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ABSTRACT

In a compiler, an essential component is the register allocator. Two
main algorithms have dominated implementations, graph coloring
and linear scan, differing in how live values are modeled. Graph
coloring uses an edge in an ‘interference graph’ to show that two
values cannot reside in the same register. Linear scan numbers all
values, creates intervals between definition and uses, and then inter-
vals that do not overlap may be allocated to the same register. For
both algorithms the liveness models are computed at considerable
runtime and memory cost. Furthermore, these algorithms do little
to improve code quality, where the target architecture and register
coalescing are important concerns.

We describe a new register allocation algorithm with lightweight
implementation characteristics. The algorithm introduces a ‘future-
active’ set for values that will reside in a register later in the alloca-
tion. Registers are allocated and freed in the manner of linear scan,
although other ordering heuristics could improve code quality or
lower runtime cost. An advantageous property of the approach is
an ability to make these trade-offs. A key result is the ‘future-active’
set can remove any liveness model for over 90% of instructions and
80% of methods. The major contribution is the allocation algorithm
that, for example, solves an inability of the similarly motivated
Treescan register allocator [15] to look ahead of the instruction
being allocated - allowing an unconstrained allocation order, and an
ability to better handle fixed registers and loop carried values. The
approach also is not reliant on properties of SSA form, similar to the
original linear scan work. An analysis is presented in a production
compiler for Java code compiled through SSA form to Android dex
files.

1 INTRODUCTION

The problem at the heart of register allocation is how to allocate
instructions (producing values) to registers so that a register is not
in use, holding the result of two ‘live’ instructions, at the same time.
An approach to modeling this problem is with an interference graph,
where instructions are vertices and edges exist between vertices
live at the same time. This model allows register allocation to be
solved through graph coloring [11], where each color is a distinct
register. An alternate approach is to serialize and incrementally
number instructions, intervals are then formed from the definition
to the last use of an instruction. If two intervals have an empty
intersection then they may be allocated to the same register [27, 28].
Linear scan register allocation has been refined to allow for
liveness holes, and to vary the order the intervals are processed
[26, 30, 33]. Interval based register allocators are popular due to
their performance and for being easy to tweak using heuristics.
Modeling intervals comes with clear memory costs. Typically
an interval is associated with one or more instructions, and the

interval itself is a collection of pairs of beginning and end integers.
As an interval may be needed for every instruction, in Static Single
Assignment (SSA) form, the interval’s memory requirement is often
similar to that of the instruction representation. Phrased another
way, modeling intervals can more than double the compiler’s mem-
ory usage. Graph coloring similarly impacts memory and in his
seminal paper Chaitin concludes with “a fair amount of virtual
storage is needed to hold the program IL and interference graph,”
[11].

As a runtime cost, interval construction is often a significant
portion of register allocation time. Poletto and Sarkar’s early linear
scan work shows “allocation setup”, described as, “the construction
of live intervals,” as being the largest portion of time spent for the
register allocation of “dynamic code kernels” (Fig. 3 in [28]). The
overhead of interval construction is used to motivate a fast interval
construction that unfortunately lowered code quality.

Fig. 1 shows a repeat of Poletto and Sarkar’s analysis but for
LLVM [22] compiling itself at compilation level -O2’. The box plots
show the minimum, 1 percentile, median, 99 percentile and maxi-
mum compile time percentage of each phase compiling a file from
LLVM, where the register allocator is LLVM’s greedy allocator [26].
Unlike Poletto and Sarkar’s early work [28], interval construction is
not the slowest of the 3 phases. However, removing the phase would
save 0.2% of compile time or 20% of one of the major portions of
register allocation time. Just as when Poletto and Sarkar introduced
linear scan, interval construction costs have been attempted to be
avoided in a number of register allocators. We will review these
allocators in section 6.

After memory and runtime complexity, the final cost we sought
to eliminate was the implementation complexity. Better memory
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Figure 1: Contribution to LLVM compile time of register al-
locator phases. Compilation times were measured using on
LLVM 7.0 using its time reporting option. Each file was com-
piled 30 times on an Intel Xeon E5-2690 at 2.9GHz with 64GB
of RAM.



and runtime performance were a concern, not because lower code
quality was acceptable but the opposite, we wanted to focus the
implementation effort on best mapping to the target architecture.
In common with LLVM’s greedy allocator [26], existing compilers
for the target architecture have a register assignment phase (also
known as a rewrite phase) to modify impossible register alloca-
tions to ones that fit the machine’s constraints [4, 31]. We wished
to eliminate this rewriting, as even in simple cases a third of in-
structions in the final code could be introduced by it. However, by
allocating directly into the target registers we may need to restart
the register allocator, for example, if register usage had become
fragmented and no allowable register was available. The presented
approach analyzes the register allocation at the point no allocation
is available, selects the best candidate instruction that can have its
live range split, inserts moves and then restarts the register allo-
cation!. The introduced move instructions become candidates for
the existing register coalescing algorithms. Performing a similar
analysis and transformation with intervals is a challenge. Firstly,
intervals and not instructions are allocated and so determining
cost requires going through an abstraction and determining what
intervals and instructions are being modeled as live at the failure
point. Secondly, the liveness model needs updating following the
transformation, something that may be handled by additional state
or by just recomputing the model. It could be that existing register
coalescing performed is impacted by live range splitting, something
the presented approach handles elegantly by not having state but
that requires existing approaches to either ignore, recompute or
model via additional complex state.

Reduced complexity and an ability to spot optimizations are key
advantages to the presented algorithm. We will discuss the target
machine challenges that motivated them in section 2 as well as
the compiler framework. These advantages would also be apparent
were the register allocation algorithm used for other architectures.

Section 3 describes the major contribution of the paper, a reg-
ister allocator algorithm that performs on-the-fly construction of
‘future-active’ sets and the ‘live-at-the-same-time’ operations that
allow these to function as intervals. For an intuition as to why
this improves performance, the ‘future-active’ sets are only used
when registers are not allocated to the active-set and need to be
accessed later during the register allocation. The code generation
behavior is identical to a regular interval based linear scan register
allocator, and the runtime performance differs only in how liveness
is modeled. Solutions to numerous production challenges, such as
exception handling, are described.

Section 4 analyzes the runtime performance in the production
setting of compiling the entirety of the Android operating system’s
Java code. Inspecting per-method or per-register-allocation metrics
is preferred to a shoot-out of one register allocation algorithm
against another. This is because over 80% of methods are compiled
with no use of the ‘future-active’ sets, for which a traditional linear
scan algorithm may have spent 20% of its time computing intervals
(from Fig. 1). That is the shoot-out would just highlight the runtime
win of not having a liveness modeling phase. As such, it is more
informative to analyze what occurs for the new algorithm in the
20% of methods that need the ‘future-active’ sets and to see if they

!Described in detail in section 3.3.
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do or do not motivate the use of intervals compared to the new
approach. Similarly, comparisons are not made against algorithms
such as graph coloring as this would not address implementation
complexity and such comparisons are already readily available in
existing literature [25, 28, 30].

The final sections of the paper consider improvements that can
further reduce cost and/or that can increase code quality. A compar-
ison of the most related work is performed and finally conclusions
are drawn.

2 BACKGROUND

In the compiler we model a register allocator as taking an instruc-
tion and mapping it to a target machine register. We present the
target machine in section 2.1 and the compiler in section 2.2.

2.1 Dex files

Regularly a Java program is compiled into a class file [23], where
each class file holds the code and data for a single class. Bytecode
in class files is stack oriented, while indices into a constant pool
can provide literal values or describe symbolic references to fields,
methods and other classes.

Android introduced the notion of dex files, that hold more than
one class, and are executed by the Dalvik or ART runtimes [4, 10].
Various tables in the dex file take the place of the constant pool
and classes may share table entries to reduce size. Tables may be
indexed by dex instructions or from other tables. For the string
table the index may be 32-bit but in general the index is limited
to 16-bits. If there is no room in a table then the compiler will
generate multiple dex files following a convention that indicates to
the runtime that the dex files should be considered one unit. Classes
may not be split over dex files and each dex file is required to verify
separately. It is possible to organize the tables to either achieve a
smaller file, or to optimize start-up speed.

Dex instructions are 2-byte aligned and may be up to 10 bytes
in length [14]. They consist of a 1-byte opcode and then multiple
bytes encoding registers used and defined, constants, branch offsets
and symbol table indices. Registers are encoded into either 4, 8 or
16 bits depending on the instruction. A consequence of the register
encoding is that all instructions can access the low 0 through 15
registers, a subset the higher 16 through 255 registers and an even
smaller set registers 256 through 65,535. To work around these
limitations move instructions can copy a register’s value from a
high to a low numbered register or vice-versa.

Instructions that require a variable number of inputs, most com-
monly ‘invokes’, have two forms. The first form is to have a list of
up to 5 registers, numbered 0 through 15. The second ‘range’ form
takes a base register, any of the 65,535 registers, and a length. An
additional instruction may appear after these instructions to place
the result into a register.

There are smaller two-address forms of some binary instruc-
tions, where the first source register is also the destination. Table 1
shows the four possible encodings of the add instruction, which
has two-address and add-immediate forms. The two-address form
has opcode B0 and registers must be in the range 0 to 15. If the add
literal is a signed 8-bit value then registers 0 to 255 can be encoded
with opcode D8, whilst 16-bit literals are possible with opcode D0
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but with a limitation that only registers 0 to 15 can be used. If a
register larger than 255 is needed then a move will be necessary,
similarly a constant greater than 16-bit will need generating into a
register.

Opcode | Byte 1 Byte 2 | Byte 3
90 vA vB vC

BO vA and vB | Not used

DO vA and vB | Literal 16

D8 vA vB [ Literal 8

Table 1: Dex file add instruction encodings. vA, vB and vC
encode a register number

64-bit long and double values occupy adjacent pairs of registers,
with the lowest numbered register being encoded. While the en-
coding permits the long or double register to be an odd number,
runtimes typically penalize odd numbered allocations and do not
allow them to reside in 64-bit machine registers.

The number of instructions within a method is limited to a 32-bit
value, however, the encoding of exceptions limits most method
locations to being 16-bit. The number of registers required by a
method can vary and is held in its metadata?. Incoming parameters
to a method arrive in the highest numbered registers. For example,
if a method has 10 registers and 4 registers for parameters, registers
6 to 9 will hold the parameters at the start of the method. If a
parameter is in register 16 and then used by an instruction such as
‘instance-of’, that can only encode registers 0 to 15, the parameter
will first need moving into a lower numbered register.

To summarize the challenges of register allocation of dex instruc-
tions, they are:

e Multiple encodings exist for instructions, the shorter forms
may only be usable for certain registers or literal values.

o If all registers 0 to 15 are allocated then instructions may
fail to be encoded. One solution, that leads to suboptimal
code generation and is used by the dx and d8 compilers
[4, 31], is in register assignment to reserve a pool of low
numbered ‘temporary’ registers that are moved into and
out-of to support the high numbered register. The approach
taken in the presented compiler is to ‘spill’ and ‘fill’ low
numbered registers into high numbered registers with move
instructions by live range splitting.

o If register allocation increases the number of registers then
parameters are moved. Move instructions may be necessary
to copy parameters into registers that can encode instruc-
tions with them.

e Move instructions can create redundant copies of a value, and
the register allocator can reduce future move instructions
by reusing values already within an encodable register.

e Range operations, or long and double pairs of registers that
are a range of length 2, require registers to be consecutive:

2 As 65,536 registers can be encoded, and this is generally greater than the number
of instructions, a naive register allocator could give each instruction its own register.
However this ignores issues with ranges, longs and doubles and that such an allocation
would cause frequent stack overflow errors

— Generally the number of registers should be limited by the
number of live values. If fragmentation occurs then extra
registers and move operations are necessary to create a
consecutive range of registers.

— The number of move instructions to set up the registers
for a range operation is proportional to the number of
arguments to the method invocation. Code size can be
minimized by coalescing and assigning the output of an
instruction to the register required for the range operation.
This may increase fragmentation.

While some of these challenges are relatively unique to dex files,
there are similarities with constraints that exist in more general
instruction sets such as for vector register files, spilling-to and
filling-from the stack and two-address encoding.

2.2 The compiler

The compiler consists of front ends, middle end optimizations over
the intermediate representation (IR) and back ends.

2.2.1 Front ends. The compiler front end can read common Java
program wire formats, namely class files and dex files [4, 23]. It
builds an IR that describes symbols, classes, fields, methods, annota-
tions and exceptions. Similar to tools like ProGuard [21], a complete
model of a Java program is held in memory for optimization.

The Java bytecode, or dex instructions, are parsed into a control-
flow graph (CFG) and SSA form using an approach similar to [20]
where predecessor basic blocks are always processed first, to allow
® instructions to be inserted at merges. Loop back-edges and excep-
tion catch blocks are handled pessimistically, with ® instructions
introduced for all values and then eliminated via simplification and
dead code elimination. A different approach to SSA form construc-
tion is [7] that trades creating and optimizing away unnecessary ®
instructions at the cost of recursing over the CFG.

2.2.2 Middle end optimizations. A range of both interprocedural
and intraprocedural optimizations are performed on the IR. Being
SSA based allows for straightforward global (between basic block)
optimizations, such as common sub-expression elimination, not
possible in ProGuard that uses Java bytecode as an intermediate
form. Dataflow optimizations are performed at the whole program
and method level, with a type lattice that models constants, type
and nullness of references as well as integer ranges. At the method
level, type information is held within the instruction and always
conservatively correct unless a fixed point is being computed. Fixed
points are computed efficiently using Bourdoncle’s approach [5]. By
holding type information within the instruction, pattern matching
avoids being specialized upon the size of, for example, an add - i.e.
there are no int-add, long-add, float-add, double-add instructions
as the type information is sufficient to determine the kind of add
necessary.

As the IR is being used for Java, runtime exceptions may oc-
cur on many instructions. Dominance is computed on basic blocks
within the compiler. If dominance is not required, multiple excep-
tion throwing instructions may be within the same basic block
as with the factored control-flow graph [12]. When dominance is
required, blocks are split at instructions that may throw exceptions



with gotos appended afterward. Breaking blocks is known as un-
factoring the CFG. Often null-pointer exceptions are known not
to occur on the ‘this’ pointer, freshly allocated objects and con-
stants. The type analysis carries this information forward allowing
instructions to determine whether a runtime exception may occur
and avoiding splitting blocks in cases it is known not possible. It is
further possible to avoid to split blocks when they are not within
try-regions, as long as potentially exception throwing instructions
are not being reordered with memory operations. Java source com-
pilers will implicitly create try-regions for synchronized blocks, to
ensure that objects are unlocked on all control-flow edges, this can
cause more try-regions than just what is present at the source level.

2.2.3 Back ends. The compiler has two back ends, one capable of
producing Android dex files and the other Java class files. This paper
focuses on dex file generation. The dex back end must perform var-
ious ‘legalizations’, such as ensuring synchronized methods begin
and end with monitor acquiring and releasing instructions. It must
also form the dex file, or files, symbol tables. To generate instruc-
tions the symbol table layout, the SSA instructions and a register
allocation are required. The register allocation maps from the SSA
instruction to its allocated register except in the case of a folded
constant, when no mapping will exist. To ensure as compact a rep-
resentation as possible various peephole passes are also performed,
for example, opportunistically using a smaller ‘if” instruction rather
than a ‘switch’.

3 THE REGISTER ALLOCATOR ALGORITHM
3.1 Preparing to allocate

Before register allocation is performed the CFG is unfactored to
ensure instruction level dominance, but only within try-regions
as memory operations will not be reordered. The compiler aims
to minimize the number of registers allocated, with more regis-
ters being necessary when more instructions are live. The ‘shrink
live range’ pass aims to move instructions as close to their uses
as possible while maintaining correct semantics. An area where
semantics are by default relaxed is around out-of-memory errors.
An out-of-memory error for a new in Java should be thrown ahead
of the constructor’s arguments being evaluated (section 12.5 [17]).
The compiler allows new operations to sink next to the constructor
call to avoid holding the uninitialized object live for the duration
of argument evaluation.

During front end parsing and optimization, all constants were
deduplicated and held within the entry block. This simplifies global
value numbering, done as a part of global common sub-expression
and load/store elimination. It is hoped that constants will be folded
into instructions but certain uses require a register, for example,
array indices and method parameters. Dex has special array filling
operations, but often these are not applicable for the operands of
the array stores. Reusing a constant within a register can reduce
code size but the large live ranges of the constants increases register
usage. If more registers are used then larger instruction encodings,
or moves, may be necessary and this removes the code size benefit
of sharing the register. To reduce register usage, the compiler splits
constants ahead of register allocation. Constants required to be in
a register are duplicated ahead of their use, which if they dominate
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later uses may be reused. A naive heuristic is currently used to
determine whether to use one or multiple splits, and that is if
the number of non-folded uses is > 3 the compiler reuses the
register. The constant’s live range can be split further during register
allocation, and constants are favored for live range splitting as they
are trivial to rematerialize.

Liveness is computed as a fixed point on a reverse weak topo-
logical sort order of basic blocks [5]. Live-ins to an instruction are
calculated from the live-outs unioned with the inputs to the instruc-
tion, less the instruction itself if it was live-out. Treating ®s similarly
would cause all ® inputs to be live on all predecessors. Instead ®
inputs are inserted into the live-outs of predecessor blocks before
the fixed point calculation is performed. An alternate approach,
that avoids computing a fixed point, for strict SSA programs with a
loop-nesting forest in two passes is presented in [6].

Ahead of register allocation, the CFG has critical edges split and
parallel copy blocks inserted in predecessor blocks. The parallel
copy moves are named ®-moves within the compiler and are co-
alesced during register allocation. A different copy operation is a
‘swap-move’, which is introduced to add a temporary name to solve
the ‘swap problem’, critical edge splitting solving the ‘lost copy’
problem of coming out of SSA form [2].

In the unfactored CFG, it is common for edges to exception catch
blocks to be critical edges. An edge is critical if the source basic block
has > 1 successor and the target basic block > 1 predecessor. Catch
blocks generally have the first condition as there is exceptional
and regular control-flow. Catch blocks have a first instruction to
gather the thrown exception known as ‘GetException’ in the IR.
Following critical edge splitting many of these blocks containing
the ‘GetException’ instruction exist, and a @ instruction in what
was the catch block gathers the different values. When possible, the
compiler merges all of the equivalent ‘GetException’ blocks ahead
of register allocation to reduce the IR’s complexity. This does not
introduce a critical edge as there are > 1 predecessor basic blocks
but still just a single successor basic block.

3.2 The outer loop

A lower bound on the number of registers required for the allocation
is the maximum number of live instructions, ignoring constants
that are folded, and counting live long and double instructions
twice - dex files requiring that long and double values are in two
adjacent registers. In the compiler, register allocation fails when
either no register or no suitable register can be found. For example,
if an ‘int-to-long’ instruction cannot locate a pair of consecutive
registers, for the long result, then the inner register allocator loop
fails with a cause and an iterator at the point of failure. The live
instructions are also known at this point.

Other register allocators for the dex instruction set, such as dx
and d8 [4, 31], allocate registers in a single pass and then rename
registers during register assignment. During assignment it is deter-
mined if the register constraints for the allocation hold, and if not
moves are introduced. Temporary registers in the low 15 registers,
that always satisfy instruction constraints, are either reserved prior
to allocation, or room created by shuffling the allocated register
numbers up. Adding one temporary may invalidate constraints on
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another instruction and so moves may be repeatedly added until
constraints are satisfied.

Our compiler performs allocation over blocks in the final code
layout order. The final code layout uses a queue to determine which
block to visit next. Loop headers and blocks within the same try-
region are placed at the head of the queue. Exception successors
or code paths that terminate at a throw, are placed on the end of
the queue. By falling through to successors code size is minimized.
Meta-data size is minimized by keeping try-regions intact. It is
considered unlikely that exceptions will be thrown or caught.

Exception handling code often has a large number of live vari-
ables to describe a failure, and so this colder code can be a point
of an allocation failure. Allocation failures such as this could be
avoided by a basic block traversal order that prioritizes blocks with a
large number of live values. The basic block traversal order impacts
the efficiency of the algorithm, for example a reverse post-order
traversal was used in early work to reduce liveness holes [28]. Using
the final layout ordering was used to best aid the development of
heuristics for allocating a free register, as will be described in sec-
tion 3.7, and also for determining best policies to handle allocation
failures, as described in section 3.3. We will consider basic block
traversal order further in section 5 while section 4 shows measured
numbers for allocation failures with this order in Android code.
We will consider the allocation order of other register allocators
in section 6. The next section describes how allocation failures are
recovered from.

3.3 Allocation failure and live range splitting

A failure to allocate at an instruction, or between basic blocks,
within the main register allocation loop, triggers an allocation fail-
ure with multiple remedies. When the number of registers used is
small, increasing the number of registers is preferred. To ensure
constraints can be met when the number of registers goes beyond
15 or 255, moves are introduced before instructions that can only
use the lower numbered registers. Similarly, parameters that have
fixed high register numbers have moves introduced to provide a
degree of freedom in which register they are encoded for the bulk
of the method. For example, a frequent problem is the ‘this’ pointer
arriving in a high numbered register but then needing to be in
registers 0 to 15 for a field access. Moving the parameters at entry
allows a single dominating move.

Invoke instructions can either have up to 5 arguments in the
registers 0 to 15, where longs and doubles require two registers, or
take a range of registers. If there are more than 15 registers, or a
method takes more than 5 arguments, a block of moves is placed to
set up the method invocation. At register allocation time the block
is identified by the type of move, and a set of registers between 0
and 15 or a contiguous range of registers can be allocated at once.
The chosen method minimizes register moves and may resort to
pre-allocation, see section 3.5, to achieve this.

Heuristics are used to reduce the chance of live range splitting
being necessary, see section 3.7. However, when it is necessary
the outer loop has provided the failure recovery code with the
point of the allocation failure and the set of live values. Typically
a split is necessary to free up a low numbered register. A register
is freed using a special ‘spill-move’ that is pre-allocated to a high

numbered register, see section 3.5. ‘Fill-moves’ may be necessary
to move the high numbered register into a low numbered register
to satisfy the constraints of an instruction. The split instruction is
selected from those that are live so that the cost, in terms of inserted
moves with some consideration of coalescing, is minimized. Two
possible filling strategies are considered for the split, introducing
a ‘fill-move’ prior to every use that requires it or having a single
‘fill-move’ that dominates all uses.

3.4 Register allocation

Algorithm 1 shows Poletto and Sarkar’s original linear scan algo-
rithm simplified to remove spilling? [28]. When spills are necessary
because of constraints, live range splits are performed as described
in section 3.3.

Algorithm 1: Linear scan algorithm simplified to not in-
clude spilling

1 Function LinearScanRegisterAllocation

2 active « 0;
3 foreach live interval i, in order of increasing start point
do
4 ExpireIntervals(i);
5 register|i] < a register removed from pool of free
registers;
6 add i to active, sorted by increasing end point

7 Function Expirelntervals

8 foreach interval j in active, in order of increasing end
point do

9 if endpoint[j] > startpoint[i] then

10 L return;

11 remove j from active;

12 add register|j] to pool of free registers;

To summarize the algorithm, it moves forward over intervals
in the order of their start points. The algorithm first expires all
intervals that end before this start point, when an interval expires
it is removed from the set of active intervals and its associated
register marked as free. A value that’s not live-out but is live-in has
expired. Once any registers have been freed, a register is selected
to associate with the interval and the interval is made active.

Algorithm 2 shows the main loop of the new register allocation
algorithm. Some terms in the algorithm are:

e active - a mapping from a register to an instruction that is
live within it. It is similar to the active interval in algorithm 1.

o future-active - a mapping from a register to a set of instruc-
tions that will occupy it later in the scan. This section will
consider this set further, and sections 3.5 and 5 concern its
use in optimizations.

3Spilling is removed due to the large number of dex registers. To consider the new
algorithm for a limited size register file and stack, the low numbered registers can map
to the register file while high numbered registers can be considered on the stack.



Algorithm 2: Main register allocation loop

1 Function RegisterAllocation

2 active < 0;

3 future-active < PreAllocation();

4 visited < 0;

5 live-outs « 0;

6 foreach cur is the current basic block from the CFG

iterator do

7 live-ins < set of instructions live into cur;

8 ExpireIntervals(active, future-active, visited,
live-outs, live-ins);

9 StartIntervals(active, future-active, live-outs,
live-ins);

10 foreach i is the current instruction from forward
iteration over cur do

1 if i has inputs then

12 ExpireIntervalsForInstr(cur, i, live-outs,

active, future-active, visited, uses);

13 if i is not a folded constant then

14 AllocateRegister(cur, i, active,
future-active);

15 live-outs « i;

16 visited <« cur;

e live-ins - the values live into a point in the program iteration.
The live-ins are computed for basic blocks by a liveness pass
described in section 3.1.

o live-outs - the values live out of the last basic block or instruc-
tion. This set is updated as the algorithm moves forward.
Live-outs are also known for the end of each basic block.

e uses - a mapping from an instruction to a set of instructions
that use it.

o CFGiterator - an iterator over the basic blocks of the program.
Measurements in section 4 are from an iterator over blocks
in the final code layout order.

The functions within the algorithm will be explained next, but
at this high-level it can be seen that algorithm 2 is similar to the
regular linear scan algorithm 1. Rather than iterating over intervals,
the algorithm iterates over basic blocks and the instructions within
the basic block. When going between blocks the live-ins to the block
show which instructions need to be in active. An instruction may be
live-out of a basic block but not live within the block that has been
just iterated to. To handle holes in liveness the algorithm moves an
instruction out of the active set and places it in the future-active
set. We term instructions moved in this way as being paused. It is
invariant that an instruction be absent from both, or in exactly one
of, active and future-active.

As with liveness holes, @ instructions, and their associated pre-
decessor block parallel copies, must be placed in either the active
or future-active sets when they are allocated. It is invalid to place
something into the active or future-active set associated with a
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register if a LiveAtTheSameTime property is true with an instruc-
tion already within the set. The LiveAtTheSameTime property is
explained below, but in the common trivial case if active and the
future-active are empty then the register can be allocated.

The difference between active and future-active is that active
forms the set of instructions currently occupying registers at the
iteration point in the algorithm. To handle ® instructions and live-
ness holes, intervals may be merged in a conventional linear scan
algorithm. This algorithm summarizes equivalent information in
the future-active set. To merge two intervals in a conventional
linear scan algorithm, the intervals must not overlap. To place an
instruction in active or future-active, in the presented approach,
the LiveAtTheSameTime property must not hold between the in-
structions within the active and future-active sets and the instruc-
tion being added. Characteristics of the programs being compiled
will determine how often LiveAtTheSameTime is computed, for
example, a program consisting of a single basic block has no ®
instructions or liveness holes by definition, and therefore need not
use LiveAtTheSameTime. Characteristics of Android programs and
their IR are measured section 4.

Algorithms 3 and 4 show the implementation of the functions
used in algorithm 2. For the simplicity of presentation, alloca-
tion of @, blocks of moves and the functions FreeRegister and
PauseRegister (moving a register from active to future-active)
are not shown. The cost function used to select the best register
is described in section 3.7 and it is also responsible for coalescing
moves.

Algorithm 3: Expire and start intervals between basic

blocks

1 Function Expirelntervals

Input: active, future-active, visited, live-outs, live-ins
foreach instruction i in live-outs but not in live-ins do

2

3 foreach block in CFG not in visited do

4 if i is live-in then

5 PauseRegister (i, active, future-active);
6 continue outer loop;

7 FreeRegister (i, active);

s Function Startintervals
Input: cur,active, future-active, visited, live-outs,

live-ins
9 foreach instruction i in live-ins but not in live-outs do
10 L AllocateRegister (cur, i, active, future-active);

In algorithm 4 the condition on line 9 can only be true for ®-
moves. The condition on line 14 has some subtlety, it is not sufficient
to say there is not a use in an unvisited basic block as an instruction
may be live over a basic block, but neither used or defined within
it. To see whether checking cur and unvisited blocks is necessary
the uses of j are checked to see whether there is just a use by i,
whether there are multiple uses within cur and whether there are
uses in unvisited blocks other than cur. Scanning backward to find
other future uses is similar to bottom-up local register allocation
[32], but here the algorithm is performing global rather than local
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Algorithm 4: Expire an interval at an instruction and to
allocate a register

1 Function ExpirelntervalsForInstr

Input: cur, i, live-outs, active, future-active, visited, uses
2 foreach input value j of instruction i do
3 if j is folded constant then
4 remove j from live-outs;
5 B continue;
6 if j not in live-outs then
/*j is a duplicate input */
7 continue;
8 if j is in live-outs of cur then
9 if basic block of j is not cur and j has no later uses
within cur than i and j is defined after i then
/*Liveness hole within cur */
10 PauseRegister (j, active, future-active);
1 remove j from live-outs;
12 continue;
13 remove j from live-outs;
14 if j has uses in cur after i or j is in the live-ins of a
block not in visited then
15 ‘ PauseRegister (j, active, future-active);
16 else
17 L FreeRegister (i, active);
18 Function AllocateRegister
Input: cur, i, active, future-active
19 if future-active contains i then
20 active « i;
21 Remove i from future-active;
22 else
23 Select lowest-cost register to allocate to i ensuring
LiveAtTheSameTime is false. If no register is found
then fail allocation.

allocation. In section 5 we will show how the backward scan can
be avoided.

Algorithm 5 shows how LiveAtTheSameTime is calculated. The
algorithm’s complexity is O(number of instructions within basic
block). If the order of instructions within a basic block is known,
then this can be reduced to O(number of uses of an instruction) as
shown in algorithm 6. The ordered variant of the algorithm is used
for the measurements in section 4. The ordering requirement is dif-
ferent from linearly numbering all instructions as in a conventional
linear scan, just the order within a basic block need be known.

3.5 Pre-allocation

As the target of the compiler is the dex file format, fixed registers
are limited to just the parameters. If the compiler were targeting an
architecture, for example, that required operands for divide instruc-
tions to be in certain registers, then these would be pre-allocated.
Pre-allocation in the compiler means taking certain instructions and

Algorithm 5: Live at the same time

1 Function LiveAtTheSameTime

Input: lhs, rhs
if basic block of lhs is the same as rhs then
return LiveAtTheSameTimeSameBlock(lhs,rhs,basic
block of lhs);
return LiveAtTheSameTimeInBlock(lhs,rhs,basic block

of lhs) Vv LiveAtTheSameTimeInBlock(rhs,lhs,basic
block of rhs);

5 Function LiveAtTheSameTimeSameBlock

10
11

12
13
14

15
16

17
18
19

20

21
22

25

26
27
28
29
30

31
32
33

34

35

36
37

Input: lhs, rhs, block
lhsLiveOut « is lhs in live-outs of block;
rhsLiveOut « is rhs in live-outs of block;
if |hsLiveOut A rhsLiveOut then
‘ return true;
else if —lhsLiveOut A =rhsLiveOut then
(first, last) <« search forward in block until
encountering lhs or rhs, first is the encountered
instruction and last the other;
foreach i in backward iteration over block do
if i = last then
L return false;

if first is input to i then
L return true;

else
if [hsLiveOut then
L swap lhs and rhs;

foreach i in backward iteration over block do
if i = rhs then
L return false;

if lhs is input to i then
L return true;

Function LiveAtTheSameTimelnBlock

Input: lhs, rhs, IhsBlock
if rhs in live-in of lhsBlock;
then
if rhs in live-out of lhsBlock;
then
L return true;
foreach i in backward iteration over lhsBlock do
if i = lhs then
L return false;
if rhs is input to i then
L return true;

else
L return false;




Algorithm 6: Live at the same time using ordering

1 Function LiveAtTheSameTimeSameBlock
Input: lhs, rhs, block, uses

2 lhsLiveOut « is lhs in live-outs of block;

3 rhsLiveOut « is rhs in live-outs of block;

4 if lhsLiveOut A rhsLiveOut then

5 ‘ return true;

6 else if —lhsLiveOut A —rhsLiveOut then

7 if lhs is before rhs then

8 ‘ (first, last) « (lhs, rhs)

9 else

10 L (first, last) < (rhs, lhs)

1 foreach i in uses of first do

12 if block =basic block of i A i is after last then
13 L L return true;
14 else

15 if |hsLiveOut then

16 L swap lhs and rhs;

17 foreach i in uses of lhs do

18 if block =basic block of i A i is after rhs then
19 L L return true;
20 return false;

21 Function LiveAtTheSameTimelnBlock
Input: lhs, rhs, lhsBlock, uses

22 if rhs in live-in of lhsBlock;

23 then

24 if rhs in live-out of lhsBlock;

25 then

26 L return true;

27 foreach i in uses of rhs do

28 if lhsBlock =basic block of i A'i is after lhs then
29 L return true;

30 return false;

placing them into future-active before the main loop is ran. As de-
scribed in section 3.3, spills are pre-allocated as well as block move
operations. By allocating these moves early AllocateRegister
can look at the future uses by moves of a value, and then choose
the same register so that the move does not require an instruction
to be generated. This is similar to fixed intervals in conventional
linear scan algorithms [35].

Code size is important for the compiler, and with poor register
allocation move operations can make a substantial contribution. In
pre-allocation of block moves the compiler takes into consideration
that other block moves may duplicate a value in a different register.
The compiler keeps a map from the input instruction, with & and
moves removed, to the allocated register. When choosing registers
to pre-allocate block moves into, knowing that a register holds a
value, or a copy of it, lowers its cost to the pre-allocation code. The
pre-allocation selects registers for block moves that produce the
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fewest instructions, or when this is equal, that occupy the highest
numbered registers.

Spills are pre-allocated after all other instructions, as with block
moves, the compiler looks to see if a register will hold a value from
a spill or a spill hold an already pre-allocated value. The register
chosen for a spill is the highest numbered register that minimizes
the number of generated move instructions.

3.6 Coalescing

The compiler coalesces by looking backward. When allocating a
move, the top non-® or move input is computed?. Iterating over the
active registers the top non-® or move is computed for each active
value. If the same value is seen then that register is considered to
have a lower allocation cost.

The compiler also coalesces looking forward. Section 3.5 de-
scribed how block move pre-allocation selects registers to minimize
moves. The compiler also looks at ‘future-active’, when allocating
a register, to see if a move will later occupy that register that takes
this instruction as an input.

During code generation the top non-® or move input is remem-
bered for each register. If a move is attempted to be generated to
copy the same value into the register, it is elided. At basic block
boundaries, that are not trivial fall-through cases, the map to elide
moves is cleared.

3.7 Allocation heuristics

If the allocation of a register is not coalesced the register allocated
is chosen on the basis of cost.

o if the instruction being allocated satisfies the constraints for
a 2-address instruction, inputs in low numbered registers
and a suitable output register is available, then this lowers
the cost of using one of the inputs as the output.

o last active description - if debugging is requested then it is
useful to keep local variables and parameters in the same
register across allocation, to avoid modifying the debugging
metadata. If the instruction being allocated’s debug informa-
tion matches the last instruction to inhabit a register then
the register is considered to have a lower cost.

e last active - this set records which instruction previously
inhabited the active register during the scan. The allocator
prefers to clobber registers that do not have debug descrip-
tions and those bearing object references. We wish to clobber
object references as the compiler generates more efficient
code than previous compilers, leading to object references
frequently being left in a register and in the runtime’s inter-
preter having an extended live range. Clobbering the values
first removes some of this problem®.

o the compiler aligns long and double values on even register
numbers. The original ART ahead-of-time compiler had a
simplistic mapping of dex registers to fixed ARM registers

4Spill and swap moves are considered somewhat differently. If spills are elided we
may end up with live values in low numbered registers, removing their utility. Swap
moves always terminate the input search as coalescing a swap move would remove
the temporary copy of its input.

5The compiler’s front end introduces instructions to track explicit nulls being stored
in local variables. This information is used to ensure such locals are clobbered by the
register allocator to avoid an extended lifetime in the runtime’s interpreter.
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AreLiveAtTheSameTime and then plot their maximum calls per in-
struction to AreLiveAtTheSameTime broken apart into total, within
the same block or different blocks. The number of instructions in-
cludes retry attempts, and AreLiveAtTheSameTime is counted for
pre-allocation and the main allocation. Calls per instruction is used
as longer methods are expected to make more calls. Fig. 3 shows
this data. For 90%, 99% and 99.9% of methods, the maximum calls
to AreLiveAtTheSameTime per instruction is less than 10, 70 and
400 respectively. The majority of the calls are to determine live-
ness between instructions in different basic blocks. Whilst the large
numbers of calls are for a small fraction of methods, they are dis-
appointingly large. We found that the outlying cases, with large
numbers of calls, solely comprised of large class initializers that
required a large number of constants. These methods would also
frequently use invokes and range based method invocation that
made use of pre-allocation. Section 3.1 described the live range
splitting for constants as being naive and more splitting would re-
duce calls to AreLiveAtTheSameTime but possibly at that the cost
of code quality. Section 5 describes how the number of calls could
be reduced using different block and instruction iteration strategies.

On average each instruction is used by less than one other in-
struction, 0.793 for our test data. Fig. 4 shows the breakdown of
what kind of instruction uses exist. 33.819% of instructions have
no uses, 60.452% are used in just their defining basic block and
59.362% have just one use. We conclude that over 90% of intervals
for instructions are trivial - a single use, or uses just within the
defining basic block.

Allocation Failure

Instr. New Intervals

Liveness

Instr. Expire

Block New Intervals

Block Expire
Pre-allocation

Figure 2: Break down of register allocation time

[10]. If longs or doubles were not in even numbered registers
then they would be held in the stack frame and loaded and
stored for each operation.

e rather than allocating high numbered registers to free up
low numbered registers, the compiler attempts to always
allocate regular instructions in low numbered registers. Pre-
allocation does the opposite when selecting registers. Alloca-
tion generally produces the smallest code size when it uses
low numbered registers as these give the greatest freedom
with instruction encoding.

4 ANALYSIS

We instrumented the compiler and compiled the Java classes to dex All live at same time —-—-—
files for the Android platform from Android Open Source Project Different blocks — - —
(branch android-9.0.0_r9) for the full_x86-user build [1]. Measure- Same block —— i
ments were made per method compiled and then aggregated. The i
number of methods compiled was 693,166, with 4.851 basic blocks
per method on average. The average number of instructions within
a basic block was 7.482, and the average number of registers allo-
cated per method was 3.532.

Fig. 2 gives a timing breakdown of the parts of the register allo-
cator®. Almost half the register allocation time is spent in liveness
analysis and pre-allocating instructions before the main loop is
entered. As described in section 3.6 pre-allocation is used to im-
prove coalescing and tries to align blocks of moves used to set up
invoke instructions. This form of pre-allocation is specific to dex
code generation and so such a proportion of time being spent in
pre-allocation need not be necessary for other targets. Expiring o s
and then starting intervals using live sets between basic blocks e o
accounts for 5.806% of compilation time, whilst doing the same for Pz s
instructions accounts for 32.424% of register allocation time. 7 4

AreLiveAtTheSameTime replaces intervals within the register % ,
allocator, of the methods compiled 80.206% required no calls to 1 ' ' ' ' ' ' ' ' '

this function. We rank the methods by the number of calls to 8 82 84 8 8 90 92 94 96 98 100
Normalized method rank

1000 T T T

100 | 1]
//
a

10 | P 1

Maximum calls per instruction
\
AN

% As individual parts of the register allocation execute too quickly to measure with op-
erating system time calls, the Intel rdtsc instruction was used and scaled appropriately Figure 3: Maximum number of AreLiveAtTheSameTime calls
to give wall clock time. Results are the average of 30 runs of building Android single

threaded on an Intel Xeon E5-2690 at 2.9GHz with 64GB of RAM. per instruction agalHSt normalized method rank
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Figure 4: Kinds of instruction uses

The outer loop will retry allocation for pre-allocation to aid coa-
lescing, if there are insufficient registers’ and to split live ranges
to free up low numbered registers. Fig. 5 gives a breakdown of the
kinds of retry attempt that cause the outer loop to restart. In 81.330%
of the methods compiled no retrying was necessary, and for a fur-
ther 18.195% allocation was only retried as there were insufficient
registers to meet instruction constraints®. Pre-allocation is 0.5% of
all retry attempts, and is used to introduce block moves. Initially
block moves are considered not to be necessary for operations with
a small number of arguments. If insufficient low numbered regis-
ters are available then the block moves are pre-allocated in higher
numbered registers so that they are visible to forward coalescing
and allocation retried.

Live range split -

More registers

No retry

Figure 5: Kinds of retry attempt for the outer allocation loop

5 IMPROVEMENTS

By using the final code layout order to allocate registers, it was
hoped that the best decisions for register allocation and how to
handle allocation failures could be made. For example, in the case of
trivial fall-through between blocks, information to guide clobbering

7 As the compiler does not perform a register assignment pass, to minimize moves, it
needs the exact the register numbers to compute registers for parameters.
8These numbers differ from figure 5 as a method may retry allocation more than once.
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heuristics could be retained. However, final code layout order is not
optimized to avoid liveness holes. For example, a value could be used
in a catch block at the end of the iteration order, and consequently
the future-active register can end up holding the value during most
of the allocation. All allocations to that register will then require
a LiveAtTheSameTime test. Using a reverse post-order traversal
would likely reduce this problem, as could considering loops and
loop nesting [5, 6].

A different problem is in establishing whether the use of a value is
the last use. The expire functions must either iterate over unvisited
blocks, or scan uses within a block. Hecht and Ullman established
that CFG traversal order can be informed by dominance [19]. Going
in a dominance order would still not simplify the last use question,
but reversing the order and iterating backward through instructions
would. In a such a traversal, a use would allocate a register whereas
arriving at the definition would indicate that the register is now
free, all other live range holes would indicate a pause.

A backward traversal would also allow block moves to be al-
located before their inputs. Pre-allocation of block moves to aid
coalescing causes greater use of the future-active sets, and more
LiveAtTheSameTime tests.

Whilst improving runtime performance is possible, it is also
possible to improve the quality of code generation. Other interval
based allocators, such as the greedy register allocator in LLVM
[26], do not allocate registers in order of start point but instead use
priority queues to determine the ordering of intervals to allocate.
A similar approach is applicable to this compiler where instead
of a priority queue of intervals, a priority queue of instructions
can be formed. Allocation would be similar to pre-allocation, see
section 3.5. Fitting instructions into registers in an ad hoc manner
may motivate the construction of intervals to lower the cost of
AreLiveAtTheSameTime, but other heuristics may achieve a similar
effect. If intervals were a performance improvement then they could
be lazily constructed as common IR patterns, such as 33.819% of
instructions having no uses, would still benefit from the approach
presented here.

6 RELATED WORK

From the beginning of linear scan register allocation, the removal
of interval creation has been in the mind of developers [28]. Poletto
and Sarkar’s approach was based on strongly connected compo-
nents and produced an approximation of liveness that impacted
code quality in large benchmarks, in the extreme making them 6.8
times slower. They reasoned that the approach may be suitable
when quickly compiling small functions. Similar to small functions
are ‘trivial traces’ for which Eisl et al. present a bottom-up register
allocator that is faster than linear scan [16]. However, given the
lowering of code quality this allocator is used for the compilation
of traces of lower importance to peak performance. Sarkar and
Barik contributed extended linear scan to improve code generation
quality to being equivalent to graph coloring while retaining linear
scan’s performance [30].

Treescan register allocation seeks to exploit properties of SSA
form and avoids the creation of intervals [15]. A primary use for
the Treescan register allocator was envisioned to be in just-in-time
compilers where fast compile times could be beneficial over code



Efficient global register allocation

quality. A code quality issue in Treescan is that information about
what will need to occupy a register is not kept, instead moves are
inserted and possibly loop backedges broken so that fixed and ®
register requirements can be met (this is known as repairing). Pre-
coalescing looks to reduce this code generation issue. If an ability
to look-ahead is given to Treescan, such as with ‘future-active’
sets, then the behavior will match the register allocator here with a
reverse post order block traversal strategy. However, as described in
section 5, for minimal code generation time a post-order traversal
iterating backward through instructions in the basic block may be
faster as the last use need not be considered to expire an interval.

Treescan is built around a fast liveness analysis [3] whereas the
approach here uses a global liveness described in section 3.1. In de-
tecting ‘live-at-the-same-time’ between instructions the approach
has similarities to bottom-up local register allocation [32]. Whilst
simplistic this approach keeps the intermediate representation and
side metadata down to a minimum, and as such has similarities
with efforts in compilers such as sea-of-nodes representations [13].

Previous work has contrasted linear scan and graph coloring
forms of register allocation [29, 30]. As the interference graph is
synonymous with graph coloring, liveness intervals have become
synonymous with linear scan allocators, and this work shows how a
well performing linear scan allocator can be made without liveness
intervals, with an attempt to better guide decisions around live
range splitting and coalescing.

Optimal register allocation has looked to use cost models to
compute a cheapest possible register allocation [18, 24]. Cost mod-
els are related to heuristics, for example, LLVM’s greedy register
allocator places a cost on allocating into callee-save registers as
the prologue and epilogue will need to save and restore them [26].
A cost model can model spilling and filling the callee-save, and if
given enough freedom, consider spilling and filling in more than
just the prologue and epilogue. The compile time performance of
optimal register allocation has meant that it has not been widely
adopted. Learning good heuristics for scan based allocation, from
an optimal allocation, could enable a compromise in produced code
quality and compile time register allocator performance.

The heuristics for coalescing presented in section 3.6 are similar
to register hints introduced by Wimmer and Mdssenbock [34, 35], in
that they are a cheap heuristic hoping to reduce code size. Similarly
another simple heuristic is that they avoid fills and spills within
loops to improve runtime performance. In this work code size was
more important and so a similar heuristic was not used in live range
splitting.

Treescan aimed to minimize repairing through pre-coalescing
and used an interference like analysis based on SSA form to do
this [2, 9]. Efficient coalescing and SSA register allocation are also
tackled by Braun et al. [8]. Unlike those works, this work does not
coalesce based on representations or analyses. Coalescing decisions
are considered during the allocation pass and splits introduced
at the point the machine constraints are reached. In dex code re-
dundant copies of values are common, consider an argument to
a method that is passed many times and must appear at different
argument positions. The allocator elides copies reusing existing
duplicates. The lightweight approach presented has allowed for
unique machine optimizations to be applied and it is a significant

virtue of the approach, brought about by the desire to avoid imple-
mentation complexity.

7 CONCLUSIONS

The popularity of linear scan register allocation led to the popu-
larity of intervals to determine interference between values being
allocated. This paper has shown a scan based register allocation
algorithm without intervals, removing a significant cost from linear
scan allocation while retaining its global register allocation prop-
erty. The paper has presented this algorithm within a production
compiler mapping between virtual machines, aiming at minimizing
code size. A compile time breakdown is given showing the new
algorithm to have low cost, as well as features of the IR that jus-
tify the choice of the algorithm - specifically that over 90% of live
ranges are trivial and over 80% of methods can be register allocated
without consideration of what will later be in the register. The
analysis of what happens in the 20% shows that for Java code the
costs increase for a small percentage of methods, in particular class
initializers.

The approach is lightweight allowing for novel coalescing opti-
mizations. The paper has also considered how the algorithm may be
improved in both runtime performance and code generation qual-
ity. The lack of constraints on block order allows for trade-offs but
may put pressure on ‘future-active’ sets and ‘live-at-the-same-time’
calls as a consequence. However, the allocation algorithm is unique
among SSA register allocators that avoid graphs and intervals in
that these trade-offs can be fully explored.

In the context of dex code generation the approach did not seek
to minimize register allocation time and focused on code quality, for
example by retrying register allocation when machine constraints
were reached. Even with the sub-optimal basic block iteration order
and retrying, the cost of the global register allocation is less than
two times the liveness computation. With low register allocation
cost, we believe the approach to be broadly useful for fast and low
memory overhead compilation such as for just-in-time compilers.
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