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An efficient algorithm is presented for moving 
arbitrary list structures, using no storage (apart from 
program variables) other than that required to hold 
the original list and the copy. The original list is de- 
stroyed as it is moved. No  mark bits are necessary, but 
pointers to the copy must be distinguishable from 
pointers to the original. The algorithm is superior in 
execution speed to previous algorithms for the same 
problem. Some variations and extensions o f  the algorithm 
are discussed. 
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1. Introduction 

The problem addressed here is how to move an 
arbitrary LiSP-type list structure using an amount  of 
storage (other than that required to hold the original list 
and the copy) that does not grow with the size or 
complexity of the list. Unlike the problem of copying 
a list [5], moving a list allows the old list to be destroyed 
during processing. Following usP conventions [7], 
assume that each list cell contains two pointers, called 
car and cdr, which can point to any list cell or to non- 
list items, which are called atoms. 

If  a stack of sufficient depth is available, moving a 
list structure is relatively straightforward. Fenichel and 
Yochelson [4] give a recursive list-moving algorithm as 
part of their garbage collector. Minsky's algorithm 
[8], also intended for use in a garbage collector, opti- 
mizes use of its stack but still needs more than a con- 
stant amount  of working storage. Both of these al- 
gorithms require time proportional to the number of 
cells moved. 

Cheney's algorithm [1] was the first that needed 
workspace of only constant size. Although it was 
originally intended for "compact  lists"--i.e, those cdrs 
that point to the following location in memory are 
simply omit ted-- i t  can easily be adapted to work on 
LiSP-type structures. In this paper "Cheney's algorithm" 
will mean the LiSP-oriented version of the original. 
Reingold's algorithm [9] employs the Deutsch-Schorr- 
Waite list-tracing technique [6, p. 417; 10] to avoid 
using a stack. This idea was suggested by Fenichel and 
Yochelson [4]. Reingold's algorithm traces lists in the 
car direction; that is, it follows car before cdr if there 
is a choice. In the interest of uniformity, "Reingold's 
algorithm" will hereafter mean the simple modification 
of the original that traces in the cdr direction instead. 

Cheney's arid Reingold's algorithms are both linear 
in the number of cells moved, and both require at 
least two visits to each cell. The algorithm presented 
here is also linear, but must revisit only those cells 
both of whose pointers point to lists. A recent empirical 
study of list structure data in LISP [2] found that in the 
programs considered, about one third of cars and three 
fourths of cdrs were lists. Assuming that cars and 
cdrs are independent as to their data types, this means 
that in real list structures only about one-fourth of list 
cells would need to be visited twice by the present 
algorithm. 
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2. An Example 

The operation of the algorithm is illustrated by 
example in Figure 1. The list structure to be moved is 
( ( A ) B ( A ) C ( D ) ) ,  where the two occurrences of the 
sublist (A) are in fact the same cell. Figure 1 (a) shows 
the original structure. In the figure, car is the left-hand 

Communications June 1976 
of Volume 19 
the ACM Number 6 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360238.360247&domain=pdf&date_stamp=1976-06-01


pointer of a cell, and cdr the right-hand one. A diagonal 
slash designates the list-terminating a tom NIL.  

The algorithm first copies the top level of  the list, 
with some changes, into sequential locations in the new 
list area. The state of affairs after this has been done is 
shown in Figure 1 (b), in which the following conditions 
hold: 

(1) Old cars have been replaced by "forwarding 
addresses": car(x) is x 's  new location. This technique, 
or some variant of it, is employed by all of the other 
list-moving and copying algorithms discussed here 
[1, 3, 4, 5, 8, 9]. Discovery of a forwarding address 

.where an ordinary car was expected inhibits the crea- 
tion of spurious copies of  shared cells. 

(2) In the copy, atomic cars and the one atomic 
cdr (so far) have their final values. 

(3) List cars in the copy point to the original sub- 
lists in the old list area. 

(4) List cdrs in the copy have their final values, 
and all point to the next consecutive cell in memory.  

(5) Old top-level cells with list cars have been 
linked together through their cdrs in L IFO order on a 
list k. The first such cell encountered terminates k 
by having N I L  in its cdr. 

The algorithm must now, in effect, " p o p "  the k-list 
and move the old sublist pointed to by car of the copy 
of the first cell on k, namely, car(car(k)).  The top level 
of this sublist will be moved as described above; and 
as more cells with list cars are encountered, they will 
be attached to the front of k. Each time k is popped, 
the corresponding list car in the copy will be set to its 
final value. This value will be the next free cell in the 
new area if the sublist has not already been moved, or 
the forwarding address of the sublist, car(car(car(k))),  
if it has. 

Figure 1 (c) shows the state of things after both sub- 
lists of the original structure have been copied. One 
cell remains on the k-list. The forwarding address left 
in the old shared sublist (A) demonstrates its useful- 
ness by preventing creation of a second copy. Figure 
1 (d) shows the final result. 

It  is in its use of the k-list that the present algorithm 
differs most significantly from those of Cheney and 
Reingold. Cheney's algorithm, after copying the top 
level of a list much as is done here, visits sequentially 
each cell of the copy to find sublists. Reingold's al- 
gorithm attaches all visited cells to its version of the 
k-list during copying, and computes final values for 
new list cdrs only when backtracking up the list. Both 
algorithms thus revisit cells (or copies of cells) with 
atomic cars. 

3. The  A l g o r i t h m  

Although the algorithm does not require a mark  bit 
in each bell, it does need to be able to tell whether a 

pointer points into the new list area. A s s u m i n g  the  
new region to be a block of contiguous locations, this 
could be done simply by comparing the pointer with 
the address boundaries of  the region. Let the predicate 
new(x)  be true if and only if x points within the new 
area. Let the free variable n point to the first available 
cell in the new area, and assume that each list cell 
occupies one word of the sequentially addressed mem- 
ory. The algorithm given below will move the list 
pointed to by h from the old list region to the new. On 
termination of the algorithm, h will point to the new 
list, and n to the next free cell in the new area. 

Part A. Copy the top level of a list. 

A1. [Initialize.[ x+--h, h*-n, and k*--NIL. 
A2. [Save car and cdr.] a*--car(x) and d~cdr(x). 
A3. [Store forwarding address.] car(x)~--n. 
A4. [Is car a list?] If a is a list then cdr(x)~k and k~x.  (k points 

to the most recently visited cell whose car is a list.) 
A5. [Copy old car.] car(n)*--a. (If a is an atom, car(n) has its final 

value now.) 
A6. [Compute and write new cdr.] If d is an atom then cdr(n)*--d, 

n*-n+l, and go to step B1. If new(car(d)) then cdr(n)+--car(d), 
m--n+l, and go to step B1. Otherwise, d must be an unvisited 
list, so cdr(n)~--n+l, n*-n+l, x~--d, and return to step A2. 
(In all cases cdr(n) gets its final value in this step. If d is an 
atom or an already visited list, cdr-direction tracing stops and 
we go to Part B tofind the most recentlyseen sublist. Otherwise, 
we continue cdr-following and return to step A2.) 

Part B. Find the most recently visited sublist. 

B1. [k=NIL?] If k=N1L then the algorithm terminates with h 
pointing to the new list and n to the next free cell. 

B2. [Remove first element of k-list.] x*--ear(car(k)), t*--k, and 
k ~--cdr( k ) . 

B3. [Compute and write new car.] If new(car(x)) then 
car(car(t))~--car(x) and return to step B1. Otherwise, 
car(car(t))+--n and go to step A2. (Car of the copy of the cell 
just removed from k gets its final value in this step.) 

4. Improvement s ,  Variat ions ,  and E x t e n s i o n s  

The algorithm as it stands puts onto the k-list cells 
with list cars and atomic cdrs (or already copied 
cdrs), only to remove such cells immediately in order 
to copy the sublist. An improvement  in the algorithm, 
therefore, would be to avoid these undesirable second 
visits by adding a cell to k if and only if car is a list 
and cdr is an unvisited list. Since cdr must be checked 
for this property anyway (to establish its new value), 
this speed-up would require no additional computa- 
tional effort. 

I f  this change is made, then every cell on the k-list 
will have the following property:  cdr of the copy of the 
cell will be the next sequential cell in the new list area. 
This redundancy makes it possible to keep the k-list 
in the copy rather than in the original list, since the 
cdrs temporarily displaced by the links of k can easily 
be recomputed during the second visit to each cell. 
Keeping k in the copy eliminates one memory  fetch 
when each element of k is removed: car(k) is des ired  
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Fig. 1. Moving the list ((A) B (A) C (D)): (a) initial structure; (b) 
and (c) during processing (d) final structure. Dotted pointers are 
those unchanged from the previous figure. 

(a) 
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evaluated again to make sure x had not been encoun- 
tered in the interim. 

The new area into which a list is moved need not 
be a block of contiguous locations. New cells could 
be acquired from an arbitrary free-list by an obvious 
change in the algorithm. I f  old and new list areas over- 
lap in memory,  however, the function new(x)  would 
probably require a mark  bit in each cell. (Clearly this 
change would not permit the k-list links to be kept 
in the new cdrs, as suggested above.) 
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instead of car(car(k)) .  The resulting algorithm is faster 
than the one given in the previous section. 

I f  reference counts are available for each list cell, a 
further improvement  is possible, namely, avoiding the 
storage of a forwarding address for cells with a refer- 
ence count of one. (This clearly requires that the k-list 
be kept in the copy.) This idea was used by Deutsch 
and Bobrow in their linearization algorithm [3]. If, 
moreover,  all cells have a reference count of one, then 
the list can be moved without altering the original 
structure. 

I f  many list cells are pointed to more than once, it 
may be profitable to evaluate new(car(car(x)))  when a 
cell x with a list car is f irst  visited. I f  car(car(x))  is a 
new list pointer (as it would be, in this case, much of 
the time), then x need not be added to the k-list, thus 
saving the second visit and the attendant overhead. 
If, on the other hand, few cells are shared (as appears to 
be the case in real LISP programs [2]), this check would 
not be worthwhile. The reason is that in the usual case 
new(car(car(x)))  would be false, x would be attached 
to the k-list, and when, sometime later, x was removed 
from the k-list, new(car(car(x)))  would have to be 
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P. 501 : In the routine relocate, after the comment ,  "Re-  
locate an object," the next three lines should be per- 
muted to read: 

munch(address(s, k)); 
s. cells[j]~---s, cells [k]; 
s. cells[j], mark~-true; 

This is needed to prevent a t iming error which can oc- 
cur if the list processor modifies a component  of  the 
object being relocated f rom (using the clobber routine). 
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