
WE DIDN’T START THE FIRE

Max Bernstein
Chief Potato

Agenda 01 Motivation

02 History of solving this @ Meta

a Skybison

b Cinder

03 Big constraints we have

04 Cinder

Please ask me questions along the way

INSTAGRAM

● Bazillion machines
● Bazillion lines of code (mostly Python)
● Bazillion users posting and viewing stuff

OUR SETUP

● One main process that boots the web server
● Forked single-threaded workers (over 20 per machine)
● Deploy frequently (every ~15 minutes)
● A large amount of native extensions (for perf and other things)

IT IS THE YEAR 2017

● Instagram is one of the world’s largest
deployments of Python

● Server growth is looking exponential (!!!)
● You can only optimize application code so much
● I am an intern and then studying in Germany

What can you do?

Building a compiler was not
our first choice…

DELETE INSTAGRAM

REWRITE THE APP

● Stop-the-world or incrementally
● ...but people really like Python
● ...and there is so so much of it

REWRITE HOT CODE PATHS

● Native extensions in Rust/C/C++/Cython
● Compilation slows developers down
● Doesn’t integrate with our Python tooling

USE A FASTER PYTHON RUNTIME

● Everyone’s first question for us
● Modest performance improvements
● Needed to significantly modify application
● A lot of C extensions
● Multiprocessing/forked workers??

BUILD IT FROM SCRATCH: SKYBISON

● Skybison started ~2018
● New object model, caching, new interpreter,

moving GC
● Going to take some time to get off the ground

In the meantime...

TEMPORARILY OPTIMIZE CPYTHON: CINDER

● Incremental wins to stave off capacity crunch
● Only needed until we have our bigger better solution
● Runtime code optimization
● Interpreter performance optimization (inline caching, etc)
● Simple code generation
● Can we optimize CPython enough to be sustainable long term?

CONSTRAINTS

● Need performance now
● C extensions all over the place, internal and external
● Keep startup time fast
● Keep memory low (used to be memory bound)
● Everything is async
● People love fast deploys

https://instagram-engineering.com/dismissing-python-garbage-collection-at-instagram-4dca40b29172

TEMPORARILY OPTIMIZE CPYTHON: CINDER

● The C API claimed another victim. We wound down Skybison.
○ “How many C extensions are we going to have to modify to use

the Limited API?”
○ HPy, we need you

● Easier to guarantee correctness if you build on CPython
● Cinder has C API, if not ABI, compatibility long and short term
● Cinder is fast enough. Time to focus on Cinder.

Presenting

HIGH-LEVEL OVERVIEW

● Immortal objects
● Shadow code + cache invalidation machinery (forked interpreter)
● Just-in-time compiler
● Strict Modules
● Static Python
● Lazy imports
● Async optimizations

IMMORTAL OBJECTS

● Not refcounted
● Immortalize the heap pre-fork
● Not immutable
● Avoids refcounting-related copy-on-write
● ~5% gCPU

● Similar win in GC

SHADOW CODE

● Kicks in after N executions in the interpreter
● Inline caching in bytecode
● Bytecode quickening
● Need to invalidate caches when types change…
● Despite CoW, ~10% gCPU

DICT/TYPE/FUNCTION WATCHERS

● Hooks for modifications to
○ types and supertypes
○ functions
○ globals

● Means we can skip checking in the common case

METHOD JIT COMPILER

1. Bytecode
2. SSA HIR (type inference, inliner, type specialization, dead code

elimination, …)
3. SSA LIR
4. Register-allocated LIR
5. Assembly
6. ~10% gCPU

Can deopt (side-exit) into the interpreter

We will be using trycinder.com for demos!

https://engineering.fb.com/2022/05/02/open-source/cinder-jits-instagram/
https://trycinder.com/

DEOPT (OSR)

● For exceptions, invalidated assumptions, …
● Reify stack and heap frames needed
● Call into the interpreter loop
● Until end of current compilation unit (including inlined frames)
● Very rare

def foo():
return 3

def bar():
return 4

def test():
return foo() + bar()

trycinder.com

(8) 0: LOAD_GLOBAL 0: foo
(8) 2: CALL_FUNCTION 0
(8) 4: LOAD_GLOBAL 1: bar
(8) 6: CALL_FUNCTION 0
(8) 8: BINARY_ADD 0
(8) 10: RETURN_VALUE 0

https://trycinder.com/#state=eyJjb2RlIjoiZGVmIGZvbygpOlxuICByZXR1cm4gM1xuXG5kZWYgYmFyKCk6XG4gIHJldHVybiA0XG5cbmRlZiB0ZXN0KCk6XG4gIHJldHVybiBmb28oKSArIGJhcigpIiwicGFzc2VzIjpbIlNvdXJjZSJdLCJ1c2Vfc3RhdGljX3B5dGhvbiI6ZmFsc2UsImFzbV9zeW50YXgiOiJpbnRlbCJ9

(8) v5:OptObject = LoadGlobalCached<0; "foo">
(?) v6:MortalFunc[function:...] = GuardIs<0x7fe671d5ed30> v5
(8) v16:Object = LoadField<func_code@16, Object, borrowed> v6
(?) v17:MortalCode["foo"] = GuardIs<0x7fe671dbff30> v16
(8) v14:MortalLongExact[3] = LoadConst<MortalLongExact[3]>
(8) v8:OptObject = LoadGlobalCached<1; "bar">
(?) v9:MortalFunc[function:...] = GuardIs<0x7fe671d5ee50> v8
(8) v22:Object = LoadField<func_code@16, Object, borrowed> v9
(?) v23:MortalCode["bar"] = GuardIs<0x7fe671dbfe70> v22
(8) v20:MortalLongExact[4] = LoadConst<MortalLongExact[4]>
(8) v25:MortalLongExact[7] = LoadConst<MortalLongExact[7]>
(8) Return v25

If only we could bind names statically…

(8) %4:Object = Move [0x12f6080]:Object
(8) Guard 3(0x3):64bit 0(0x0):Object %4:Object …(0x7fc1e6265d30):Object %4:Object
(8) %6:Object = Move [%4:Object + 0x10]:Object
(8) Guard 3(0x3):64bit 1(0x1):Object %6:Object …(0x7fc1e62c6f30):Object %6:Object %4:Object
(8) %8:Object = Move 16100224(0xf5ab80):Object
(8) %9:Object = Move [0x12f6100]:Object
(8) Guard 3(0x3):64bit 2(0x2):Object %9:Object …(0x7fc1e6265e50):Object %9:Object %8:Object
(8) %11:Object = Move [%9:Object + 0x10]:Object
(8) Guard 3(0x3):64bit 3(0x3):Object %11:Object …(0x7fc1e62c6e70):Object %11:Object %9:Object %8:Object
(8) %13:Object = Move 16100352(0xf5ac00):Object
(8) %14:Object = Move [%13:Object]:Object
(8) Inc %14:Object
(8) [%13:Object]:Object = Move %14:Object

Initial LIR

(8) RAX:Object = Move [0x2200080]:Object
(8) RCX:Object = Move 140662143380784(0x7fee7516ed30):64bit
(8) Guard 3(0x3):64bit 0(0x0):Object RAX:Object RCX:Object RAX:Object
(8) RCX:Object = Move [RAX:Object + 0x10]:Object
(8) RDX:Object = Move 140662143778608(0x7fee751cff30):64bit
(8) Guard 3(0x3):64bit 1(0x1):Object RCX:Object RDX:Object RCX:Object RAX:Object
(8) RAX:Object = Move 16100224(0xf5ab80):Object
(8) RCX:Object = Move [0x2200100]:Object
(8) RDX:Object = Move 140662143381072(0x7fee7516ee50):64bit
(8) Guard 3(0x3):64bit 2(0x2):Object RCX:Object RDX:Object RCX:Object RAX:Object
(8) RDX:Object = Move [RCX:Object + 0x10]:Object
(8) RBX:Object = Move 140662143778416(0x7fee751cfe70):64bit
(8) Guard 3(0x3):64bit 3(0x3):Object RDX:Object RBX:Object RDX:Object RCX:Object RAX:Object
(8) RAX:Object = Move 16100352(0xf5ac00):Object
(8) RCX:Object = Move [RAX:Object]:Object
(8) Inc RCX:Object
(8) [RAX:Object]:Object = Move RCX:Object

Register-allocated LIR

(8) v5:OptObject = LoadGlobalCached<0; "foo">
 0x7f071a2bfa27: mov rax,QWORD PTR ds:0x1929080

(8) v6:MortalFunc[function:...] = GuardIs<0x7f071a0a5d30> v5
 0x7f071a2bfa2f: movabs rcx,0x7f071a0a5d30
 0x7f071a2bfa39: cmp rax,rcx
 0x7f071a2bfa3c: jne 0x7f071a2bfad7

(8) v16:Object = LoadField<func_code@16, Object, borrowed> v6
 0x7f071a2bfa42: mov rcx,QWORD PTR [rax+0x10]

(8) v17:MortalCode["foo"] = GuardIs<0x7f071a106f30> v16
 0x7f071a2bfa46: movabs rdx,0x7f071a106f30
 0x7f071a2bfa50: cmp rcx,rdx
 0x7f071a2bfa53: jne 0x7f071a2bfade

(8) v14:MortalLongExact[3] = LoadConst<MortalLongExact[3]>
 0x7f071a2bfa59: mov rax,0xf5ab80

(8) v8:OptObject = LoadGlobalCached<1; "bar">
 0x7f071a2bfa60: mov rcx,QWORD PTR ds:0x1929100

Left to right HIR+asm

(8) v9:MortalFunc[function:...] = GuardIs<0x7f071a0a5e50> v8
 0x7f071a2bfa68: movabs rdx,0x7f071a0a5e50
 0x7f071a2bfa72: cmp rcx,rdx
 0x7f071a2bfa75: jne 0x7f071a2bfae5

(8) v22:Object = LoadField<func_code@16, Object, borrowed> v9
 0x7f071a2bfa7b: mov rdx,QWORD PTR [rcx+0x10]

(8) v23:MortalCode["bar"] = GuardIs<0x7f071a106e70> v22
 0x7f071a2bfa7f: movabs rbx,0x7f071a106e70
 0x7f071a2bfa89: cmp rdx,rbx
 0x7f071a2bfa8c: jne 0x7f071a2bfaec

(8) v25:MortalLongExact[7] = LoadConst<MortalLongExact[7]>
 0x7f071a2bfa92: mov rax,0xf5ac00

(8) Incref v25
 0x7f071a2bfa99: mov rcx,QWORD PTR [rax]
 0x7f071a2bfa9c: inc rcx
 0x7f071a2bfa9f: mov QWORD PTR [rax],rcx

JIT PECULIARITIES

● Many forked workers => pre-fork compilation
● Static JIT list (will be dynamic later)
● So how do we warm up if we never run the code?

● Normally: multi-stage JIT with run-time profiling
● But time spent compiling in workers has opportunity cost
● And type annotations are not so helpful…

HOW DO WE GET TYPE INFORMATION?

TYPE HINTS?
def add(x: int, y: int) -> int:
 return x + y

class C(int):
 def __add__(self, other):
 print("Haha no")
 return 7

print(add(C(1), C(2)))

def character_at(left: str, right: int):
 return left[right]

character_at(1, 2) # type: ignore

sequoia% python3 -m mypy lies.py
Success: no issues found in 1 source file
sequoia%

TYPE HINTS?

TYPE PROFILES

● Profile types in the interpreter (~5 machines, all the time)
● Ship histograms to a DB
● Process data into binary blob to ship to prod hosts
● Read type profile at boot
● For monomorphic profiles, GuardType
● For polymorphic profiles, CondBranchCheckType and

polymorphic compiled code

STRICT MODULES

● No top-level side effects visible outside the module
● Comes with its own module loader
● Abstract interpreter of Python code
● Eventual goal: full transitive closure of strict modules

import __strict__

class C:
def __init__(self):

 self.myattr = None

a = C()
a.my_attr = 42

AttributeError: 'C' object has no attribute 'my_attr'

Auto slotification! Errors at load-time!

class C:
 def f(self):
 return 42

a = C()
a.f = lambda: "I'm a special snowflake"

AttributeError: 'C' object attribute 'f' is read-only

Read-only fields on types

import __strict__
from nonstrict_module import something

x = something()

UnknownValueCallException: Call of unknown value 'something()' is
prohibited at module level.

Limited to strict modules

STATIC PYTHON

● New compiler and type checker with its own type system
● Use PEP 484 type hints that we already have for correctness
● Replace C extension code
● Verify types and names at bytecode compile time
● Generate specialized bytecode
● Can run in interpreter (boxed) or JIT (unboxed)
● The code is managed!
● ~10% gCPU

import __static__

def foo():
return 3

def bar():
return 4

def test():
return foo() + bar()

Remember that example from earlier?

trycinder.com

https://trycinder.com/#state=eyJjb2RlIjoiaW1wb3J0IF9fc3RhdGljX19cbmRlZiBmb28oKTpcbiAgcmV0dXJuIDNcblxuZGVmIGJhcigpOlxuICByZXR1cm4gNFxuXG5kZWYgdGVzdCgpOlxuICByZXR1cm4gZm9vKCkgKyBiYXIoKSIsInBhc3NlcyI6WyJTb3VyY2UiXSwidXNlX3N0YXRpY19weXRob24iOnRydWUsImFzbV9zeW50YXgiOiJpbnRlbCJ9

(9) v17:MortalLongExact[7] = LoadConst<MortalLongExact[7]>
 0x7fdd974d28b3: mov rax,0xf5ac00

(9) Incref v17
 0x7fdd974d28ba: mov rcx,QWORD PTR [rax]
 0x7fdd974d28bd: inc rcx
 0x7fdd974d28c0: mov QWORD PTR [rax],rcx

Tighter name binding!

import __static__

class C:
 def __init__(self) -> None:
 self.a: int = 1

def test(instance: C) -> int:
 return instance.a

Normal-looking Python code

trycinder.com

https://trycinder.com/#state=eyJjb2RlIjoiaW1wb3J0IF9fc3RhdGljX19cblxuY2xhc3MgQzpcbiAgICBkZWYgX19pbml0X18oc2VsZikgLT4gTm9uZTpcbiAgICAgICAgc2VsZi5hOiBpbnQgPSAxXG5cbmRlZiB0ZXN0KGluc3RhbmNlOiBDKSAtPiBpbnQ6XG4gICAgcmV0dXJuIGluc3RhbmNlLmFcbiIsInBhc3NlcyI6WyJBc3NlbWJseSJdLCJ1c2Vfc3RhdGljX3B5dGhvbiI6dHJ1ZSwiYXNtX3N5bnRheCI6ImludGVsIn0%3D

(7) 0: LOAD_FAST 0: instance
(7) 2: LOAD_ATTR 0: a
(7) 4: RETURN_VALUE 0

CPython bytecode

CPython interpreter machinery

PyObject *
_PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name,
 PyObject *dict, int suppress)
{

 // …
 if (!PyUnicode_Check(name)){
 PyErr_Format(PyExc_TypeError,
 "attribute name must be string, not '%.200s'",
 Py_TYPE(name)->tp_name);
 return NULL;
 }
 Py_INCREF(name);

 // …
 descr = _PyType_Lookup(tp, name);
 f = NULL;
 if (descr != NULL) {

// …
 }
 if (dict == NULL) {

// …
 }
 if (dict != NULL) {

// …
 }
 if (f != NULL) {
 // …
 }
 // …
}

 for (Py_ssize_t i = 0; i < n; i++) {
 PyObject *base = PyTuple_GET_ITEM(mro, i);
 PyObject *dict = _PyType_CAST(base)->tp_dict;
 assert(dict && PyDict_Check(dict));
 res = _PyDict_GetItem_KnownHash(dict, name, hash);
 if (res != NULL) {
 break;
 }
 if (PyErr_Occurred()) {
 *error = -1;
 goto done;
 }
 }

(7) 0: CHECK_ARGS 1: (0, ('explorer_lib', 'C'))
(8) 2: LOAD_FAST 0: instance
(8) 4: LOAD_FIELD 2: ('explorer_lib', 'C', 'a')
(8) 6: RETURN_VALUE 0

Static Python bytecode

(8) v4:OptObject = LoadField<a@16, OptObject, borrowed> v2
 0x7fd1bb93d911: mov rax,QWORD PTR [rdi+0x10]

(8) v5:Object = CheckField<"a"> v4
 0x7fd1bb93d915: test rax,rax
 0x7fd1bb93d918: je 0x7fd1bb93d96a

(8) Incref v5
 0x7fd1bb93d91e: mov rcx,QWORD PTR [rax]
 0x7fd1bb93d921: bt rcx,0x3c
 0x7fd1bb93d926: jb 0x7fd1bb93d932
 0x7fd1bb93d92c: inc rcx
 0x7fd1bb93d92f: mov QWORD PTR [rax],rcx

JIT-compiled Static Python code

import __static__
from __static__ import int64

class Point:
def __init__(self, x: int64, y: int64) -> None:

 self.x: int64 = x
 self.y: int64 = y

def test(point: Point) -> int64:
return point.x + point.y

Unboxed primitive types!

trycinder.com

Stored unboxed and inline in the
object!

https://trycinder.com/#state=eyJjb2RlIjoiaW1wb3J0IF9fc3RhdGljX19cbmZyb20gX19zdGF0aWNfXyBpbXBvcnQgaW50NjRcblxuY2xhc3MgUG9pbnQ6XG4gICAgZGVmIF9faW5pdF9fKHNlbGYsIHg6aW50NjQsIHk6aW50NjQpIC0%2BIE5vbmU6XG4gICAgICAgIHNlbGYueDogaW50NjQgPSB4XG4gICAgICAgIHNlbGYueTogaW50NjQgPSB5XG5cbmRlZiB0ZXN0KHBvaW50OiBQb2ludCkgLT4gaW50NjQ6XG4gICAgcmV0dXJuIHBvaW50LngrcG9pbnQueVxuIiwicGFzc2VzIjpbIkFzc2VtYmx5Il0sInVzZV9zdGF0aWNfcHl0aG9uIjp0cnVlLCJhc21fc3ludGF4IjoiaW50ZWwifQ%3D%3D

(9) 0: CHECK_ARGS 1: (0, ('explorer_lib', 'Point'))
(10) 2: LOAD_FAST 0: point
(10) 4: LOAD_FIELD 2: ('explorer_lib', 'Point', 'x')
(10) 6: LOAD_FAST 0: point
(10) 8: LOAD_FIELD 3: ('explorer_lib', 'Point', 'y')
(10) 10: PRIMITIVE_BINARY_OP 0
(10) 12: RETURN_PRIMITIVE 7

Static Python bytecode

(10) v6:CInt64 = LoadField<x@24, CInt64, borrowed> v4
 0x7ff62be24931: mov rax,QWORD PTR [rdi+0x18]

(10) v8:CInt64 = LoadField<y@16, CInt64, borrowed> v4
 0x7ff62be24935: mov rcx,QWORD PTR [rdi+0x10]

(10) v9:CInt64 = IntBinaryOp<Add> v6 v8
 0x7ff62be24939: add rax,rcx

JIT-compiled Static Python code

Zero-initialized! No need to
check if set.

LAZY IMPORTS

● Inside the runtime and transparent to user code
● Stub out modules, objects, functions, etc
● Import module when imported objects are first referenced

○ Both managed and C extension access of names
● Improve developer experience in startup time
● Works pretty well with Strict Modules to minimize import gotchas
● Working on upstreaming this (PEP 690!)

https://peps.python.org/pep-0690/

Cutting p50 load times in half... many minutes saved

ASYNC OPTIMIZATIONS

● Exception-free returns for coroutines
○ bpo-41756 — ~5% gCPU
○ bpo-42085 — 1.5% gCPU

● Await-aware calls — 2% gCPU
○ Eagerly evaluate up to completion (no allocation!), or up to its

first suspension
● Method table dispatch for asyncio components — ~1% gCPU

https://bugs.python.org/issue41756
https://bugs.python.org/issue42085

async def first_callee():
 return 3

async def second_callee():
 return 4

async def do_something_important():
 result = await first_callee()
 other_result = await second_callee()
 return result + other_result

import asyncio
print(asyncio.run(do_something_important()))

No yield! Why wait?

RECAP

● Immortal objects
● Shadow code + cache invalidation machinery
● Just-in-time compiler
● Strict Modules
● Static Python
● Lazy imports
● Async optimizations

IMPACT

● We have brought Python down to ~30% of gCPU in the app
● We’ve seen ~45% gCPU improvement for our production application
● Application developers opt into stricter typing when it provides

reliability and performance benefits
○ Often replacing native extensions…!

● Working with CPython folks to upstream the relevant hooks
○ Helps Pyjion, Pyston, etc as well

Bonus: microbenchmarks

CONCLUSION

● Cinder was instrumental in keeping the lights on
● It is possible to optimize large Python applications
● Sometimes building a compiler is the right path

trycinder.com

github.com/facebookincubator/cinder

https://trycinder.com
https://github.com/facebookincubator/cinder

