
Programming
Techniques

G. Manacher, S.L. Graham
Editors

An Efficient List-
Moving Algorithm
Using Constant
Workspace
Douglas W. Clark
Carnegie-Mellon University

An efficient algorithm is presented for moving
arbitrary list structures, using no storage (apart from
program variables) other than that required to hold
the original list and the copy. The original list is de-
stroyed as it is moved. No mark bits are necessary, but
pointers to the copy must be distinguishable from
pointers to the original. The algorithm is superior in
execution speed to previous algorithms for the same
problem. Some variations and extensions o f the algorithm
are discussed.

Key Words and Phrases: list moving, list copying,
LISP, space complexity, constant workspace

CR Categories: 4.34, 4.49, 5.25

1. Introduction

The problem addressed here is how to move an
arbitrary LiSP-type list structure using an amount of
storage (other than that required to hold the original list
and the copy) that does not grow with the size or
complexity of the list. Unlike the problem of copying
a list [5], moving a list allows the old list to be destroyed
during processing. Following usP conventions [7],
assume that each list cell contains two pointers, called
car and cdr, which can point to any list cell or to non-
list items, which are called atoms.

If a stack of sufficient depth is available, moving a
list structure is relatively straightforward. Fenichel and
Yochelson [4] give a recursive list-moving algorithm as
part of their garbage collector. Minsky's algorithm
[8], also intended for use in a garbage collector, opti-
mizes use of its stack but still needs more than a con-
stant amount of working storage. Both of these al-
gorithms require time proportional to the number of
cells moved.

Cheney's algorithm [1] was the first that needed
workspace of only constant size. Although it was
originally intended for "compact lists"--i.e, those cdrs
that point to the following location in memory are
simply omit ted-- i t can easily be adapted to work on
LiSP-type structures. In this paper "Cheney's algorithm"
will mean the LiSP-oriented version of the original.
Reingold's algorithm [9] employs the Deutsch-Schorr-
Waite list-tracing technique [6, p. 417; 10] to avoid
using a stack. This idea was suggested by Fenichel and
Yochelson [4]. Reingold's algorithm traces lists in the
car direction; that is, it follows car before cdr if there
is a choice. In the interest of uniformity, "Reingold's
algorithm" will hereafter mean the simple modification
of the original that traces in the cdr direction instead.

Cheney's arid Reingold's algorithms are both linear
in the number of cells moved, and both require at
least two visits to each cell. The algorithm presented
here is also linear, but must revisit only those cells
both of whose pointers point to lists. A recent empirical
study of list structure data in LISP [2] found that in the
programs considered, about one third of cars and three
fourths of cdrs were lists. Assuming that cars and
cdrs are independent as to their data types, this means
that in real list structures only about one-fourth of list
cells would need to be visited twice by the present
algorithm.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was done while the author was supported by a
grant from the Xerox Corporation Palo Alto Research Center.
Author's address: Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA 15213.

352

2. An Example

The operation of the algorithm is illustrated by
example in Figure 1. The list structure to be moved is
((A) B (A) C (D)) , where the two occurrences of the
sublist (A) are in fact the same cell. Figure 1 (a) shows
the original structure. In the figure, car is the left-hand

Communications June 1976
of Volume 19
the ACM Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360238.360247&domain=pdf&date_stamp=1976-06-01

pointer of a cell, and cdr the right-hand one. A diagonal
slash designates the list-terminating a tom NIL.

The algorithm first copies the top level of the list,
with some changes, into sequential locations in the new
list area. The state of affairs after this has been done is
shown in Figure 1 (b), in which the following conditions
hold:

(1) Old cars have been replaced by "forwarding
addresses": car(x) is x 's new location. This technique,
or some variant of it, is employed by all of the other
list-moving and copying algorithms discussed here
[1, 3, 4, 5, 8, 9]. Discovery of a forwarding address

.where an ordinary car was expected inhibits the crea-
tion of spurious copies of shared cells.

(2) In the copy, atomic cars and the one atomic
cdr (so far) have their final values.

(3) List cars in the copy point to the original sub-
lists in the old list area.

(4) List cdrs in the copy have their final values,
and all point to the next consecutive cell in memory.

(5) Old top-level cells with list cars have been
linked together through their cdrs in L IFO order on a
list k. The first such cell encountered terminates k
by having N I L in its cdr.

The algorithm must now, in effect, " p o p " the k-list
and move the old sublist pointed to by car of the copy
of the first cell on k, namely, car(car(k)). The top level
of this sublist will be moved as described above; and
as more cells with list cars are encountered, they will
be attached to the front of k. Each time k is popped,
the corresponding list car in the copy will be set to its
final value. This value will be the next free cell in the
new area if the sublist has not already been moved, or
the forwarding address of the sublist, car(car(car(k))),
if it has.

Figure 1 (c) shows the state of things after both sub-
lists of the original structure have been copied. One
cell remains on the k-list. The forwarding address left
in the old shared sublist (A) demonstrates its useful-
ness by preventing creation of a second copy. Figure
1 (d) shows the final result.

It is in its use of the k-list that the present algorithm
differs most significantly from those of Cheney and
Reingold. Cheney's algorithm, after copying the top
level of a list much as is done here, visits sequentially
each cell of the copy to find sublists. Reingold's al-
gorithm attaches all visited cells to its version of the
k-list during copying, and computes final values for
new list cdrs only when backtracking up the list. Both
algorithms thus revisit cells (or copies of cells) with
atomic cars.

3. The A l g o r i t h m

Although the algorithm does not require a mark bit
in each bell, it does need to be able to tell whether a

pointer points into the new list area. A s s u m i n g the
new region to be a block of contiguous locations, this
could be done simply by comparing the pointer with
the address boundaries of the region. Let the predicate
new(x) be true if and only if x points within the new
area. Let the free variable n point to the first available
cell in the new area, and assume that each list cell
occupies one word of the sequentially addressed mem-
ory. The algorithm given below will move the list
pointed to by h from the old list region to the new. On
termination of the algorithm, h will point to the new
list, and n to the next free cell in the new area.

Part A. Copy the top level of a list.

A1. [Initialize.[x+--h, h*-n, and k*--NIL.
A2. [Save car and cdr.] a*--car(x) and d~cdr(x).
A3. [Store forwarding address.] car(x)~--n.
A4. [Is car a list?] If a is a list then cdr(x)~k and k~x. (k points

to the most recently visited cell whose car is a list.)
A5. [Copy old car.] car(n)*--a. (If a is an atom, car(n) has its final

value now.)
A6. [Compute and write new cdr.] If d is an atom then cdr(n)*--d,

n*-n+l, and go to step B1. If new(car(d)) then cdr(n)+--car(d),
m--n+l, and go to step B1. Otherwise, d must be an unvisited
list, so cdr(n)~--n+l, n*-n+l, x~--d, and return to step A2.
(In all cases cdr(n) gets its final value in this step. If d is an
atom or an already visited list, cdr-direction tracing stops and
we go to Part B tofind the most recentlyseen sublist. Otherwise,
we continue cdr-following and return to step A2.)

Part B. Find the most recently visited sublist.

B1. [k=NIL?] If k=N1L then the algorithm terminates with h
pointing to the new list and n to the next free cell.

B2. [Remove first element of k-list.] x*--ear(car(k)), t*--k, and
k ~--cdr(k) .

B3. [Compute and write new car.] If new(car(x)) then
car(car(t))~--car(x) and return to step B1. Otherwise,
car(car(t))+--n and go to step A2. (Car of the copy of the cell
just removed from k gets its final value in this step.)

4. Improvement s , Variat ions , and E x t e n s i o n s

The algorithm as it stands puts onto the k-list cells
with list cars and atomic cdrs (or already copied
cdrs), only to remove such cells immediately in order
to copy the sublist. An improvement in the algorithm,
therefore, would be to avoid these undesirable second
visits by adding a cell to k if and only if car is a list
and cdr is an unvisited list. Since cdr must be checked
for this property anyway (to establish its new value),
this speed-up would require no additional computa-
tional effort.

I f this change is made, then every cell on the k-list
will have the following property: cdr of the copy of the
cell will be the next sequential cell in the new list area.
This redundancy makes it possible to keep the k-list
in the copy rather than in the original list, since the
cdrs temporarily displaced by the links of k can easily
be recomputed during the second visit to each cell.
Keeping k in the copy eliminates one memory fetch
when each element of k is removed: car(k) is des ired

353 Communications June 1976
of Volume 19
the ACM Number 6

Fig. 1. Moving the list ((A) B (A) C (D)): (a) initial structure; (b)
and (c) during processing (d) final structure. Dotted pointers are
those unchanged from the previous figure.

(a)

- ~/ - l k old
~ ~ - ~ list

area

new
h-4 list

(b) area

evaluated again to make sure x had not been encoun-
tered in the interim.

The new area into which a list is moved need not
be a block of contiguous locations. New cells could
be acquired from an arbitrary free-list by an obvious
change in the algorithm. I f old and new list areas over-
lap in memory, however, the function new(x) would
probably require a mark bit in each cell. (Clearly this
change would not permit the k-list links to be kept
in the new cdrs, as suggested above.)

Acknowledgments . Helpful comments on a draft
of this paper were made by D.G. Bobrow, E.S. Cohen,
L.P. Deutsch, and S.H. Fuller.

' I I
I I

(e)

' I I :
I I I k__L___ , ~ , ;

' , - ~ _ ~L _ ' t ~/ : ~/ ,/,
v v l T -~ .

(d)

instead of car(car(k)) . The resulting algorithm is faster
than the one given in the previous section.

I f reference counts are available for each list cell, a
further improvement is possible, namely, avoiding the
storage of a forwarding address for cells with a refer-
ence count of one. (This clearly requires that the k-list
be kept in the copy.) This idea was used by Deutsch
and Bobrow in their linearization algorithm [3]. If,
moreover, all cells have a reference count of one, then
the list can be moved without altering the original
structure.

I f many list cells are pointed to more than once, it
may be profitable to evaluate new(car(car(x))) when a
cell x with a list car is f irst visited. I f car(car(x)) is a
new list pointer (as it would be, in this case, much of
the time), then x need not be added to the k-list, thus
saving the second visit and the attendant overhead.
If, on the other hand, few cells are shared (as appears to
be the case in real LISP programs [2]), this check would
not be worthwhile. The reason is that in the usual case
new(car(car(x))) would be false, x would be attached
to the k-list, and when, sometime later, x was removed
from the k-list, new(car(car(x))) would have to be

Received July 1975

R e f e r e n c e s
1. Cheney, C.J. A nonrecursive list compacting algorithm.
Comm. ACM 13, 11 (Nov. 1970), 677-678.
2. Clark, D.W., and Green, C.C. An empirical study of list
structure in LISP. Comm. ACM, to appear.
3. Deutsch, L.P, and Bobrow, D.G. An efficient, incremental,
automatic garbage coUector. Comm. ACM, to appear.
4. Fenichel, R.R., and Yochelson, J.C. A LISP garbage-collector
for virtual-memory computer systems. Comm. ACM 12, 11 (Nov.
1969), 611-612.
5. Fisher, D.A. Copying cyclic list structures in linear time using
bounded workspace. Comm. ACM 18, 5 (May 1975), 251-252.
6. Knuth, D.E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968.
7. McCarthy, J. Recursive functions of symbolic expressions and
their computation by machine--I. Comm. ACM 3, 4 (April 1960),
184-195.
8. Minsky, M.L. A LISP garbage collector algorithm using
serial secondary storage. Artificial Intelligence Project Memo 58
(revised), M.I.T. Project MAC, Dec. 1963.
9. Reingold, E.M. A nonrecursive list moving algorithm. Comm.
ACM 16, 5 (May 1973), 305-307.
10. Schorr, H., and Waite, W. An efficient machine-independent
procedure for garbage collection in various list structures. Comm.
ACM 10, 8 (Aug. 1967), 501-506.

Corr igendum
1975 A C M Student Award Paper: First Place

Guy L. Steele Jr., "Multiprocessing Compact i fying Gar -
bage Collection," Comm. A C M 18, 9 (Sept. 1975),
495-508.

P. 501 : In the routine relocate, after the comment , "Re-
locate an object," the next three lines should be per-
muted to read:

munch(address(s, k));
s. cells[j]~---s, cells [k];
s. cells[j], mark~-true;

This is needed to prevent a t iming error which can oc-
cur if the list processor modifies a component of the
object being relocated f rom (using the clobber routine).

3 5 4 Communications June 1976
of Volume 19
the ACM Number 6

