
35

A Simple Graph-Based Intermediate Representation

Cliff Click

cliffc@hpl.hp.com

Michael Paleczny

mpal@cs.rice.edu

Abstract

We present a graph-based intermediate representation
(IR) with simple semantics and a low-memory-cost C++
implementation. The IR uses a directed graph with la-
beled vertices and ordered inputs but unordered outputs.
Vertices are labeled with opcodes, edges are unlabeled.
We represent the CFG and basic blocks with the same
vertex and edge structures. Each opcode is defined by a
C++ class that encapsulates opcode-specific data and be-
havior. We use inheritance to abstract common opcode
behavior, allowing new opcodes to be easily defined from
old ones. The resulting IR is simple, fast and easy to use.

1. Introduction

Intermediate representations do not exist in a vac-
uum. They are the stepping stone from what the pro-
grammer wrote to what the machine understands. In-
termediate representations must bridge a large seman-
tic gap (for example, from FORTRAN 90 vector op-
erations to a 3-address add in some machine code).
During the translation from a high-level language to
machine code, an optimizing compiler repeatedly ana-
lyzes and transforms the intermediate representation.
As compiler users we want these analyses and trans-
formations to be fast and correct. As compiler writers
we want optimizations to be simple to write, easy to

 This work has been supported by ARPA through ONR grant
N00014-91-J-1989 and The Center for Research on Parallel
Computation (CRPC) at Rice University, under NFS Cooperative
Agreement Number CCR-9120008.
 Authors' addresses: Cliff Click, Cambridge Research Office,
Hewlett Packard Laboratories, One Main Street, 10th Floor,
Cambridge, MA 02142. Michael Paleczny, Rice University,
CITI/CRPC - MS 41, 6100 South Main, Houston, TX 77005-
1892.
 Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commericial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

IR’95, 1/95, San Francisco, California, USA. © 1995 ACM

understand, and easy to extend. Our goal is a repre-
sentation that is simple and light weight while allowing
easy expression of fast optimizations.

This paper discusses the intermediate representa-
tion (IR) used in the research compiler implemented as
part of the author’s dissertation [8]. The parser that
builds this IR performs significant parse-time optimi-
zations, including building a form of Static Single As-
signment (SSA) at parse-time. Classic optimizations
such as Conditional Constant Propagation [23] and
Global Value Numbering [20] as well as a novel
global code motion algorithm [9] work well on the IR.
These topics are beyond the scope of this paper but are
covered in Click’s thesis.

The intermediate representation is a graph-based,
object-oriented structure, similar in spirit to an opera-
tor-level Program Dependence Graph or Gated Single
Assignment form [3, 11, 17, 18]. The final form con-
tains all the information required to execute the pro-
gram. The graph edges represent use-def chains.
Analyses and transformations directly use and modify
the use-def information. The graph form is a single-
tiered structure instead of a two-tiered Control-Flow
Graph (CFG) containing basic blocks (tier 1) of in-
structions (tier 2). Control and data dependencies have
the same form and implementation. Optimizations
such as constant propagation and value numbering use
the same support code for both control and data val-
ues. The model of execution closely resembles the
familiar CFG model.

Considerable care was taken in the design to allow
for a very compact and easily edited implementation.
Moving from the use of a value to the definition of a
value requires a single pointer dereference. The im-
plementation makes heavy use of C++’s features for
code reuse, squeezing a lot of functionality in a few
lines of code.

In Section 2, we introduce the graph-based inter-
mediate representation. In Section 3, we give the
model of execution for our representation. In Sec-
tion 4, we present our C++ implementation. Section 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F202530.202534&domain=pdf&date_stamp=1995-03-01

36

shows our experimental results for parse-time optimi-
zation. In Section 6, we look at related work, contrast-
ing our intermediate representation with other pub-
lished representations.

2. The Design

This section presents the structure of our interme-
diate representation, a directed graph with labeled ver-
tices and ordered inputs. To help the reader under-
stand the relationship between the program-as-a-graph
and the classic CFG/basic block/instruction represen-
tation, we assume the program is in a simple canonical
form. All expressions are simple assignments with at
most one primitive operation on the right as in “a := b
+ c”. The program is in SSA form, with subscripts on
different versions of the same name.

2.1 Nodes and Values

The vertices will be called nodes. Edges are unla-
beled and the order of output edges leaving a node is
not important. The label on a node determines the kind
of operation, or program primitive, the node repre-
sents. The inputs to a node are inputs to the node’s
operation. Each node defines a value based on its in-
puts and operation, and that value is available on all
output edges.

Values include the typical machine word integers,
as well as pointers, floating point values, and function
pointers. Values also include abstract quantities like
the state of memory, I/O with the outside world or
control. Memory (state) and I/O (i/o) are discussed
later; the control value will be covered shortly. Special
values will be written underlined to help distinguish
them in the text.

Nodes will be referred to with lower case letters
like x and a. Node operations will be written in
SMALLCAPS style. The operation at a node is referred
to as x.opcode. Node inputs will use array syntax, so
that input 0 to a node x is written x[0]. Since edges are
unlabeled, we never refer to them directly; x[0] refers
to the node that defines the first input to node x. The
only operation we perform on output edges is to iterate
all the nodes they are inputs to: forallusers y of x do
something.

An expression “a := b + c” is represented by a 2-
input node labeled with an ADD. The node names a, b,
and c are for our reference only. They are not used for

program semantics but are useful for output. We
show the graph representation in Figure 1. Nodes are
shown as a shadowed box with rounded corners.
Edges carrying data values are shown as light arrows.
In our written notation then, a[0] ≡ b, a[1] ≡ c, and
a.opcode ≡ ADD.

2.2 Basic Blocks and REGION Nodes

Traditional representations have two distinct lev-
els. At the top level, the CFG contains basic blocks.
At the bottom level, each basic block contains instruc-
tions. In the past, this distinction has been useful for
separation of concerns. CFGs deal with control flow
and basic blocks deal with data flow. We handle both
kinds of dependences with the same mechanism, re-
moving this distinction to simplify our representation.

We replace basic blocks with a special REGION

node [11]. A REGION node takes a control value from
each predecessor block as inputs and produces a
merged control as an output. Figure 2 shows the
change from basic blocks to REGION nodes. Edges
carrying control information are shown with thick ar-
rows. Each primitive node takes in a control input to
indicate which basic block the primitive is in. This
edge is not always required. Removing it enables a
number of global optimizations but requires a more
complex serialization operation for output [8]. Such
optional control edges will be shown as dashed arrows.

CFG in edges

CFG out edges

a := b+c

…

…
Basic
Block

REGION

ADD

In edges

Out edges

Figure 2 Basic blocks and REGION Nodes

ADD a

 b c

Figure 1 Expression “a := b + c” as a graph

37

2.3 PHI Nodes

Since our program is in SSA form, our graph rep-
resentation uses φ-functions represented by PHI nodes.
PHI nodes input several data values and output a single
selected data value.

CFG edges determine which values are merged in
the φ-functions. Without those CFG edges our inter-
mediate representation is not compositional1 [4, 20].
We need to associate with each data input to a PHI

node the control input from the corresponding basic
block. Doing this directly means that PHI nodes would
have a set of pairs as inputs. One element of the pair
would be a data dependence and the other a control
dependence. This is an ungainly structure with com-
plicated semantics. Instead, we borrow some ideas
from Ballance, et al. and Field [3, 14].

The control input comes from the REGION node
defining control for the PHI node. The other inputs to
the PHI node are aligned with the REGION node’s con-
trol inputs. The ith data input to the PHI node matches
the ith control input to the REGION node. In essence,
we split the paired inputs between the PHI node and the
REGION node. We show a Phi node in Figure 3.

Note that these nodes have no run-time operation
and do not correspond to a machine instruction. They

1 In essence, we would require information not local to an in-

struction. A non-compositional representation is difficult to
transform correctly because changing an instruction may re-
quire information not directly associated with the instruction.

exist to mark places where values merge and are re-
quired for correct optimization. When machine code is
finally generated, the PHI nodes are folded back into
normal basic blocks and CFG behavior.

2.4 IF Nodes and Projections

We replace conditional instructions with IF nodes
as shown in Figure 4. In the basic-block representa-
tion, the predicate sets the condition codes (the vari-
able named cc) and the branch sends control to either
block B1 or block B2. With explicit control edges, the
IF node takes both a control input and a predicate in-
put. If the predicate is true, the IF node supplies con-
trol to the true basic block's REGION node. Otherwise,
control is sent to the false basic block's REGION node.
As shown in Figure 4, IF nodes have labeled output
edges.

Intuitively, some operations produce more than
one value. Examples include instructions that set a
condition code register along with computing a result
(i.e., subtract) and subroutine calls (which set at least
the result register, the condition codes, and memory).
One method for handling this is to label outgoing edges
with the kind of value they carry. This requires edges
to carry information and has a direct (negative) impact
on our implementation. We prefer to keep our edges
very lightweight.

Instead, multiple-value instructions produce the
same tuple for each output edge. Then we use
PROJECTION nodes to strip out the piece of the tuple

 x1 := …
B1:

 x2 := …
B2:

 x3 := φ(x1, x2)
B3:

REGION
PHI

B3:
 x3

B1: B2: x1 x2

Figure 3 PHI Nodes for merging data

 …
 cc := predicate
 branch eq B1

FalseTrue

B1: B2:
REGIONB1: REGIONB2:

FalseTrue

IF

Control

predicate

Figure 4 An example IF construct

38

that we want, giving distinct names to the different
results. The PROJECTION has a field specifying which
piece of the input tuple to project out. PROJECTIONs
have no corresponding run-time operation (i.e., they
“execute” in zero cycles).

Figure 5 shows both the structure of a PRO-

JECTION node and how it is used with an IF node. An
IF node takes in control and a predicate and produces
two distinct outputs: the true control and the false
control. The IF produces a tuple of those two values.
A PROJECTION-TRUE strips out the true control and a
PROJECTION-FALSE strips out the false control.

2.5 Compound Values: Memory and I/O

We treat memory like any other value, and call it
the STORE. The START node and a PROJECTION-
STORE node produce the initial STORE. LOAD nodes
take in a STORE and an address and produce a new
value. STORE nodes take in a STORE, an address, and
a value and produce a new STORE. PHI nodes merge
the STORE like other values. Figure 6 shows a sample
treatment of the STORE.

The lack of anti-dependences2 is a two-edged
sword. Between STORE’s we allow LOAD nodes to
reorder. However, some valid schedules (serializations
of the graph) might overlap two STOREs, requiring that
all of memory be copied. Our serialization algorithm
treats memory like a type of unique machine register
with infinite spill cost. The algorithm schedules the
code to avoid spills if possible, and for the STORE it
always succeeds.

This design of the STORE is very coarse. A better
design would break the global STORE into many
smaller, unrelated STORE’s. Every independent vari-
able or array would get its own STORE. Operations on
the separate STORE’s could proceed independently
from each other. We could also add some understand-
ing of pointers [7].

Memory-mapped I/O (e.g., volatile in C++) is
treated like memory, except that both READ and
WRITE nodes produce a new I/O state. The extra de-
pendence (READs produce a new I/O state, while
LOADs do not produce a new STORE) completely se-
rializes I/O. At program exit, the I/O state is required,

2 An anti-dependence is a dependence from a read to a write.

For the STORE, an anti-dependence is from a LOAD to a STORE.

 …
 cc = predicate
 branch eq B1

FalseTrue

B1: B2:

PROJECTION

TRUE

B1:

PROJECTION

FALSE

B2:

IF

Control
predicate

REGION REGION

Figure 5 Projections following an IF Node

x STORE0

STORE1

y

ptr1

ptr2STORE

LOAD

{
 x := …; // Make some value

*ptr1 := x; // Store value to memory
…
y := *ptr2; // Load some value
…y… // Use loaded value
…

}

Figure 6 Treatment of memory (STORE)

39

however, the STORE is not required. Non-memory-
mapped I/O requires a subroutine call.

The START node produces the initial control as
well as initial values for all incoming parameters,
memory, and the I/O state. The START node is a clas-
sic multi-defining instruction, producing a large tuple.
Several PROJECTION nodes strip out the various
smaller values.

We treat subroutines like simple instructions that
take in many values and return many values. Subrou-
tines take in and return at least the control token, the
STORE, and the I/O state. They also take in any input
parameters and may return an additional result.

3. A Model of Execution

Since our graph representation lacks basic blocks
and the CFG, we needed to rethink our model of exe-
cution. In the CFG, control moves from basic block to
basic block with the next block determined by the last
instruction of the current block. Within a basic block,
control moves serially through the instructions. Like
the execution model for CFGs, our execution model
has two distinct sections. We have two distinct sub-
graphs embedded in our single graph representation.
Optimizations make no distinction between the sub-
graphs; only the functions used to approximate op-
codes differ.

The control subgraph uses a Petri net model. A
single control token moves from node to node as exe-
cution proceeds. This reflects how a CFG works, as
control moves from basic block to basic block. Our
model restricts the control token to REGION nodes, IF

nodes, and the START node. The starting basic block
is replaced with a START node that produces the initial
control. Each time execution advances, the control
token leaves the node it is currently in. The token
moves onward, following the outgoing edge(s) to the
next REGION or IF node. If the token reaches the STOP

node, execution halts. Because we constructed the
graph from a CFG, we are assured only one suitable
target (REGION, IF, STOP) exists on all the current
node’s outgoing edges.

The data subgraph does not use token-based se-
mantics. Data nodes' outputs are an immediate reflec-
tion of their inputs and operation. There is no notion
of a “data token”; this is not a Petri net. Data values

are available in unlimited amounts on each output
edge. Intuitively, whenever a node demands a value
from a data node, it follows the input edge to the data
node and reads the value stored there. In an acyclic
graph, changes ripple from root to leaf “at the speed of
light”. When propagation of data values stabilizes, the
control token moves on to the next REGION or IF node.
We never build a graph with a loop of only data-
producing nodes; every loop has either PHI or REGION

nodes.

3.1 Mixing the Subgraphs

Our two subgraphs interact at two distinct node
types: PHI nodes and IF nodes. The PHI reads in both
data and control, and outputs a data value. Unlike
other data nodes, PHI nodes change outputs only when
their REGION node is visited. When the control token
moves into a REGION, the PHI nodes at that REGION

latch the data value coming from the matching control
input. The control token is not consumed by the PHI.

In Figure 3, when the control token moves from
B1 to the REGION, the PHI latches the value from node
x1. If instead the control comes from B2, the PHI

would latch x2’s value.

IF nodes take in both a data value and a control to-
ken, and produce either the {control, ∅} tuple or the
{∅, control} tuple. In Figure 5, the following projec-
tions produce either the control token or no value.

3.2 A Loop Example

Figure 7 shows what a simple loop looks like. In-
stead of a basic block heading the loop, there is a
REGION node. The REGION node merges control from
outside the loop with control from the loop-back edge.
There is a PHI node merging data values from outside
the loop with data values around the loop. The loop
ends with an IF node that takes control from the
REGION at the loop head. The IF passes a true control
back into the loop head and a false control outside the
loop.

Irreducible loops are handled very naturally. A
second REGION (and a second set of PHI nodes) marks
the second entry into the loop. Unstructured control
flow is also handled naturally; REGION nodes mark
places where control flow merges and IF nodes are
places where control flow splits.

40

4. Implementation

We used C++ for our implementation. We felt this
gave us a better match between the abstract design and
the concrete implementation than a previous C version.
The most obvious occurrence of this was coding op-
eration-dependent behavior in various analyses. The C
version used large switch statements to branch on the
operation. This spread out the semantics of any indi-
vidual operation into many disjoint sections of code.
Adding a new operation was painful; each switch had
to be altered individually.

In the C++ version we give each operation its own
class, inheriting from the base class Node. This lets us
use virtual functions to specify operation-dependent
behavior. Each operations’ semantics are localized in
the individual classes. Adding a new operation con-
sists of inheriting from some similar existing class and
overriding any changed behavior. The classes repre-
senting primitive operations typically inherit behaviors
like the number of inputs, required input and output
values (e.g., integer vs. floating point), default constant
folding, algebraic identities, and printing functions.

4.1 The Node Class

Instances of class Node contain almost no data;
operation-specific information is in classes that inherit
from Node. We show a slice of the class hierarchy in

Figure 8. Class AddNode defines instances of alge-
braic rings, including the additive and multiplicative
identity, commutativity, and associativity. The class
IntAddNode merely provides the identity elements
(integers 0 and 1) and a unique string name used in
printing (“iADD”), and inherits all other behaviors.
Finally, an integer add is an instance of class
IntAddNode.

Node

SubNode AddNode MulNode

IntAddNodeFloatAddNodeAndNode

Figure 8 Part of the class Node hierarchy

Class Node, shown in Figure 9, holds only the
virtual function pointer, edge pointers and the destina-
tion variable name. Notice that the Node object does
not contain an opcode field of any sort. The virtual
function pointer is unique to each class; we use it as
the node’s opcode. If we need to perform an opcode-
specific function, we use a virtual function call.

4.2 Lightweight Edges

In the abstract design, edges flow from defining
node to using node (i.e., def→use edges). The pointers
in the implementation define the edge direction back-

 i0 := initial data

 i1 := φ(i0, i2)
 i2 := i1 + 1
 cc := test(i2)
 branch eq loop

Start:

loop:

 …i2…

REGION
PHI

ADD

test

IF

initial data

1

 i0

 i1

 i2

 cc

 loop exit control

 loop back control

 loop exit data

PROJ

FALSE

PROJ

TRUE

START

Figure 7 An example loop

41

wards (i.e., use→def edges). As shown in Figure 10,
the concrete implementation of this graph allows con-
venient traversal of a design edge from sink to source
(use to def) instead of from source to sink (def to use).
Our edges are implemented as pointers to Nodes.

Some nodes require more fields. A CON node
(which defines a literal constant) needs to hold the
value of the constant being defined and has no other
inputs. A PROJECTION has one input and a field to
specify which piece of the incoming tuple to project
out. As part of code generation we include add-
immediate and load-with-offset operations. In Figure
11, these offsets and constants are kept in class-
specific fields instead of using a large C-style union.

The number of edges carrying semantic meaning is
generally unchanged throughout compilation (i.e., di-
vide has exactly 2 inputs). However, the compiler may
find it convenient to add precedence edges (e.g., for
scheduling or dependence analysis purposes). We
handle this requirement by using a counted array of
Node pointers. If we need another edge and the array
is full, we reallocate the array to larger storage.
Usually, we know the edge count ahead of time and the
edge pointer array is kept in the Node structure. Class
SubNode, shown in Figure 12, is an example of a 2-
input, 1-result instruction. It inherits the virtual func-
tion pointer from Node and adds 2 use-def pointers and
the control pointer.

Although not required for correct semantics, def-
use edges are necessary for efficient forward analysis.
We implement them in essentially the same manner as
precedence edges. For clarity we do not show their
fields. We build def-use edges in a fast batch pass just
prior to doing global forward analysis. After the
analysis, we discard the def-use edges because we do
not wish to maintain them while transforming the pro-

virtual function table

array of input pointers

count and total inputs

name

class Node {
public:

Node **inputs; // Array of input pointers
short cnt, total; // Count of semantic and precedence input pointers
int name; // Name as a symbol table index
Node(short cnt, short total, Node **inputs); // Constructor, with input count
// Inline array syntax for accessing the inputs to a Node
Node *&operator[](int idx) const { assert(idx<total); return inputs[idx]; }
virtual const char *Name() = 0; // Printable opcode name

};

Figure 9 Object layout and code for class Node

abstraction implementation

def

use

def

use

Figure 10 The implementation of dependence edges

class IntConNode : public Node { // Class of Nodes that define integer constants
virtual const char *Name() { return “iLDI”; }
const int con; // The constant so defined

};
class ProjNode : public Node { // Class of projections of other Nodes

virtual const char *Name() { return “Projection”; }
Node *src[1]; // The tuple-producing Node
const int field; // The desired field out of the incoming tuple-value

};

Figure 11 Definition for the IntConNode and ProjNode classes

42

gram with the results from the analysis.

4.3 Virtual Support Functions

We do the local value-numbering optimization us-
ing a hash table, hashing the Nodes by opcode and in-
puts. The opcode is ideally the class virtual function
table pointer, which C++ does not let us access di-
rectly. Instead, we use the address of the virtual
Name() function, which is unique to each class that
defines an opcode. The hash table lookup must be able
to compare nodes based on class and inputs. Differ-
ently classed nodes have different hash functions and
different compare semantics. For example: addition is
commutative; two ADD nodes are equal if their inputs
match in any order. Sample code for virtual hash
functions is presented in Figure 13.

Other common behaviors are also defined as vir-
tual functions. In particular, algebraic identities (sub-
tract of zero, multiply by 1) are handled this way. A
call to the virtual Identity(), also shown in Figure 13,
returns a node equivalent to the one passed in. This
function is used in both local and global value number-
ing.

Each node is a self-contained C++ object, that
contains all the information required to determine how
the node interacts with the program around it. The
major field in a node is the opcode, represented as the
virtual function table pointer. An object's class de-

termines how it propagates constants, handles alge-
braic identities, and finds congruences with other
nodes. To make the intermediate representation un-
derstand a new kind of operation we need only to de-
fine a new class. The new class inherits fields for in-
puts and supplies functions for algebraic identities and
hash table support. We do not need to make any
changes to the optimization code itself.

4.4 SSA vs. Names

While SSA form is useful for optimization, the
compiler must eventually emit code without φ-func-
tions. This requires assigning node results to variable
names. We use an infinite set of virtual register num-
bers for our names, relying on a register allocator to
reduce the number used to what is really available.
Our destination names are stored in the name field;
source names are found by following use-def edges.

Instead of removing the φ-functions, we make
them merge exactly the same set of names. By leaving
the φ-functions in place we get to keep our use-def in-
formation. The φ-functions behave like input ports to
basic blocks.

We start by assigning unique integers to every
name field, thus maximally renaming values, then in-
sert a COPY node on every φ-function input. We give
the COPY the same destination name as the φ-function

virtual function table

count and total inputs

name controlling Node

input 0

input 1

class SubNode : public Node { // Class of 2-input, 1-result instructions
Node *src[3]; // Usually 3 inputs total to an Sub
SubNode(Node *in0, Node *in1, Node *control) : Node(3,3,src)
{ inputs[0] = in0; inputs[1] = in1; inputs[2] = control; };

};

Figure 12 Object layout and code for a 2-input Node

int Node::hash() // Hash opcode and inputs
{ int sum = (int)Name; for(int i=0; i<cnt; i++) sum += (int)input[i]; return sum;}

int IntConNode::hash() { return Node::hash()+con; } // Constant is part of hash function

Node *Node::Identity() { return this; } // Return a pre-existing equivalent Node, if any
Node *IntSubNode::Identity() // Integer-subtract-specific implementation

{ return src[1]→is_constant(0) ? src[0] : this; } // Subtract of a zero is just the other input

Figure 13 Virtual hash and identity functions

43

making the inputs to a φ-function all have the same
destination name. Occasionally, we cannot naively
insert COPYs because the clobbered destination name
is also a source name; these cases require a temporary
variable.

This COPY insertion method is very naive. A ro-
bust compiler requires a coalescing phase afterwards.
It is possible to combine the COPY insertion pass and
the coalescing pass so that COPYs are only inserted
when values cannot be renamed (instead of inserting
the COPYs then having the coalesce phase remove them
by renaming) [2].

4.5 Fast Node Allocation

Each time we make a new node we call the default
operator new to get storage space. This in turn calls
malloc and can be fairly time consuming. In addition,
optimizations frequently delete a newly created object,
requiring a call to free. We speed up these frequent
operations by hooking the class specific operator new
and delete for class Node. Our replacement operators
use an arena [15]. Arenas hold heap-allocated objects
with similar lifetimes. When the lifetime ends, we de-

lete the arena freeing all the contained objects in a fast
operation. The code is given in Figure 14.

Allocation checks for sufficient room in the arena.
If sufficient room is not available, another chunk of
memory is added to the arena. If the object fits, the
current high water mark3 is returned for the object's
address. The high water mark is then bumped by the
object size. The common case (the object fits)
amounts to an inlined test and increment of the high
water marker.

Deallocation is normally a no-op (all objects are
deleted at once when the arena is deleted). In our case,
we check to see if we just allocated the deleted mem-
ory. If it was, the delete code pushes back the high
water marker, reclaiming the space for the next alloca-
tion. The very fast allocation-deallocation cycle al-
lows a parse-time optimizer to quickly perform naive
node creation which may be reversed by an immedi-
ately following optimization.

3 The high water mark is the address one past the last used byte

in a memory chunk.

class Arena { // Arenas are linked lists of large chunks of heap
enum { size = 10000 }; // Chunk size in bytes
Arena *next; // Next chunk
char bin[size]; // This chunk
Arena(Arena *next) : next(next) {} // New Arena, plug in at head of linked list
~Arena() { if(next) delete next; } // Recursively delete all chunks

};
class Node { // Base Node class

static Arena *arena; // Arena to store nodes in
static char *hwm, *max, *old; // High water mark, limit in Arena
static void grow(); // Grow Arena size
void *operator new(size_t x) // Allocate a new Node of given size
{ if(hwm+x > max) Node::grow(); old := hwm; hwm := hwm+x; return old; }
void operator delete(void *ptr) // Delete a Node
{ if(ptr = old) hwm := old; } // Check for deleting recently allocated space

};
Arena *Node::arena := NULL; // No initial Arena
char *Node::hwm := NULL; // First allocation attempt fails
char *Node::max := NULL; // … and makes initial Arena
void Node::grow() // Get more memory in the Arena
{

arena := new Arena(arena); // Grow the arena
hwm := &arena→bin[0]; // Update the high water mark
max := &arena→bin[Arena::size]; // Cache the end of the chunk as well

}

Figure 14 Fast allocation with arenas

44

5. Parse-Time Optimizations

With use-def information we can do optimization
while parsing. Parse-time optimizations remove sim-
ple constant computations and common subexpres-
sions early on, before the slower global optimizations.
This reduces the peak memory required by the op-
timizer and speeds the global optimizations that follow.

Parse-time optimizations must be pessimistic (as
opposed to optimistic), because we do not know what
the not-yet-parsed program will do. They do not find
as many constants or common subexpressions as the
global techniques, particularly around loops. For this
reason they are not a replacement for global analysis
or optimistic transformations, which require def-use
information generally not available during parsing.

Our pessimistic analysis requires only use-def in-
formation, which we can gather as we parse the code.
The compiler looks at (and changes) a fixed-size in-
struction “window” of the intermediate representa-
tion [11]. This window looks over the program graph
instead of sequential instructions, providing the com-
piler with access to related instructions far away in the
program text. Code outside the window is not affected
by the transformation; code inside the window is trans-
formed without knowledge of what is outside the win-
dow. Thus our pessimistic analysis is essentially a
local, or peephole, analysis.

5.1 Optimizing Through a Peephole

The optimization works as follows: every time the
parser builds a new node but before the node is refer-
enced by any other node, the parser attempts to replace
the new node with an existing node that computes the
same value. Nodes are queried via virtual functions to
determine if they compute a constant, are an algebraic
identity on some other node, or can be value-numbered
(equal operation on equal inputs) to some other node.
If possible, new nodes are deleted and replaced with
references to constants or prior nodes.

During value-numbering we ignore the control in-
put to computing nodes that do not cause exceptions.
This allows value-numbering to find nodes in different
control regions to be the same. Since the prior node

that replaces a new node may not dominate uses of the
new node we need a pass of Global Code Motion
(GCM) to discover a legal ordering of instructions.
GCM moves code out of loops and into more control
dependent regions. GCM relies solely on dependence
information and does not need any prior legal ordering
of instructions. GCM orders instructions by setting
the control input to some REGION node, thus selecting
a basic block. Other dependences determine the order
within the basic block.

We compared the parse-time optimizations against
a global optimization that combines Conditional Con-
stant Propagation (CCP) [23], Global Congruence
Finding (GCF) [1], and Global Value Numbering
[20]. The combination is stronger than iterating these
optimizations to a fixed point (i.e., the combination
finds at least as many constants and equivalent ex-
pressions) and is discussed in Click’s thesis [8]. Both
kinds of optimization are followed by a pass of GCM
and Dead Code Elimination (DCE).

5.2 Experimental Method

We converted a large test suite into a low-level in-
termediate language, ILOC [5, 4]. The ILOC produced
by translation is very naive and is intended to be op-
timized. We then performed several optimizations at
the ILOC level. We ran the resulting ILOC on a simula-
tor to collect execution cycle counts for the ILOC vir-
tual machine. All applications ran to completion on
the simulator and produced correct results.

ILOC is a virtual assembly language for a virtual
machine. The machine has an infinite register set and
1 cycle latencies for all operations, including LOADs,
STOREs and JUMPs. ILOC is based on a load-store ar-
chitecture and includes the usual assortment of logical,
arithmetic and floating-point operations.

The simulator is implemented by translating ILOC

files into a simple form of C. The C code is then com-
piled on the target system using a standard C compiler,
linked against either the FORTRAN or C libraries and
executed as a native program. The executed code
contains annotations that collect statistics on the dy-
namic cycle count.

45

The test suite consists of a dozen applications with
a total of 52 procedures. The procedures and their
static instruction sizes are given in Figure 15. All the
applications are written in FORTRAN, except for
cplex. Cplex is a large constraint solver written in C.
Doduc, tomcatv, matrix300 and fpppp are from the
Spec89 benchmark suite. Matrix300 performs vari-
ous matrix multiplies. Since our machine model does
not include a memory hierarchy (single cycle LOAD

latencies), we can not measure the effects of memory
access patterns in the inner loops. Thus we choose
matrix300 over matrix1000 for faster testing times,
even cutting the matrix size down to 50. The remain-
ing procedures come from the Forsythe, Malcom and
Moler suite of routines [15].

5.3 Results

We measured optimization time with and without
the peephole pass. The total time across all applica-
tions for peephole optimization followed by global
analysis was 108.8 seconds. Global analysis alone
was 116.1 seconds. Time to parse the input and print
the output was the same in either case. Using the
peephole pass saved 6.3% on total compile times.

We ran the optimizer with and without the global
optimizations, to compare the quality of just the peep-
hole optimizer (and the global code motion algorithm)
against a stronger global analysis. The results are in
Figure 16. The first two columns list the application
and procedure name. The next two columns give the
cycles spent in the ILOC virtual machine and the per-
centage of optimized cycles. A higher percentage
means more cycles were spent relative to the global
optimization cycles. We then show the cycles and per-
cent optimized cycles for just using parse-time optimi-
zation and GCM. As a reference point, we also ran a
pass of GCF, PRE [18,12], and CCP.

The total improvement for using global optimiza-
tion instead of just parse-time optimization was -1.9%,
and the average improvement was -0.8%. As the
numbers show, the peephole optimizer does very well.
Global analysis gets only a few percentage points more
improvement. Rather suprisingly, this means that
most constants and common subexpressions are easy
to find.

Program Routine Static
Cycles

Program Routine Static
Cycles

doduc x21y21 113 cplex xload 120
doduc hmoy 162 cplex xaddrow 434
doduc si 166 cplex chpivot 655
doduc coeray 370 cplex xielem 1,560
doduc dcoera 544 fmin fmin 438
doduc drigl 612 fpppp fmtgen 601
doduc colbur 775 fpppp fmtset 704
doduc integr 844 fpppp gamgen 835
doduc ihbtr 919 fpppp efill 1,200
doduc cardeb 938 fpppp twldrv 15,605
doduc heat 1,059 fpppp fpppp 22,479
doduc inideb 1,081 matrix300 saxpy 94
doduc yeh 1,084 matrix300 sgemv 285
doduc orgpar 1,490 matrix300 sgemm 646
doduc subb 1,537 rkf45 rkf45 169
doduc repvid 1,644 rkf45 fehl 505
doduc drepvi 1,839 rkf45 rkfs 1,027
doduc saturr 1,861 seval seval 174
doduc bilan 2,014 seval spline 1,054
doduc supp 2,035 solve solve 291
doduc inithx 2,476 solve decomp 855
doduc debico 2,762 svd svd 2,289
doduc prophy 2,843 tomcatv main 2,600
doduc pastem 3,500 urand urand 235
doduc debflu 3,941 zeroin zeroin 336
doduc ddeflu 4,397
doduc paroi 4,436
doduc iniset 6,061
doduc deseco 11,719

Figure 15 The test suite

46

Program Routine Combined, GCM Parse, GCM GCF/PRE/CCP no optimization
doduc bilan 524,407 100% 536,432 102% 580,878 111% 3,137,306
doduc cardeb 168,165 100% 168,165 100% 183,520 109% 883,190
cplex chpivot 4,133,854 100% 4,156,117 101% 4,097,458 99% 10,865,979
doduc coeray 1,487,040 100% 1,487,040 100% 1,622,160 109% 2,904,112
doduc colbur 751,074 100% 751,074 100% 763,437 102% 1,875,919
doduc dcoera 921,068 100% 921,068 100% 981,505 107% 1,814,513
doduc ddeflu 1,292,434 100% 1,329,989 103% 1,485,024 115% 4,393,525
doduc debflu 683,665 100% 689,059 101% 898,775 131% 3,614,716
doduc debico 478,760 100% 479,318 100% 529,876 111% 3,058,222
solve decomp 627 100% 642 102% 641 102% 1,714
doduc deseco 2,165,334 100% 2,182,909 101% 2,395,579 111% 11,436,316
doduc drepvi 680,080 100% 680,080 100% 715,410 105% 2,174,395
doduc drigl 295,501 100% 295,501 100% 301,516 102% 1,031,658
fpppp efill 1,927,529 100% 2,046,512 106% 1,951,843 101% 4,166,782
rkf45 fehl 134,640 100% 134,640 100% 135,960 101% 386,496
fmin fmin 908 100% 908 100% 876 96% 1,707
fpppp fmtgen 926,059 100% 926,059 100% 973,331 105% 2,390,998
fpppp fmtset 1,072 100% 1,072 100% 1,074 100% 3,760
fpppp fpppp 26,871,102 100% 26,871,102 100% 26,883,090 100% 115,738,146
fpppp gamgen 134,226 100% 134,227 100% 158,644 118% 728,455
doduc heat 578,646 100% 578,646 100% 613,800 106% 1,393,512
doduc ihbtr 73,290 100% 75,708 103% 71,616 98% 180,276
doduc inideb 850 100% 863 102% 898 106% 4,505
doduc iniset 56,649 100% 56,649 100% 56,684 100% 170,147
doduc inithx 2,599 100% 2,602 100% 2,776 107% 11,342
doduc integr 389,004 100% 389,004 100% 426,138 110% 1,717,290
doduc orgpar 23,692 100% 23,692 100% 24,985 105% 76,980
doduc paroi 531,875 100% 536,685 101% 637,325 120% 2,554,850
doduc pastem 589,076 100% 625,336 106% 721,850 123% 2,233,270
doduc prophy 534,736 100% 553,522 104% 646,101 121% 3,818,096
doduc repvid 486,141 100% 486,141 100% 507,531 104% 1,983,312
rkf45 rkf45 1,475 100% 1,475 100% 1,575 107% 3,675
rkf45 rkfs 56,024 100% 56,024 100% 66,254 118% 149,051
doduc saturr 63,426 100% 63,426 100% 59,334 94% 134,664
matrix300 saxpy 13,340,000 100% 13,340,000 100% 13,340,000 100% 47,540,000
matrix300 sgemm 8,664 100% 8,664 100% 8,767 101% 21,320
matrix300 sgemv 496,000 100% 496,000 100% 536,800 108% 1,667,800
doduc si 9,924,360 100% 9,924,360 100% 9,981,072 101% 20,415,860
seval spline 882 100% 882 100% 937 106% 3,719
doduc subb 1,763,280 100% 1,763,280 100% 1,763,280 100% 3,336,840
doduc supp 2,564,382 100% 2,564,382 100% 2,567,544 100% 4,859,994
svd svd 4,438 100% 4,596 104% 4,542 102% 12,895
tomcatv tomcatv 240,688,724 100% 248,494,642 103% 243,582,924 101% 1,287,422,939
fpppp twldrv 76,120,702 100% 76,291,270 100% 81,100,769 107% 288,657,989
urand urand 550 100% 550 100% 563 102% 1,243
doduc x21y21 1,253,980 100% 1,253,980 100% 1,253,980 100% 4,311,762
cplex xaddrow 16,345,264 100% 16,345,264 100% 16,487,352 101% 39,109,805
cplex xielem 19,735,495 100% 19,738,262 100% 19,791,979 100% 49,891,205
cplex xload 3,831,744 100% 3,831,744 100% 3,899,518 102% 10,172,013
doduc yeh 342,460 100% 342,460 100% 379,567 111% 713,299
zeroin zeroin 739 100% 740 100% 729 99% 1,441

Figure 16 Procedure vs optimization, cycle counts on the ILOC virtual machine

47

6. Related Work

As program representations have evolved they
have gained an executable model; they include all the
information necessary to execute a program. Also,
restrictions on the evaluation order, expressed as edges
in the graph, are lifted. The later representations are
both more compact and more complete and allow more
optimizations. Our representation is one more step
along these lines. It has an executable model and has
fewer restrictions on the evaluation order than any of
the previous models. This lifting of restrictions gives
analysis and optimization algorithms more freedom to
discover facts and reorganize code from disjoint sec-
tions of the original program.

Ferrante, Ottenstein and Warren present the Pro-
gram Dependence Graph in [11]. The PDG is more
restrictive than our representation in that control edges
are added to every node. Also, the PDG lacks the
control information required at merges for an execu-
tion model. Cartwright and Felleisen extend the PDG
to the Program Representation Graph adding valve
nodes to the PDG [4]. The PRG has a model of exe-
cution. Selke's thesis gives a semantic framework for
the PDG [20]. The PDG has fewer restrictions than
our representation where control edges are required.
We would like to extend the combined optimization
algorithm so it understands control dependence.

Cytron, Ferrante, Rosen, Wegman and Zadeck de-
scribe an efficient way to build the SSA form of a pro-
gram [10] which assigns only once to each variable.
The SSA form is a convenient way to express all data
dependences, but it also lacks control information at φ-
functions.

Alpern, Wegman and Zadeck present the value
graph [1]. The value graph is essentially an SSA form
of the program expressed as a directed graph. The
authors extend the value graph to handle structured
control flow, but do not attempt to represent complete
programs this way. The value graph lacks control in-
formation at φ-functions and therefore does not have a
model of execution.

Ballance, Maccabe and Ottenstein present the
Program Dependence Web [3]. The PDW is a com-
bination of the PDG and SSA form and includes the
necessary control information to have a model of exe-
cution. It also includes extra control edges that unnec-
essarily restrict the model of execution. The PDW

includes μ and η nodes to support a demand-driven
data model. Our representation supports a data-driven
model and does not need these nodes. The PDW is
complex to build, requiring several phases.

Pingali, Beck, Johnson, Moudgill and Stodghill
present the Dependence Flow Graph [18]. The DFG
is executable and includes the compact SSA represen-
tation of data dependences. The DFG has switched
data outputs that essentially add the same unnecessary
control dependences found in the PDW. The DFG
includes anti-dependence edges to manage the store;
our representation does not require these. The DFG
includes a denotational semantics and has the one step
Church-Rosser property.

Paul Havlak has done some recent work on the
thinned Gated Single Assignment form of a pro-
gram [17]. This form is both executable and compact.
Currently, the GSA is limited to reducible programs.
The GSA can find congruences amongst DAGs of ba-
sic blocks not found using our representation. We can
find congruences amongst loop invariant expressions
not found using the GSA. It is not clear if the forms
can be combined, or if one form is better than another.
A promising implementation of thinned GSA exists
and has been used on a large suite of FORTRAN ap-
plications with good results.

Weise, Crew, Ernst, and Steensgaard present the
Value Dependence Graph [22]. The VDG is similar
in spirit to our representation. It represents an inde-
pendent line of research, performed in parallel with our
own. Weise, et al. stress the VDG for research in par-
tial evaluation, slicing and other optimizations; they
have built visual display tools to help transformations
on the VDG. We stress compilation speed and code
quality; our compiler is much faster and includes a
larger set of classic optimizations.

John Field gives a formal treatment of graph re-
writing on a representation strongly resembling our
representation. We hope to use his semantics with
only minimal modifications [14].

7. Conclusions

Our intermediate representation is a compact and
lightweight graph containing the essential information
for both program execution and optimization. Data
dependences are represented using use-def edges, as in
an SSA graph, while control dependences become

48

edges to REGION Nodes. Providing control informa-
tion at PHI Nodes makes our model compositional
which we found helpful for implementing fast local
optimizations.

The consistent treatment of control and data edges
simplifies the intermediate representation and imple-
mentation of the compiler. We take advantage of
C++'s inheritance mechanisms and construct a sepa-
rate class for each different opcode. Opcode-specific
information, such as literal fields, is defined in each
class. A node's opcode is represented by the C++ vir-
tual function table pointer. Use-def edges are simple
pointers to other Nodes and control edges are pointers
to REGION Nodes. Virtual functions define opcode
semantics providing, for example, a node specific hash
function for value numbering.

To produce a faster optimizer, we moved some of
the work into the front end. We reasoned that inex-
pensive peephole optimizations done while parsing
would reduce the size of our intermediate representa-
tion and the expense of later optimization phases. We
feel that this approach was successful, and benefited
from the availability of use-def information and the
static single assignment property while parsing.

Bibliography

[1] B. Alpern, M. Wegman, and F. Zadeck. Detect-
ing equality of variables in programs. In Con-
ference Record of the Fifteenth ACM Sympo-
sium on the Principles of Programming Lan-
guages, 1988.

[2] V. Bala. Private conversation about the KSR
register allocator, Dec. 1994.

[3] R. Ballance, A. Maccabe, and K. Ottenstein.
The program dependence web: A representation
supporting control-, data- and demand-driven
interpretation of imperative languages. In Pro-
ceedings of the SIGPLAN ‘90 Conference on
Programming Languages Design and Imple-
mentation, June 1990.

[4] P. Briggs. The Massively Scalar Compiler Proj-
ect. Unpublished report. Preliminary version
available via ftp://cs.rice.edu/public/preston/opt-
imizer/shared.ps. Rice University, July 1994.

[5] P. Briggs and T. Harvey. Iloc '93. Technical
report CRPC-TR93323, Rice University, 1993.

[6] R. Cartwright and M. Felleisen. The semantics
of program dependence. In Proceedings of the
SIGPLAN ‘89 Conference on Programming
Languages Design and Implementation, June
1989.

[7] D. Chase, M. Wegman, F. Zadeck. Analysis of
pointers and structures. In Proceedings of the
SIGPLAN ‘90 Conference on Programming
Languages Design and Implementation, June
1990.

[8] C. Click, Combining Analyses, Combining Op-
timizations. Ph.D. thesis, Rice University, 1995.
Preliminary version available via ftp://cs.rice.
edu/public/cliffc/thesis.ps.gz.

[9] C. Click. Global code motion, global value
numbering. Submitted to PLDI ‘95.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. Weg-
man, and F. Zadeck. An efficient method of
computing static single assignment form. In
Conference Record of the Sixteenth ACM Sym-
posium on the Principles of Programming Lan-
guages, Jan. 1989.

[11] J. Davidson and C. Fraser. Code selection
through object code optimization. ACM Trans-
actions on Programming Languages and Sys-
tems, 6(4):505–526, Oct. 1984.

[12] K. Drechsler and M. Stadel. A solution to a
problem with Morel and Renvoise’s “Global op-
timization by suppression of partial redundan-
cies”. ACM Transactions on Programming
Languages and Systems, 10(4):635–640, Oct.
1988.

[13] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in optimi-
zation. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, July,
1987.

[14] J. Field. A simple rewriting semantics for realis-
tic imperative programs and its application to
program analysis. In Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, pages
98–107, 1990.

49

[15] G. Forstyhe, M. Malcom, and C. Moler. Com-
puter Methods for Mathematical Computations.
Prentice-Hall, Englewood Cliffs, New Jersey,
1977.

[16] D. Hanson. Fast allocation and deallocation of
memory based on object lifetimes. Software
Practice and Experience, 20(1):5–12, Jan. 1990.

[17] P. Havlak, Interprocedural Symbolic Analysis.
Ph.D. thesis, Rice University, 1994.

[18] E. Morel and C. Renvoise. Global optimization
by suppression of partial redundancies. Com-
munications of the ACM, 22(2):96–103, Feb.
1979.

[19] R. Pingali, M. Beck, R. Johnson, M. Moudgill,
and P. Stodghill. Dependence flow graphs: An
algebraic approach to program dependencies.
Technical Report TR-90–1152, Cornell Uni-
versity, 1990.

[20] B. Rosen., M. Wegman, and F. Zadeck, Global
Value Numbers and Redundant Computations.
In Conference Record of the Fifteenth ACM
Symposium on the Principles of Programming
Languages, Jan. 1988.

[21] R. Selke, A Semantic Framework for Program
Dependence. Ph.D. thesis, Rice University,
1992.

[22] D. Weise, R. Crew, M. Ernst, and B. Steens-
gaard. Value dependence graphs: Representation
without taxation. In Proceedings of the 21st
ACM SIGPLAN Symposium on the Principles of
Programming Languages, 1994.

[23] M. Wegman and F. Zadeck. Constant propaga-
tion with conditional branches. ACM Transac-
tions on Programming Languages and Systems,
13(2):181-210, April 1991.

