically. Consequently, the old
location of a moved object can be re-used immediately, without
need for the copy reserve required by direct pointer implementa-
tions. Depending on how much of an object header is moved into
the handle, some dereferences can be elided.

Handles have further advantages over direct pointers (not all of
which are applicable to real-time systems). In contrast to direct
references, no special action is necessary for pointer comparison.
Because references are never updated, memory compression is
easier [10], conservative collectors may move objects [31], and
objects can be moved at any time (not just during a particular
GC phase) or even multiple times during a cycle. The handle as
a unique proxy to an object allows a hash code to be implemented
simply as the handle address with no further space overhead [1]
and allows objects to be represented even if swapped out to external
storage or resident on a remote machine [18].

Handles have been used in the past for non real-time VMs, most
notably by Sun’s Classic and earlier VMs. Today most memory
managers use direct references which are believed to offer better

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2076022.1993492&domain=pdf&date_stamp=2011-06-04

performance, and certainly do so for collectors that do not move
objects while mutators are running. Real-time systems managed by
incremental collectors change the trade-offs. These systems already
incur the overhead of actions to support incremental updating of
references by the collector: it is no longer self-evident that handles
have to be more expensive than these actions. Handles offer the
advantage that old copies of objects need not be kept. This is
important not only because it can save memory but also because
it makes worst-case memory usage easier to analyse, which is
particularly nice for mostly non-copying collectors. On the other
hand, the price for handles includes increased allocation time due
to handle allocation and the memory overhead of reserved but
currently not used handles. Implementation of the collector is also
more complex. While some real-time collectors use handles [14,
27, 35], to the best of our knowledge, no publicly available study
compares different handle designs or implementations, or compares
these to direct pointers. We provide such a study here. In summary,
our contributions are:

e Designs and implementations of different variants of handles
in a (mostly non-moving) mark-sweep/compact collector in
Ovm [32], an open-source real-time Java Virtual Machine.
Optimisations to handle free-list manipulation and sweeping
that significantly improve mutator and collector performance,
and are applicable to any handle based mark-sweep/compact
collector.

An experimental comparison of different variants of handles
with each other, and with Brooks forwarding and replication.
We find that handles can keep up with other mechanisms for
incremental, mostly non-copying collection. Our best configu-
ration — of uni-sized fat handles — has no execution time av-
erage overhead compared to Brooks (1.6% and 3.1% on other
platforms), 1.8% (5.2%) over replication, but needs 9% more
collection cycles to run within the same sized heap.

2. Design issues

Implemented naively, handles offer poor performance compared to
other techniques for incremental compacting collection. However,
there are many opportunities for optimisation. We consider the
following.

e What information should handles hold? Should they include
any header words as well as the pointer to the object?

How should handles be allocated? The simplest solution would
be to pre-allocate a fixed-size table but this makes the worst case
utilisation of memory. Instead, we allocate and release handle
blocks dynamically.

Fragmentation is a significant issue for this handle space. Un-
like objects, handles cannot be moved. Instead, we explore
techniques that tend to avoid fragmentation. Can we encour-
age dense utilisation of handle blocks, thereby allowing other
handle blocks to be recycled?

There is substantial evidence [5, 15] that objects tend to live
and die together. Can we take advantage of this both to reduce
fragmentation in the handle blocks and to improve locality in
the mutator?

How can the collector trace and sweep both the handle and the
data space in the most cache-friendly way?

Some objects, including those in the boot image are known to
be immobile. Can the compiler take advantage of this to short-
circuit handle indirections?

90

GC Bits

Handle /]
- r\ﬂ Header
Data
(a) Thin handles
Handle
— O

Header } Data

:l = T [1 GC Bits

:l L] GC Bits

(b) Fat handles

Figure 1. Object layout of movable objects.

3. Handles

In this section we describe our handle design and optimisations
in a way largely independent of Ovm. The design should thus
be applicable to any mark-sweep/compact collector. Ovm-specific
details are provided in Section 4 and performance implications are
evaluated in Section 7.

3.1 Object layout

We support three types of handles. Thin handles hold just a pointer
to the object. Thus accesses to the object’s header and fields require
an indirection. By including the header in a far handle (Figure 1),
the indirection to access the header is removed but array and non-
array handles now have different sizes, which makes it impossible
to reuse handle slots between different object kinds. Uni-sized fat
handles solve this by placing the array length with the payload
rather than in the handle (header) — scalar and array handles have
the same size but an indirection is needed for the array length field.

Compacting collectors sweep the object space (not the handle
space) in order to discover objects to move. When an object is
moved, its handle must be updated to refer to the new location. For
this, we need to be able to find the handle from the object. Thus,
objects hold a back-pointer to their handle.

Real-time systems cannot halt mutator threads to perform a col-
lection, so objects are marked with a colour rather than a single
bit [33]. All phases of collection require access to the GC colour.
The colour is always part of the object header in Ovm, merged with
the type information word. With thin handles, the header is already
part of the object, so colours can be accessed during sweeping and
compaction directly. Fat handles store the header (and hence the
colour) in the handle. To avoid unnecessary cache traffic particu-
larly while sweeping, we cache the colour in the back-pointer (Fig-
ure 1(b)). The back-pointer is used only by the collector, so the
overhead of masking out the colour is not a problem. On the other
hand, we do not cache colours in thin handles, because the speed-
up we might gain in marking and so on would be outweighed by
the slowdown of masking by the mutator.

The compiler can exploit knowledge that an object can never be
moved. The object layout of unmovable objects is shown in Fig-
ure 2. This layout must be compatible with that of movable ob-
jects, because code may access both movable and unmovable ob-

Handle GC Bits
Handle

> 5 >3> .

Header

Data

(a) Thin handles (b) Fat handles

Figure 2. Object layout of unmovable objects.

jects. Unmovable objects thus still need handles. By keeping the
handles with the objects, we exploit the likelihood that loading the
handle into the cache will also load part of the header, thus reducing
cache misses. The compiler can also replace a handle dereference
by pointer arithmetic in code that is known to access only unmov-
able objects; this can eliminate completely some dereferences. Fur-
thermore, unmovable objects do not need a back-pointer to their
handle, as they are treated specially by the collector.

A consequence of having both movable and unmovable objects
of the same type in the system is that, with fat handles, the header of
an unmovable object has to be padded so that the payload starts at
an 8-byte aligned address. This is because the payload of a movable
object must start at an 8-byte aligned address and all fields of the
object are laid based on this assumption. With uni-sized fat handles
this is not a problem, because the header size is 16 bytes.

3.2 Handle allocation

We store handles in dedicated handle blocks, which are treated
specially by the collector. Our handle space is not contiguous.
Free handles are organised into a single-linked free-list, threaded
through individual handles, which may be in different handle
blocks. The allocator always takes the first handle from the head of
the free-list. The handle space grows on demand — if no free han-
dle is available, a new handle block is acquired, and new handles
are initialised and linked to form a new handle free-list.

For fat handles, we maintain two independent handle spaces,
one for scalar objects (smaller handles) and one for array objects
(larger handles). To avoid the additional overhead of, and risk of
fragmentation from, two handle spaces, we also implement uni-
sized fat handles; we expect the overhead of the dereference to
access the array length field to be relatively low, as this access will
commonly be followed by ones to the array data, so there should
be no extra cache load in most cases.

3.3 Handle release

When the garbage collector discovers a handle of a dead object,
it has to return it to the free-list and zero the header part. We
implemented different strategies on where to insert the handle,
as we found that different choices have significant performance
implications. The naive yet simplest solution is always to add free
handles to the head of the free-list (naive release). Unfortunately,
this solution has very poor performance, which we believe is caused
by the resulting poor locality of this list. Consecutive handles in the
list might well be in different handle blocks and the free handles of
a particular handle block can be far apart in the list.

Consecutive free handles. A relatively simple but highly benefi-
cial improvement is to keep all the free handles from a single han-
dle block together in the free-list, not necessarily in address order.
This rule can be enforced without any additional overhead on the
allocator. For every handle block, the collector remembers the po-
sition of the last free handle in that block (the one that is last in
the free-list). This information is not updated by the allocator, but
only by the collector when it sweeps. When the collector needs to

91

insert a newly freed handle into the free-list, it first checks the last
known free handle in the respective handle block. The block for a
handle can be found easily using address arithmetic. If this handle
is still free, the collector inserts the newly freed handle in the free-
list after that one. Otherwise, the newly freed handle is the only free
handle in the block, so it can be connected to the head of the free-
list. Discovering whether a handle is free is also relatively cheap.
We maintain a bitmap indicating whether a given block is a handle
or object block: a handle is free if and only if it points into a handle
block. Most importantly, this test is needed only for sweeping by
the collector and not for allocation by the mutator.

Free-list rebuilding. We support further optimisations to increase
the locality of handles. After sweeping, we rebuild the free-list so
that the free handles in a block are sorted in address order. Because
all free handles in a block are stored consecutively in the list, this
sorting can be implemented incrementally. The rebuild is just a
linear pass through the free-list. Each time a new handle block
is detected in the free-list, its sequence of handles is temporarily
disconnected to avoid interference with mutator allocation, then
incrementally sorted and re-connected. Note that the reconnection
must be robust against the situation that the allocator has already
consumed the previous handle block.

Free handle block release. We support opportunistic release of
free handle blocks. While this is not a worst-case optimisation,
handle blocks can be often released in practice. Just as objects tend
to live and die together in clumps [5, 15], so do their handles.
This optimisation is vital to reduce handle space fragmentation
caused by peak demands on handles: allocation of many small
objects that die quickly, followed by a period with a lower rate
of allocation. Note that handle space fragmentation is worse for
a real-time collector than a non real-time one. A stop-the-world
collector can ensure that the number of used handles never exceeds
a threshold unless all the handles belong to live objects; otherwise
it triggers a collection. There is no such option in a real-time
collector. An alternative is to pre-allocate the maximum number of
handles that could be needed before the system runs out of memory.
This approach, however, leads to excessive wasting of memory.

Sorting handle blocks. Our collector can sort the handle free-list
while it is being re-built so that blocks with fewer free handles
are included first (and hence re-used sooner by allocator). The
motivation for this optimisation is to make the handle space more
compact and to increase opportunities for releasing blocks of free
handles. Sorting is performed incrementally in the linear pass of
the free-list already done for rebuilding. We use a variant of bucket
sort to find the location in the free-list at which to insert a given
block, maintaining an array of blocks that records the last block in
the free-list of given occupancy. As this array may be sparse, we
use a bitmap to speed-up access to it. We also support reverse sort
order, where mostly-free handle blocks are held first. This order
may improve the locality of handle allocation, by giving longer runs
of handles allocated from the same block.

Pre-initialised caching. If handle blocks are released as soon as
all the handles they contain are free, and the handle space is nicely
compact, new blocks for handles are needed soon. The time spent
initialising them (and previously clearing empty handle blocks) is
then wasted. Thus it makes sense to retain some empty handle
blocks, initialised with a free-list threaded through each one. It
would be possible to vary this threshold dynamically, but we have
not done so. Keeping these in the free-list would result in repeated
re-building if they survive a collection cycle. To avoid this, we can
cache a certain number of empty yet pre-initialised handle blocks.
When the allocator exhausts the handle free-list, it first tries to
use a handle block from the pre-initialised list and only if that
list is empty does it acquire and initialise a fresh block from the

system. Although this optimisation adds a branch, it is only to the
allocator’s (rare) slow path. Pre-initialised empty handle blocks are
cached while rebuilding and perhaps sorting the free-list.

Colour caching. With both fat and uni-sized fat handles, we added
a copy of the object colour into the payload, so that it can be ac-
cessed without dereferencing the back-pointer. This optimisation is
important for sweeping, which is done in our collector by travers-
ing the object space (not the handle space). Thus the sweeper does
not need to access the header of live objects. We reduce cache traf-
fic by updating the cached colour only when an object’s fields are
scanned (and hence must be loaded into the cache) rather than when
the object (handle) is marked.

Independent handle release. Handles of dead objects need to be
reclaimed. With thin handles, the sweeper does this (by following
the back-pointer) as it discovers dead objects. This behaviour is not
cache-friendly either. The handle free-list consolidation described
above then runs affer the object sweep has finished. With fat and
uni-sized fat handles, the handle release can be done while sweep-
ing objects, thereby improving locality and linearity of access of the
sweeper. The sweeper passes through all used blocks of the heap in
address order, sweeping both handle and object blocks. This handle
sweep supports consecutive free handles. We also implement free
handle- block rebuilding and pre-initialised caching. Sorting could
be implemented as well, but instead we keep the blocks in address
order, which could additionally improve locality. It also somewhat
simplifies the handle sweep algorithm.

4. Minuteman RTGC and Ovim

Ovm [2, 32], developed at Purdue University, is an open-source
implementation of the Real-time Specification for Java (RTSJ) [7]
and a real-time garbage collector (RTGC). It compiles Java byte-
code ahead-of-time into C, performing compiler optimisations in-
cluding whole program analysis, devirtualisation, and inlining. The
generated C code is then compiled by gcc to apply additional
optimisations, including more inlining. The primary target plat-
form is 32-bit Linux/x86, but Ovm has also been ported to the
RTEMS/LEON embedded platform, used by the European Space
Agency and NASA, and to other platforms.

Ovm is written mostly in Java, including the compiler, garbage
collector, and runtime. At build time, Ovm runs in a hosted Java
VM. It loads the bytecode for the whole VM and the application,
compiles and optimises both, generates the C code, and then pro-
duces a final binary via gcc. It also generates a so-called boot im-
age, which includes VM runtime classes, class information, and
static data. We use a version of Ovm with green threading: all Java
threads are run on top of a single native thread. Preemption points
are inserted by the compiler only at back-branches. This has been
shown to be sufficient to provide latencies below 6 us [2] in re-
sponse to external events including timer interrupts. Green thread-
ing greatly simplifies the collector: because the VM has control of
scheduling it is straightforward to ensure that actions are atomic.

Minuteman is a highly configurable RTGC within Ovm. For this
paper, we added handles as options for realising dynamic defrag-
mentation. This implementation affected not only the GC, but other
parts of the VM as well. We focus here on a GC configuration with
arraylets, a fully incremental collector (all phases are incremental,
but small objects are copied atomically), and GC barriers written
for predictability (the barriers are on at all times, not just when
needed by the GC). We use time-based periodic scheduling as in
Metronome GC [3].

4.1 Memory layout and access in the boot image

As noted above, the memory layout and allocation is different for
the heap and for the boot image. In the boot image, objects and ar-

92

rays are always allocated contiguously, at 8-byte aligned addresses.
The contiguous representation for the boot image is designed to be
accessible using the same code as the heap representation. Thus,
the forwarding pointers for Brooks and replication are set to point
to the object itself, handles are part of the object representation as
shown in Figure 2, and arraylets are laid out one after another to
correctly reflect contiguous representation of the array. The com-
piler sometimes knows statically that a particular piece of code only
accesses objects in the boot image. Such accesses are then opti-
mised (eliminating arraylet pointer dereferences, skipping forward-
ing with Brooks, omitting double-writes with replication and opti-
mising out dereferences with handles). These optimisations are im-
portant for performance because the boot image also includes type
information needed for non-devirtualised calls and type checks, as
well as data structures used by the memory allocator.

4.2 The heap

The heap is of fixed size, divided into 2 KB blocks. Each block
can be free or dedicated to either small objects, arraylets, a large
object, or handles. The kind of a block is stored in bitmaps and can
be looked up at any time. Free blocks are always zeroed, organised
in a single-linked free-list, and available to be allocated for any of
the kinds. Small object blocks are allocated to size classes as in, for
example, Metronome [3].

In fresh small-object blocks, new objects are allocated using
a bump pointer. Once any objects in a block die, the block is no
longer eligible for bump pointer allocation. Instead, free objects
are organised into segregated free lists. There is a free-list per each
small-object block, and a free-list of non-full small-object blocks
of a given class. The small-object allocator preferentially allocates
from a segregated free-list, and only if this list is empty does it
acquire a new block and set it for bump pointer allocation. Small-
object blocks that become free are zeroed by the collector and re-
turned to the low-level block allocator. In general, zeroing is always
done during the sweep in Ovm, to prevent pauses during allocation.
Note that such pauses might affect the highest priority threads due
to allocation activity of low priority threads. An adversarial alloca-
tion/lifecycle pattern may lead to very many almost-free blocks per
size class; consequently, there may be no free blocks in the heap,
and allocations may fail in another size class. This situation is pre-
vented by dynamic defragmentation, which can move objects from
one block to another within a size class. Arrays are formed by a
spine which contains references to external arraylets (each the size
of a heap block, marked as an arraylet block). The last arraylet can
be allocated within the spine (as an internal arraylet) if it is smaller
than 2 KB. Thus, arrays smaller than 2 KB have smaller access
overheads. The spine is allocated either as a normal small object, if
it small enough, or as a large object.

5. Modifications to support handles

In this section we outline the changes to the heap and to the write
barriers to support handles.

5.1 Handle blocks

Each handle block holds only handles of one kind. Thin handles
are 4 bytes long. Fat handles for scalars are 16 bytes and for arrays
20 bytes. Uni-size fat handles are 16 bytes. In addition to regular
handle blocks that hold used and/or free handles, we keep pre-
initialised handle blocks of free handles, sorted in address-order,
which can be quickly re-used by the allocator. Free handles are
allocated from a free-list, as explained in Section 3. Large objects
do not use handle blocks but have their handles inlined in the same
way as unmovable objects in the boot image.

In Ovm/Minuteman, the object header includes the type infor-
mation word (with GC bits), a lock word, a pointer for RTSJ scopes,

the forwarding pointer, and a hash word (except in handle configu-
rations). Thus, without handles, scalars have 20-byte headers, and
arrays 24-byte; the hash word is initialised when the object is allo-
cated. With handles, the hash code is the handle address so the hash
word is redundant and the headers are 4 bytes smaller. Thus, com-
pared with Brooks and replication, there is no per-object overhead
for handles although unused handles may incur memory overhead
in the handle space.

5.2 Barriers and dereferences

The collector uses a Yuasa style [39] snapshot-at-the beginning
(deletion) barrier, which marks the old target of the overwritten
field. Stacks are scanned on-the-fly, one by one — scanning a single
thread’s stack is atomic (recall that Ovm uses green threads) but
the mutator can run before the collector scans the next thread. This
incrementality requires the collector to also use a Dijkstra style [13]
incremental update (insertion) barrier, which marks the target of the
newly written reference. The collector uses card marking to record
pages in the boot image that it needs to scan for references into
the heap. Whenever a reference is stored into an image object, the
barrier marks the appropriate bit for the respective image page.

Brooks forwarding. Any read or write from/to the heap has to be
preceded by a forwarding pointer dereference. However, immutable
header fields, including the type information and the hash word,
can be accessed directly. Array access does not need a dereference,
because array length and the pointers to the external arraylets are
immutable, and the pointer to the internal arraylet is updated by the
GC to point to the up-to-date version in the new spine. Before any
reference is written to memory, it is forwarded to prevent spreading
of old references during collection. An indirection is also needed
for reference comparison.

Replication. Reads from objects do not require a dereference.
Writes store their value to both replicas of the object. Arrays are
accessed in the same way as with Brooks forwarding. References
are again updated before they are written to memory. Minuteman
also supports incremental object copying with replication, during
which time the mutator holds only references to the old replica —
but we use only atomic copying in this work. A dereference is also
needed for reference comparison.

Thin handles. Any access to an object needs a handle derefer-
ence, be it to data or header. The hash code is the address of the
handle, and thus can be obtained without a dereference. No updat-
ing is necessary when writing a handle, as handles cannot become
old. Array access works exactly as in Brooks forwarding and repli-
cation, except for the initial handle dereference. Reference compar-
ison is cheaper: it is just comparison of the handles’ addresses.

Fat handles require fewer dereferences than thin handles, as all
header fields can be accessed without a handle dereference. Fast
access to type information (type checks and virtual method calls)
is particularly important. The array length field is in the handle, so
requires no dereference to access it (e.g. for bounds checking).

Uni-size fat handles behave like fat handles but also require a
dereference to access an array’s length.

6. The collection cycle

The collector is implemented in a single thread, which wakes up
when free memory (the number of free blocks) is running low, runs
a GC cycle, and goes back to sleep. The thread is interruptible at
almost any time: the longest atomic operation is a copy of a small
object (up to 2 KB). The VM can be configured for other operations
not to process more than a given number of bytes atomically. The
GC cycle is as follows. In each phase, we distinguish the actions
required for different configurations.

93

1. waitUntilMemoryIsScarce The GC thread sleeps. All refer-
ences are black, and objects are allocated black.

2. scanStacks The meaning of black and white is inverted, mak-

ing all objects white. The allocation colour is made black.
Thread stacks are scanned and any directly reachable objects
are marked grey (this also stores the reference into a list of
reachable not-yet-scanned references).

Brooks forwarding and replication. Marking always uses the
up-to-date location (forwarding the reference if necessary;
replication identifies the old copy with a special bit). Note that
references on the stacks cannot be updated yet because the heap
may still include old references.

Thin handles. Marking dereferences a handle.

Fat and uni-sized fat handles. Need no dereference as they in-
clude the colour.

3. scanImage The marked (dirty) pages of the boot image are

scanned for objects, which are in turn scanned for references
to heap objects which are marked grey.

Brooks forwarding and replication. References are also fixed to
point to up-to-date locations.

4. markAndCleanHeap For each reference in the list of grey

(reachable not-yet-scanned) references, the target object is re-
moved from the list and scanned for references, which implic-
itly marks it black.

Brooks forwarding and replication. The defragmentation phase
of the previous GC cycle (see below) duplicated live objects
but did not forward references. This was deferred to the mark
phase of this cycle. Consequently, there may be references in
the heap and stacks to both the old and the new location of a
single object. Marking updates stale references.

Fat and uni-sized fat handles. Mark handles of live objects; this
colour is cached in the object only when it is scanned for child
pointers.

5. cleanStacks

Brooks forwarding and replication. Stacks are scanned again,
just to update references to point to the new locations of objects.
Handles do not require this step.

6. sweep All white objects are unreachable, and will be reclaimed.

After the sweep phase, all objects in the heap are black. All ref-
erences point to up-to-date locations (there are no old copies).
Brooks forwarding and replication. All references in reachable
objects now point to up-to-date locations. The old locations of
relocated objects are reclaimed as they are white (unreachable).
The external arraylets of a garbage array are released only when
the non-old copy is swept (as we must not release them twice).
Replication must update the forwarding pointer of the new copy
to point to itself when the old copy is reclaimed.

Thin handles. Handles of small objects require additional work.
Those added to free-lists are kept linked to the objects. Thus,
when the allocator acquires a free slot in an object block, it
obtains a handle and back-pointer ‘for free’. This optimisation
would not work with fat handles, because scalars and arrays use
different size handles (although scalar and array objects may be
interleaved in the same size class). On the other hand, when a
small object block is completely unused, the block is recycled
and the handles of any objects that it contained are added to the
handle free-list.

Fat handles. All handles of dead objects are zeroed and re-
leased for re-use. With independent handle release, the handles
are released independently of their objects. To do this reliably,
the small object sweeper has to be able to distinguish an array
from a scalar (without accessing the header that may already
have been zeroed or re-used). In the case that it is an array, the

sweeper needs to free the external arraylets of the array. With
fat handles, we distinguish arrays from scalars by the type of the
handle block to which the back-pointer points as there are no
bits spare for this purpose in the back-pointer. Thus, indepen-
dent handle release cannot return a free scalar- or array-handle
block to the system in case it is reused for a different purpose
before we have swept all garbage objects whose handle was
stored in that block. Instead, all freed handle blocks are pre-
initialised.

Uni-size fat handles. We solve this problem with uni-sized fat
handles. As these are all 16-byte aligned, we can use a spare bit
of the back-pointer as an array indicator. This bit is initialised at
allocation time. We can thus reliably detect arrays at any time,
and return free handle blocks to the system, once a threshold of
pre-initialised handle blocks has been used.

7. rebuildHandleFreelist (s) The handle free-list is rebuilt
as described in Section 3. With all optimisations enabled, this
means that the list is sorted so that handle blocks with fewer
free handles are first, and that the free handles of a single block
are together and in address order. Some free handle blocks are
cached as pre-initialised for further allocation, and others are
zeroed and returned to the allocator. This step is only needed
with handles, and only in certain configurations:

Thin handles. Whenever the handle free-list should be rebuilt or
sorted or free blocks be returned or pre-initialised.

Fat and uni-sized handles. Under the same conditions, but not
for independent release. With fat handles, this step uses two
passes, one for scalar handles and one for array handles.

8. defragment If the amount of free memory is below a given
threshold, defragmentation is started, relocating objects from
less occupied to more occupied blocks.

Brooks forwarding and replication. The old locations of objects
remain reserved until the next sweep. Only then can they be re-
used for allocation. Atomically with object relocation, forward-
ing references are updated so that the old location points to the
new location and the new location to itself. Note that evacu-
ation is not guaranteed to release a block, as free slots in the
block may be reused by the mutator while the collector is at-
tempting to evacuate it, that is until the next sweep.
Replication. The copies’ forwarding addresses point to each
other, and the old location is also marked by a bit shared with
the type information in the header.

All handles. Relocating an object updates its handle to point
to the new location. Fully evacuated blocks are zeroed and re-
turned to the system.

Thin handles. If an object is relocated to a location that already
has a cached handle (see point 6 above), this handle is relocated
to the old location of the object. And in case of successful evac-
uation of a block, it is then freed.

7. Evaluation

The primary goal of our evaluation is to discover how much slower
handles are compared to the faster non-handle configuration of
replication and Brooks. The secondary goal is to compare execution
time and memory requirements of different handle configurations.
For our experiments we use a subset of the DaCapo 2006-10-
MR2 benchmarks [6] that run with Ovm. We use periodic schedul-
ing of the garbage collector as in Metronome: the collector is sched-
uled periodically, always in fixed duration time slots (500 us), tar-
geting mutator utilisation of at least 70% with a time window of
10 ms [3]. The collector, however, does not start a new cycle unless
the free heap blocks account for less than half the heap. We run
eager compaction, so all size classes are fully compacted at every

94

Linux | Intel platform Clock Cache
A | 2.6.35 | x86/64 Core2 Duo 2.4 GHz 4M 16-way L2
B | 2.6.35 | x86/32 Pentium 4 3.2GHz IM 8-way L2
C | 2.6.32 | x86/64 Nehalem/Xeon | 2.27 GHz | 8M 16-way L3

Table 1. Platforms used for experiments, including last level cache
size.

GC cycle, since we find its cost negligible. Our statistical summary
differs slightly with each experiment, but we always follow a com-
mon set of rules. We repeat every invocation of a benchmark (that
is, start the VM binary multiple times) to average out noise due to
memory placement. We iterate every benchmark within an invo-
cation, as supported in DaCapo, to average out random perturba-
tions of the system. We discard the first one third of measured iter-
ations within each execution to limit the influence of start-up noise
(note this is not possible with the experiments where the measure-
ments are done by the VM, not the benchmark). We estimate the
error bounds using non-parametric methods, and we round the re-
sults so as not to show digits invalidated by those error bars. When
summarising relative overheads we use the geometric mean. When
summarising execution times from different invocations and itera-
tions of the same benchmark, we use the arithmetic mean, as the
summary of execution time has a physical meaning [26].

We ran our experiments on three different platforms listed in
Table 1. Note that while two platforms have multiple cores, Ovm
only uses one. It has always been built as a 32-bit x86 executable.

Execution time overheads of handles. For this experiment, we
choose the best configuration for thin handles, fat handles, and uni-
sized fat handles, and we compare against replication (Table 2).
The overhead of uni-sized fat handles (the best handle configura-
tion) is about 1.8% over replication, 0.1% over Brooks, the error is
within 2.3/2.4 percentage points respectively, and hence the slow-
downs are not statistically significant (confidence intervals include
1, which is zero overhead). Fat handles seem slower than uni-sized
fat handles, but the difference is not statistically significant (based
on the confidence intervals in the table). However, we can conclude
that thin handles are slower than other handles and direct pointers.

Memory usage with handles. Table 4 shows the total volume of
objects moved during a benchmark execution (multiple iterations),
measured in megabytes. The numbers are averaged over five ex-
ecutions (no error bars are shown as the numbers are extremely
stable). The table shows that handles drastically reduce the number
of objects moved. This is most likely because, with direct pointers,
free slots in evacuated pages are often reused by the allocator, and
hence after the next sweep the page is again only partially popu-
lated, and so once more is a candidate for evacuation. On average
(not shown in the table), the amount of copied memory compared
to replication is reduced to 4% (that is by 96%) with thin handles,
to 5% with uni-sized fat handles and to 6% with fat handles. Fat
handles move more data than other handles, probably because they
use more GC cycles.

All the experiments for each benchmark were run with the same
heap size. Handles are allocated in the heap. As the collector runs
every time as soon as the heap is half-full, the number of GC cycles
is a measure of memory requirements. Table 5 shows the number
of cycles for the same experiment as in Tables 2 and 4. Numbers
are again averaged over five executions, but left without error bars
as they are extremely stable. Handles use more memory than direct
pointers, but with thin handles the difference is tiny: they increase
the number of GC cycles by only 1%. With uni-sized fat handles
the number increases by 9% on average, which can be explained by
the fact that they are larger, and thus the handle space fragmentation
takes up a greater proportion of the heap. Fat handles increase the
number of cycles by as much as one third — this is the fastest fat

Antlr Bloat Fop Hsqldb Lusearch Pmd Xalan Geo-Mean
Brooks 1.0328+0.0075 1.02 +£0.077 | 1.033+0.024 | 1.08640.068 | 1.007£0.023 | 0.96 £0.13 0.995+0.025 | 1.018+0.023
Uni-size Fat H. 1.05874+0.0072 | 0.9734+0.084 | 1.0214£0.019 | 0.999+0.056 | 1.046+0.061 1.0 +0.1 1.06 £0.03 1.01840.023
Fat Handles 1.081540.0074 | 0.983+£0.075 1.05 +0.018 1.29240.084 | 1.12 £0.089 | 0.882+0.074 | 1.058+0.026 | 1.061£0.024
Thin Handles 1.094240.0071 1.25 £0.15 1.0534+0.026 1.15240.074 | 1.21440.087 1.11 £0.13 1.0814+0.032 | 1.13340.032

Table 2. Execution time overheads of handles and Brooks forwarding. The baseline is replication [21]. Run on platform A.

Antlr Bloat Fop Hsqldb Lusearch Pmd Xalan Geo-Mean
Brooks 1.03934+0.0056 | 1.046+£0.074 | 1.0217+£0.0028 | 1.001440.0038 1.019 40.005 0.9955+0.0027 | 1.02124+0.0043 | 1.021+0.011
Uni-size Fat H. 1.07054+0.0054 | 1.05 £0.08 1.086240.0025 1.013 £0.002 1.02954+0.0054 | 1.0776£0.0027 | 1.0413+0.0073 | 1.052+0.012
Fat Handles 1.097 £0.0053 1.02640.083 1.076 £0.002 1.173 £0.013 1.059940.0056 | 1.1118%0.0051 1.0676+0.0049 | 1.086£0.013
Thin Handles 1.097440.0056 | 1.066+0.088 1.105140.0032 | 1.0768+0.0037 1.09824-0.0057 1.161240.0061 1.112 40.005 1.102+0.013

Table 3. Execution time overheads of handles and Brooks forwarding. The baseline is replication. Run on platform C.

handle implementation, which never returns free handle blocks to
the system. Worse, fat handles need two handle spaces, thus adding
to the handle space fragmentation.

It follows that the reduction in copy reserve for defragmenta-
tion does not outweigh the amount of memory wasted in unused
handle slots. This is because although the amount of copying is
reduced drastically, very few objects are copied anyway: in all con-
figurations, there were at least 10,000 x more objects allocated than
moved. On the other hand, the amount of memory wasted in unused
handles slots is very large (handle space utilisation is low).

The utilisation is the ratio of used handles to the current number
of handles in the handle space. Unlike fragmentation in the object
space which can be reduced by compaction, the handle space by
its nature cannot be compacted. We aim to improve handle space
utilisation by releasing free handle blocks. Out of the three selected
configurations with best performance overhead (Table 2), thin and
uni-fat handles release free handle blocks but fat handles do not
(all blocks are pre-initialised). Further, fat handles use two han-
dle spaces, which might worsen handle space fragmentation. Util-
isation reported is the median of five runs, measured after every
sweep; we report the geometric mean across benchmarks run on
platform C. As expected, the utilisation with fat handles is worst
(about 28% on average). Thin handles and uni-sized fat handles are
better: 42% and 45% respectively. This is interesting: there are 4 x
as many handles per block with thin handles as with uni-sized, so
one would expect far fewer opportunities to release a block with
thin handles. But this is not the case: objects are probably allo-
cated and are dying in long enough chunks [15]. Since the utilisa-
tion is nearly the same, the amount of memory wasted is almost 4 x
smaller with thin handles. This confirms Table 5 in that on average
thin handles have much smaller memory overhead.

Execution time overheads on a platform with a larger cache.
Table 3 shows relative execution time overheads measured on plat-
form C (compare with Table 2 which ran on platform A). Brooks
is faster than uni-sized handles, which are followed by fat and thin
handles. The overhead of thin over fat is however within error bars.
Compared to platform A, the overhead of fat and uni-sized han-
dles seems larger (and is significant) while the overhead of thin
handles seems smaller (and is not significantly larger than that of
fat). We believe that this is because platform C has a very large last
level cache (8 MB): with thin handles, more of the hot handles can
remain in the cache. The average execution time overhead of uni-
sized fat handles over Brooks is 3.141.2% (not shown in the table).
On platform B, the overhead of uni-sized fat handles over Brooks
is 1.6%=+1.2 (significant, but seems smaller than on C).

Collector- and mutator-only overheads. Some of the overheads
of handles over replication or Brooks shown in Table 2 can be at-
tributed to the mutator (more complex allocation, more frequent
dereferences, poorer locality in dereferences) and some to the col-

95

lector (additional processing of the handle space, need for handles
and/or back-pointer dereferences). The overheads exclusive to ei-
ther the mutator or the collector are shown in Table 6. The re-
sults seem to suggest that the mutator overheads of handles may be
higher than for Brooks, as expected, although the error bars over-
lap. However, the differences in collector overheads are large and
significant, even given the errors. Best of the handles is the uni-
sized handles configuration, which spends around 32% more time
on GC than replication does (first column). This is partially be-
cause the GC runs more often, and partially because it is slower by
about 24%: the second column normalises GC times by the number
of cycles executed. The GC is faster with uni-sized fat handles than
with thin handles, which is expected, because of independent re-
lease of handles and objects, which improves the locality of sweep-
ing and also eliminates post-sweep handle space processing. It is a
bit surprising that the GC with fat handles is also much slower than
with uni-sized fat handles. This could be caused by poorer locality
during collection due to the two handle spaces.

The average percentage of time spent in GC with the heap sizes
we use is, however, small: 6% for Brooks and replication, 7% with
thin handles and uni-sized fat handles, and 9% with fat handles.
The GC time is dominated in all configurations by sweeping (50—
60%, largely due to the cost of zeroing memory) and marking
(30-40%). Stack scanning and updating each take less than 0.1%
of GC time. Post-sweep handle processing (only thin handles in
these experiments) takes about 5%. Compaction takes about only
0.4% (handles) to 1% (direct pointers) of GC time. Table 7 shows
execution time overheads of marking, sweeping and compaction
over replication. These numbers are normalised per cycle. The
slowest sweep is with thin handles, which is not surprising because
of their poor locality when releasing handles of dead objects. The
sweep is about the same for fat and uni-sized fat handles. Handle
marking is fastest with thin handles. This suggests that the overhead
of the handle dereference to find the colour is smaller than the
overhead of caching the colour when scanning objects of (uni-
sized) fat handles plus the overhead of loading unneeded header
fields of fat handles into the cache. Marking is much slower with
fat handles than uni-sized fat handles. Compaction time per cycle is
reduced to about 35% (that is by 65%) with thin handles, 46% with
uni-sized fat handles and 56% with fat handles. Although (uni-
sized) fat handles copy less memory per object because they do
not copy headers, they copy more objects and hence more data
(Table 4), and they take more time to compact.

Performance benefit of various handle optimisations. Execu-
tion time overheads of different configurations of uni-sized fat han-
dles against the best one — independent handle release with pre-
initialised caching (Indep) — are shown in Table 8. The fastest
two configurations are independent handle release without pre-
initialised caching (IndepNopreinit) as well as with caching all free
handle blocks releasing none to the system (IndepMaxpreinit). The

Antlr | Bloat Fop Hsqldb | Lusearch | Pmd Xalan
Replicating 32.08 | 75.74 | 97.06 | 3.12 4.93 24.18 | 277.31
Brooks 33.65 | 7496 | 99.87 | 3.15 4.93 24.4 270.81
Uni-size Fat Handles 2.69 0.84 0.66 | 0.06 2.17 0.97 18.27
Fat Handles 3.42 0.93 0.6 0.12 2.6 1.08 19.83
Thin Handles 2.04 0.81 0.57 | 0.04 2.16 0.78 15.86

Table 4. Total number of megabytes of data moved during defragmentation (platform A).

Antlr | Bloat | Fop | Hsqldb | Lusearch | Pmd | Xalan | Geo-Mean
Brooks 1.0 0.97 1.01 | 1.0 1.0 1.0 1.0 1.0
Uni-size Fat Handles | 1.19 0.94 1.06 | 1.07 1.04 1.29 | 1.09 1.09
Fat Handles 1.43 1.02 1.15 | 2.0 1.11 1.64 | 1.2 1.33
Thin Handles 1.02 0.93 097 | 1.0 1.01 1.1 1.02 1.01

Table 5. Number of GC cycles executed compared to replication (platform A).

Collector Col. per Cycle Mutator
Brooks 1.045+0.015 | 1.05 +0.015 1.021£0.029
Uni-size Fat H. | 1.32240.039 | 1.24240.036 1.046£0.036
Fat Handles 1.78 £0.03 1.393+0.026 1.049+0.031
Thin Handles 1.399+0.028 | 1.43 £0.03 1.076£0.033

Table 6. Exclusive collector and mutator execution time overheads
over replication. Relative mutator overheads are over the number of
executed cycles. Run on platform A.

Mark Sweep Compact
Brooks 1.14 +0.016 | 0.99940.015 | 1.065£0.037
Uni-size Fat H. | 1.467£0.072 | 1.163£0.025 | 0.463£0.034
Fat Handles 1.8 £0.034 | 1.18 £0.02 0.555+0.023
Thin Handles 1.381£0.023 | 1.374£0.028 | 0.348+0.014

Table 7. Execution time overhead of GC phases, normalised per
GC cycle. The baseline is replication. Run on platform A.

differences between IndepNoPreinit, Indep, and IndepMaxpreinit
are negligible and within error bars, hence pre-initialisation does
not make a difference on platform B. We have, however, observed
a significant impact of the level of pre-initialisation on platform C
and even more on platform A, where tuning the threshold (Indep)
lead to the same overhead as with Brooks. IndepNoRebuild lacks
free-list rebuilding and is slower than the previous configurations.
The results show that independent handle release is also a good
optimisation, as configurations lacking it are significantly slower
(error bars do not overlap). Without independent handle release,
pre-initialised caching does not improve the average overhead ei-
ther (NoindepNopreinit is the same as Noindep, NoindepMaxpreinit
seems even slower, but the difference is within error bars). By far
and significantly the worst is naive releasing free handles to the
head of the free-list (NaiveRelease), which has overhead as much
as 26% over the best version. This confirms that consecutive free
handles are a crucial optimisation.

Sorting free handle blocks by occupancy has no performance
effect: Noindep (free-list rebuilding, pre-initialised caching, sort-
ing blocks by decreasing number of free handles), NoindepNosort
(the same without sorting), and NoindepRevsort (the same, but sort-
ing in reverse order) all have about the same average overhead over
the best version and error bars overlap. NoindepRevsort has only
slightly smaller average overhead than NoindepNosort and Noin-
dep, the difference being well within the error bars. This suggests
that sorting does not make a difference. NoindepNorebuild is a ver-
sion with only consecutive free handles, but no free-list rebuilding.
The average overhead seems higher than that of Noindep (sorting,
pre-initialised caching), but it lies within the error bars.

96

B IndepNorebuild @ Indep
@ NoindepNorebuild @ Noindep
O NaiveRelease Bl NoindepNosort

i

Antlr Bloat Fop

B NoindepRevsort
B IndepNopreinit
B NoindepNopreinit

|

Pmd

1.0

Handle Space Utilization
0.4

0.2
1

0.0

Luindex Lusearch Xalan

Figure 3. Handle space utilisation with different configurations of
uni-size fat handles (platform B). Higher is better.

Memory usage of various handles optimisations. We aim to in-
crease handle space utilisation by releasing free handle blocks and
by increasing the chance of free handle blocks (by sorting handle
blocks). Median handle space utilisation from several executions
with uni-sized fat handles is shown in Figure 3. The first three con-
figurations (also first column of the legend) are those that do not
release free handle blocks. The remaining six do: for every bench-
mark, releasing free handle blocks significantly improves the util-
isation. Note that the actual values depend on allocation pattern of
the application. The configuration giving highest utilisation is In-
depNopreinit, which follows our expectations: it releases all free
handle blocks. The configurations with maximum preinitialisation,
IndepMaxpreinit and NoindepMaxpreinit (not shown in the graph)
have very close utilisations to NoindepNorebuild and IndepNore-
build. It is not surprising that configurations that release free handle
blocks also have better utilisation. With preinitialised caching, the
utilisation is then very sensitive to the setting of the threshold of the
maximum number of preinitialised blocks. For several benchmarks,
configurations with independent handle release have better utilisa-
tion than without. This can be caused by the GC running faster, and
thus fewer new handle blocks allocated during the GC. The graph
also shows that sorting handle blocks does not make a difference:
Noindep, NoindepNosort, and NoindepRevsort all have the same
utilisation. Configurations with better utilisation run fewer GC cy-
cles (not shown in the figure). This follows our expectation, as the
GC is triggered when the amount of free memory falls below a
given threshold. Increasing this threshold, and thus running the GC
more often, should increase utilisation with all configurations.

Antlr Bloat Fop Luindex Lusearch Pmd Xalan Geo-Mean
IndepMaxpreinit 1.013540.0025 1.0141+0.088 | 0.985140.0018 | 1.0098-£0.0018 1.00931+0.0018 | 1.0352+0.0083 1.00254+0.0026 | 1.009+0.012
IndepNopreinit 1.003 +0.002 1.031+0.086 | 0.995440.0026 | 1.0012+0.00095 1.009740.0025 | 1.0012£0.0052 | 0.9998+0.0033 | 1.006+0.012
IndepNorebuild 1.017940.0025 1.017+0.085 | 0.99014£0.0018 | 1.012 +£0.001 1.01334+0.0017 1.047840.0067 1.001240.0025 | 1.014+£0.012
Noindep 1.055840.0023 1.05 £0.091 1.031240.0025 1.0388+0.0013 1.0623£0.0054 | 1.165 £0.011 1.020440.0029 | 1.059+0.013
NoindepMaxpre. 1.063610.0025 1.078+0.093 | 1.014 £0.002 1.04444-0.0015 1.06024+0.0018 | 1.192 £0.013 1.026 +0.0026 | 1.067+0.013
NoindepNopre. 1.0549+0.0023 1.061+0.092 | 1.013840.0025 1.041540.0015 1.0536+0.0018 | 1.175 £0.012 1.026 +0.0039 | 1.059+0.013
NoindepNoreb. 1.0804+0.0026 | 1.0484+0.098 | 1.036 £0.002 1.056 +0.002 1.077 £0.0035 1.212 4+0.013 1.026340.0025 | 1.07540.013
NoindepNosort 1.053440.0031 1.038+0.093 1.03034+0.0024 | 1.037 +£0.0015 1.054 £0.002 1.16 £0.01 1.0207£0.0029 | 1.056£0.013
NoindepRevsort 1.053 +0.0026 | 1.01640.093 | 1.0272+£0.0025 1.0358+0.0012 1.05224+0.0016 | 1.161 £0.012 1.01914+0.0026 | 1.051+0.013
NaiveRelease 1.1846+0.0032 | 1.25 £0.11 1.126410.0021 1.23 40.002 1.23654+0.0073 | 1.848 +0.068 1.08561-0.0031 1.261+0.016

Table 8. Execution time overhead of uni-size fat handles configurations against the best (Indep). Run on platform B.

8. Related Work

Recently, there has been renewed interest in handles for memory
management, mainly for real-time and embedded systems [12, 14,
35, 38]. JOP [35] is a hardware implementation of a real-time Java
VM for embedded systems with an incremental copying collector.
The collector uses fat handles to support incrementality. Handles
are allocated in a separate handle space of sufficient fixed size that
it has enough handles for the worst-case demand of a particular ap-
plication. Array and scalar handles have the same size — the array
length field is used for the method table pointer in scalar handles.
Each handle is either on a free-list or on a used-list. Allocation takes
place from the free-list, and the allocator adds the new object to the
used-list. Handle sweep operates on the used-list, adding unused
handles to the head of the free-list. Handles allocated together will
end up together on the list, if they also die together. It seems that
no additional reorganisation of the handle free-list is performed.
The handle dereference is implemented by hardware and can run
in parallel with a corresponding null check and/or scope check. Fat
handles with all metadata in the handles are argued to be good for
memory mapped hardware structures, particularly arrays [36]. The
payload does not include a back-pointer to the handle or any mark
bits because collection is controlled from the handle space.

An alternative mark-compact real-time collector for JOP has
been provided in [14]. It uses fat handles, allocated from a dedi-
cated contiguous space that can grow but not shrink. The payload
includes a back-pointer to the handle as well as to a mark-list. Free
handles are organised in a free-list. Handles are allocated from its
head, and added to the tail by the sliding compactor. Thus, although
the handles freed in one collection cycle are appended in address
order, overall the free-list is not address ordered.

Thin handles are used as a substitute for a mark stack in another
mark-compact collector [38]. Outside a GC cycle, all pointers are
direct. The GC replaces them by handles while scanning an object.
An object is greyed by allocating a handle for it and linking it
by a back-pointer. An object is blackened by removing that back-
pointer. After sliding compaction, the handles are again replaced
by direct pointers. The locality of the allocated handles should be
good as it copies the live heap structure. The temporary nature of
handles, on the other hand, leads to the need for not one but two
rounds of pointer updating during a collection. Unlike most handle
solutions, the addresses of handles cannot be used for hashing.

Compact-fit [12] is an allocator for explicit memory manage-
ment which uses handles with size-class allocation and compaction.
Compaction happens potentially after each object deallocation,
with atomic update of the handle. Handles are allocated in a dedi-
cated contiguous space and objects have back-pointers to handles.
Free handles are stored in a free-list. Our optimisations for increas-
ing handles locality should be applicable to compact-fit, together
with the support for non-contiguous extensible handle space.

Handles are also apparently used in a garbage collector for
BlackBerry devices [23]. The collector uses two memory spaces,
RAM and flash. Handles were used in compressing mark-sweep

97

and sliding mark-compact collectors [10] for Sun’s KVM in order
to eliminate the need for updating direct pointers in objects, which
would require costly decompression of these objects. The handles
were 8 bytes wide (pointer plus type information) and objects
had back-pointers to handles. Arrays used arraylets and had array
length in the spine. In the mark-compact version, the handle space
was contiguous, expandable, but not shrinkable. One configuration
eliminated handles by refraining from compression of reference
fields. It turned out that this pays off: more memory is saved by
avoiding handles than by compressing reference fields.

A hardware-assisted real-time collector with handles has been
proposed in [27], using reference counting. Handles are allocated
in a dedicated handle table and contain a reference count, the direct
pointer and object size. It is not clear whether the design has been
implemented or only simulated.

Another collector with handles has been implemented for
Scheme [25]. The mark-compact GC uses thin handles, allocated
out of the heap in dedicated chunks. Whenever a new block for
objects on the heap is allocated, the GC also allocates a new handle
chunk large enough to contain handles for all (the minimum size)
objects that might be allocated in a heap block. Free handles are
linked into a free list, but it is not specified how the list is managed.
Movable objects have back-pointers to their handles. Unmovable
objects have handles attached to their headers, as in our collector.

A two-space copying collector [31] used thin handles, allocated
in dedicated handle blocks of 32 handles, outside the semi-spaces.
Handles are used to allow conservative scanning with dynamic de-
fragmentation. Free handle blocks are linked into a free-list and
used (non-free) handle blocks are linked into a used-list. The handle
space is swept by scanning the used-list, avoiding the free handle
blocks. This is similar to the pre-initialised caching that we sup-
port. The total number of handle blocks in the system is fixed. As
with [35], objects do not need back-pointers.

Handles have also been used in earlier Smalltalk implementa-
tions [24] and in early versions of Sun’s JVMs [17, 28] in stop-
the-world non-incremental collectors. Finally, the space overhead
bounds for a system with segregated free-lists and partial com-
paction is discussed in [4], and the worst-case bound for a fixed-
size handle space in [35].

9. Conclusion

Recently, there has been a renewed interest in handles for mem-
ory management and particularly for real-time garbage collection.
Anecdotally, handles are believed to be very slow compared to di-
rect pointers. We provide the first empirical comparison of handles
to direct pointers (such as Brooks forwarding pointers) and describe
optimisations to reduce their overhead. Our findings are that han-
dles can be surprisingly fast with proper optimisations. We even
obtained the same average performance as with Brooks forwarding
(then 1.6% and 3.1% overheads on other platforms).

Our implementation is within Ovm’s Minuteman RTGC. The
results are applicable to mark-sweep or mark-compact collectors

with handles and some even to non real-time systems which use
handles for distributed computation or persistence. A key optimi-
sation to achieve such low overhead was a careful placement of
free handles into a free-list: handles close to each other in memory
should also be close in the free-list. This simple optimisation can
be implemented without allocator overhead. In contrast, if free han-
dles are added naively to the head of the free-list, the consequent
overhead is very high — we measured 26%.

An important optimisation that reduced handle space fragmen-
tation was releasing the memory occupied by unused handles. Still,
the fragmentation can be around 40-60%. The amount of space con-
sequently wasted depends on the handle size. When the handle was
just a single pointer, we were able to run with almost the same
number of collections as Brooks, but at a cost of 13% performance
overhead (10% on another platform).

We show how to reduce the overhead of sweep by sweeping the
handle space and data space independently in order to provide a
more linear and local access pattern. The compaction phase of our
collector (which is almost a reproduction of that in Metronome) is
easier with handles than with Brooks: there is no copy reserve and
many fewer objects need to be copied, resulting in much shorter
compaction time. The lack of the copy reserve also means that
it no longer needs to be part of the worst-case memory usage
estimate, although the handle space size has to be included instead.
Far shorter compaction time, however, does not make a difference
overall in Ovm, because compaction is extremely rare in practice.

Finally, we thank the anonymous reviewers for their thoughtful
comments and suggestions. We are grateful for the support of the
EPSRC through grant EP/H026975/1.

References

[1] O. Agesen. Space and time-efficient hashing of garbage-collected
objects. Theor. Pract. Object Syst., 5:119-124, 1999.

[2] A. Armbruster, J. Baker, et al. A real-time Java virtual machine with
applications in avionics. Trans. Embedded Comput. Sys., 7(1), 2007.

[3] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In Principles of Pro-
gramming Languages, 2003.

[4] A. Bendersky and E. Petrank. Space overhead bounds for dynamic
memory management with partial compaction. In Principles of
Programming Languages, 2011.

[5] S. Blackburn and K. McKinley. Immix garbage collection: Mutator lo-
cality, fast collection, and space efficiency. In Programming Language
Design and Implementation, 2008.

[6] S. Blackburn, R. Garner, et al. The DaCapo benchmarks: Java bench-
marking development and analysis. In Object-Oriented Program-
ming, Systems, Languages, and Applications, 2006.

[7] G. Bollella, T. Canham, et al. Programming with non-heap memory in
the real-time specification for Java. In Object-Oriented Programming,
Systems, Languages, and Applications, 2003.

[8] R. A. Brooks. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In Lisp and
Functional Programming, 1984.

[9] E. J. Bruno and G. Bollella. Real-Time Java Programming with Java
RTS. Prentice Hall, 2009.

[10] G. Chen, M. Kandemir, et al. Heap compression for memory-
constrained Java environments. In Object-Oriented Programming,
Systems, Languages, and Applications, 2003.

[11] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithm. In
Virtual Execution Environments, 2005.

[12] S. S. Craciunas, C. M. Kirsch, et al. A compacting real-time memory
management system. In USENIX, 2008.

[13] E. W. Dijkstra, L. Lamport, et al. On-the-fly garbage collection: An
exercise in cooperation. Communications of the ACM, 21(11). 1978.

98

[14] E. Gruian and Z. Salcic. Designing a concurrent hardware garbage
collector for small embedded systems. In Asia-Pacific Computer
Systems Architecture Conference, 2005.

[15] B. Hayes. Using key object opportunism to collect old objects.
In Object-Oriented Programming, Systems, Languages, and Applica-
tions, 1991.

[16] R. Henriksson. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund University, 1998.

[17] C.-H. A. Hsieh, M. T. Conte, et al. Optimizing NET compilers for
improved Java performance. Computer, 30, 1997.

[18] Y. C. Hu, W. Yu, et al. Run-time support for distributed sharing in safe
languages. Trans. Comput. Syst., 21, 2003.

[19] R. L. Hudson and J. E. B. Moss. Sapphire: copying garbage collection
without stopping the world. Concurrency and Computation: Practice
and Experience, 15(3-5), 2003.

[20] R. E. Jones and R. Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, 1996.

[21] T. Kalibera. Replicating real-time garbage collector for Java. In Java
Technologies for Real-Time and Embedded Systems, 2009.

[22] H. Kermany and E. Petrank. The Compressor: Concurrent, incremen-
tal and parallel compaction. In Programming Language Design and
Implementation, 2006.

[23] M. Kirkup. Taking out the trash: Garbage collection, 2005.
http://us.blackberry.com/devjournals/resources/
journals/jan_2005/garbage_collection. jsp.

[24] G. Krasner, editor. Smalltalk-80: Bits of History, Words of Advice.
Addison-Wesley, 1983.

[25] M. Larose and M. Feeley. A compacting incremental collector and
its performance in a production quality compiler. In International
Symposium on Memory Management, 1998

[26] D. J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2000.

[27] C.-M. Lin and T.-F. Chen. Dynamic memory management for real-
time embedded Java chips. Real-Time Computing Systems and Appli-
cations, 2000.

[28] S. Meloan. The Java HotSpot performance engine: An in-
depth look. http://developer.java.sun.com/developer/
technicalArticles/Networking/HotSpot/.

[29] S. Nettles and J. O’Toole. Real-time replication garbage collection. In
Programming Language Design and Implementation, 1993.

[30] K. Nilsen. Differentiating features of the PERC virtual machine.
http://www.aonix.com/pdf/PERCWhitePaper_e.pdf, 2009.

[31] S. C. North and J. H. Reppy. Concurrent garbage collection on stock
hardware. In Functional Programming and Computer Architecture,
1987.

[32] Ovm. The Ovm virtual machine. http://www.ovmj.net.

[33] P. P. Pirinen. Barrier techniques for incremental tracing. In Interna-
tional Symposium on Memory Management, 1998

[34] E. Pizlo, L. Ziarek, et al. Schism: fragmentation-tolerant real-time
garbage collection. In Programming Language Design and Implemen-
tation, 2010.

[35] M. Schoeberl. Scheduling of hard real-time garbage collection. Real-
Time Systems, 45(3), 2010.

[36] M. Schoeberl, C. Thalinger, et al. Hardware objects for Java. In
International Symposium on Object-Oriented Real-Time Distributed
Computing, 2008.

[37] F. Siebert. Realtime garbage collection in the JamaicaVM 3.0. In Java
Technologies for Real-time and Embedded Systems, 2007.

[38] S. Stanchina and M. Meyer. Mark-sweep or copying? a “best of both
worlds” algorithm and a hardware-supported real-time implementa-
tion. In International Symposium on Memory Management, 2007.

[39] T. Yuasa. Real-time garbage collection on general-purpose machines.
J. Systems and Software, 11(3), 1990.

