
Thus even if hl is not already reduced modulo n, a sub-
traction of n (rather than a more expensive division by n)
will make it so. Since even this subtraction is needed only
about Q/n of the time, a small Q (as in the last paragraph)
saves subtract time.

6. Conc lus ion
We have presented a new algorithm for hash coding. I t

has been shown to possess certain attributes tha t are de-
sired in such algorithms. Specifically it is simple, efficient,
exhaustive, needs little time per probe, and uses few probes
per lookup.

RECEIVED JUNE, 1970

REFERENCES

1. MORRIS, R. Scatter storage techniques. Comm. ACM 11, 1
(Jan. 1968), 35-38.

2. MAURER, W.D. An improved hash code for scatter storage.
Comm. ACM 11, 1 (Jan. 1968), 38--44.

3. BELL, J. R. The quadratic quotient method: A hash code
eliminating secondary clustering. Comm. ACM 13, 2 (Feb.
1970), 107-109.

4. RADKE, E . E . The use of quadratic residue research. Comm.
ACM 13, 2 (Feb. 1970), 103-105.

A Nonrecursive List Compacting
Algorithm

C. J. CI-IENEY
University Mathematical Laboratory, Cambridge, England

A simple nonrecursive list structure compacting scheme or
garbage collector suitable for both compact and LISP-like
list structures is presented. The algorithm avoids the need for
recursion by using the partial structure as it is built up to keep
track of those lists that have been copied.

KEY WORDS AND PHRASES: list compacting, garbage collection, compacl
llst, LISP
CR CATEGORIES: 4.19, 4.49

Hansen [1] and Fenichel and Yochelson [2] have pre-
sented two algorithms for compacting list structures. One
feature of both algorithms is that, on finding a list pointer,
recursion is needed to collect the sublist. The authors of
the second paper suggest that a nonrecursive but complex
scheme should be possible using the algorithm of Deutsch,
Schorr, and Waite [3]. However a much simpler algorithm
is possible.

This algorithm uses a function COPYLIST to copy a
list in the CDR direction from the original list area (the
old area) to a new list area. List pointers are copied with-
out transformation. A linear scan of the new list area
applying COPYLIST to any list pointers found will
copy any sublists into the new area.

To demonstrate the algorithm, consider the structure
in Figure l(a). The cells shown with a pointer from them,
drawn with a broken line, serve only to connect the list in
the CDR direction--these cells will be called "nonitems."

The structure is accessed via the pointer HEAD. This
structure has two lists, the first consisting of three atoms
A, B, C and a list pointer to the second list which consists
solely of a list pointer to the atom A of the first list. Lists

+ o

(a)

HEAD I q / q

SCAN 't NEXT ~
(b)

:: i i : HEAD
,+AIBI¢I I/1

SCANT NEXTT
(c)

I , ' . - - -5 , _ . , ,
I I I , I , . ~ I t l / l
I I I I s

I
I I I +

HEAD dAiSlCi ~,iA i , i / , 1
T NEXT

SCAN
(d)

old
list
area

new
list
a r e a

FIG. 1. Compacting a structure without looped lists: (a) initial
structure; (b) and (c) during processing; (d) final structure.

V o l u m e 13 / Number 11 / November, 1970 C o m m u n i c a t i o n s o f t h e ACM 677

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362790.362798&domain=pdf&date_stamp=1970-11-01

are terminated by N I L cells. The algorithm with some
modification can be applied to LISP-type structures.

To compact the structure, the list pointed to by HEAD
is copied by COPYLIST into the new area-- the contents
of each item (not nonitems) are placed in consecutive cells
in the new area, and the cells in the old area are changed
to nonitems pointing to their equivalent cells in the new
area. COPYLIST returns as a result the address of the
first cell of the list in the new area. This value is used to
update HEAD. A pointer N E X T is kept pointing to the
next free cell in the new area. This intermediate structure
is shown in Figure 1 (b).

A further pointer SCAN now scans the new area from
the beginning. If SCAN points to a N I L or an atom, it is
moved on to the next cell. If SCAN points to a list pointer,
COPYLIST is entered with this list pointer as its param-
eter. The sublist is therefore copied, updating N E X T ,
and the value returned is used to make the list pointer
pointed at by SCAN point to the copied list in the new
area. The structure resulting when SCAN has processed
the first list pointer is shown in Figure 1 (c). Note that, in
copying, COPYLIST omits the nonitems of the original
structure.

SCAN continues its traverse of the new area and will
pass over the N I L to the second list to reach another list
pointer. COPYLIST is again applied, but this time it
finds the first i tem is already in the new area (e.g. by com-
paring core addresses), and the function returns with the
address of this cell in the new area, which is used to update
the list pointer, but without recopying the list.

The compact structure is complete when SCAN reaches
the cell pointed to by NEXT. The procedure is capable of
dealing with looped lists as COPYLIST will place a non-
item in the new area when necessary (see Figure 2).

(o)

o,0
HEAD list

o r g c]
i i
I i
i I f l e W

~-]-~-N list oreG

POINTE EXT
(b)

I I
I

I I
4.,g-~-- -I

HEAD .~AiBi ~i
(c} 'rNEXT

FIG. 2. Compact ing a looped l is t

A version has been written in assembly language in-
volving the execution of between 30 and 40 orders on an
Atlas computer for each item of the structure transferred
to the new area.

The algorithm is presented below in two par t s - - the
"main program" first, and then the function COPYLIST.

Step 1. Ini t ial ize the pointers SCAN and N E X T to poin t to the
beginning of the new list area.

Step 2. Apply the funct ion COPYLIST- -desc r ibed be low-- to
the pointer t h a t points to the whole s t ruc tu re and assign
the resul t of COPYLIST to t h a t pointer .

Step 3. If SCAN points to a l is t -pointer , then apply COPYLIST
to t h a t l is t pointer , the resul t of COPYLIST replaces the
contents of the cell pointed at by SCAN.

Step 4. Inc rement SCAN, unless SCAN now points to the same
cell pointed at by N E X T , go to s tep 3 above. Otherwise the
compact ing is complete.

The function COPYLIST takes one parameter,
P O I N T E R , called by value; the function does the follow-
ing:

Step 1. If P O I N T E R points to a cell t h a t is a noni tem, make
P O I N T E R point to the cell pointed a t by the noni tem. Re-
peat this s tep while P O I N T E R points to a noni tem.

Step 2. If P O I N T E R is point ing to a cell in the new area, r e tu rn
wi th the value of P O I N T E R as the result .

Step 3. Save the cur ren t value of N E X T in a var iable V.

Step 4. If P O I N T E R is point ing to a cell in the new area, make
the cell poin ted at by N E X T into a non i t em point ing to the
cell t h a t is pointed a t by P O I N T E R , and go to s tep 11 below.

Step 5. Copy the conten ts of the cell poin ted at by P O I N T E R to
the cell poin ted a t by N E X T .

Step 6. If P O I N T E R is point ing to a NIL, then go to s tep 11 below.

Step 7. Make the cell poin ted at by P O I N T E R into a non i t em
t h a t points to the cell poin ted at by N E X T , i.e. the corre-
sponding cell in the new area.

Step 8. Inc rement N E X T , increment P O I N T E R .

Step 9. If P O I N T E R points to a noni tem, make P O I N T E R point
to the cell poin ted at by the noni tem, repeat th is s tep while
P O I N T E R is point ing to a noni tem.

Step 10. Go to s tep 4 of the funct ion COPYLIST.

Step 11. Inc remen t N E X T and re tu rn wi th the va lue of V as the
result .

Acknowledgments. The author is particularly grateful
for many discussions with N. E. Wiseman and for the
criticisms of the draft of this note from M. V. Wilkes.

RECmVED MARCH, 1970; REVISED JUNE, 1970

R E F E R E N C E S

1. HANSEN, W. J. Compac t l is t r epresen ta t ion : definition, gar-
bage collection and sys tem implementa t ion . Comm. ACM 12,
9 (Sept. 1969), 499-507.

2. FENICHEL, R. R., AND YOCHELSON, J. C. A LISP garbage-
collector for v i r tua l memory computer symstems. Comm.
ACM 1P, 11 (Nov. 1969), 611-612.

3. KNUTH, D. E. The Art of Computer Programming Vol. 1 Fun-
damental Algorithms. Addison-Wesley, Reading, Mass.,
1968, pp. 417-419.

678 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / N u m b e r 11 / N o v e m b e r , 1970

