
Practical Improvements to the Construction andDestruction of Static Single Assignment FormPreston BriggsTera Computer CompanyKeith D. CooperTimothy J. HarveyL. Taylor SimpsonRice UniversityAbstractStatic single assignment (SSA) form is a program representation that is useful for compiler-basedcode optimization. In this paper, we address three problems that have arisen in our use of SSA form.Two are improvements to the SSA construction algorithms presented by Cytron et al. [10]. The �rstimprovement is a version of SSA form that we call \semi-pruned" SSA. The semi-pruned constructionbuilds a smaller SSA form than the \minimal" form at a modest increase in cost. It avoids the globaldata-ow analysis required to build \pruned" SSA. The second improvement speeds up the programrenaming process by e�ciently manipulating the stacks of names. The stacks indicate the SSA nameof each variable that reach a particular point in the program. Our improvement reduces the numberof pushes performed in addition to more e�ciently locating the stacks which should be popped. The�nal problem that we address concerns the process of converting SSA form back into executable code.The naive algorithm that appears to be prior practice can produce incorrect code in cases that involveeither copy folding or \critical edges". This issue has caused earlier authors to restrict their work to SSAgraphs without critical edges. We present an algorithm for replacing �-nodes with copy instructions thatgenerates correct code in the presence of both copy folding and critical edges.We have implemented all of these improvements in our experimental optimizing compiler. For thetwo improvements to the SSA construction algorithm, we present experimental results that demonstratethe e�ectiveness of these improvements not only during the construction of SSA form, but also in thetime saved by subsequent optimization passes that use a smaller representation of the program. For thecopy insertion algorithm, correctness rather than performance is the issue. Our algorithm is slower thanthe naive algorithm, but it produces correct code. This should allow other authors to remove restrictionsthat they have placed on the shape of control-ow graphs used as input to their algorithms.1 IntroductionStatic single assignment (SSA) form is an intermediate representation that compilers use to facilitate programanalysis and optimzation [9, 10]. SSA form can be viewed as a sparse representation for the informationcontained in classic use-de�nition and de�nition-use chains [16]. In many applications, it has become theprimary program representation. SSA form has two principal advantages over prior representations.1. It imposes a strict discipline on the name space used to represent values in the computation. Eachreference of a name corresponds to the value produced at precisely one de�nition point.2. It identi�es the points in the computation where values from di�erent control-ow paths merge. At amerge point, several di�erent SSA names that correspond to di�erent de�nitions of the same originalname can ow together. To ensure the single-assignment property, the construction inserts a newde�nition at the merge point; its right hand side is a pseudo-function called a �-function that representsthe merge of multiple SSA names.These properties simplify not only the building of data-ow analyses such as def-use and use-def chains, butthey serve as a powerful framework in the analysis and design of optimization algorithms.Converting code into SSA form can improve the results of analysis and simplify the implementation ofvarious transformations. For example, the SSA name space contains a unique name for each de�nition pointAddress all correspondence to Tim Harvey, Rice University, 6100 Main Street, Mail Stop 132, Houston, TX 77005,harv@rice.edu



in the procedure, both de�nition points that occurred in the original code and those inserted to embody themerging of di�erent values from distinct control-ow paths. This leads to a larger name space; performingdata-ow analysis over this new name space can provide the compiler with more detailed knowledge about thepossible run-time ow of values. In transforming the code, the inserted �-functions demarcate an importantpoint in the ow of values. For example, any variable that is modi�ed inside a loop will have a �-functionin the loop's header block. This feature makes identifying induction variables in loops particularly easy [21].Since the introduction of SSA form in 1989, many papers have described applications of SSA form for analysisor transformation [2, 4, 20, 6].The original work on SSA form presented two algorithms for constructing SSA form from the code fora procedure [9, 10]. The SSA constructed by the algorithms di�ers in the size of its name space and thenumber of �-functions that must be inserted.1. The \minimal" construction produces a form dubbed \minimal" SSA. It inserts a �-function andde�nition at every point where a control-ow merge brings together two SSA names for a single originalname. It can insert a �-function to merge two values that are never used after the merge{in data-owanalysis terminology, two values that are not live.2. The \pruned" construction produces a form dubbed \pruned" SSA. The pruned construction usesglobal data-ow analysis to decide where values are live. It only inserts �-functions at those mergepoints where the analysis indicates that the value may be live. This can drastically reduce the numberof �-functions and, thus, the number of SSA names.The two algorithms di�er in their time and space complexity. The minimal algorithm avoids computing liveinformation, so it is less expensive than the pruned algorithm. The consequence of algorithmic speed is alarger SSA form.This paper presents three algorithmic improvements to the current art of building and using SSA form.The �rst creates a SSA form that has fewer nodes than the minimal form without the expense of solvingdata-ow equations to determine which values are \live." The second speeds up the renaming processthrough an algorithmic improvement. The third and �nal improvement addresses a problem that arisesin translating SSA form back into executable code. We have implemented all three improvements in ourlaboratory compiler. The paper presents measurements that demonstrate the impact of each improvement.The remainder of this paper is laid out as follows. Section 2 provides an overview of SSA form andthe algorithms for constructing it. Section 3 describes a simple and e�cient improvement on the minimalform that drastically reduces the number of �-functions without resorting to global data-ow analysis.Section 4 shows how to manage the data structures to improve the e�ciency of the renaming phase of SSAconstruction. Section 5 describes a subtle problem that arises in converting SSA form back into executablecode and presents an algorithm for handling it. Each section contains experimental results that assess theimpact of each improvement.2 BackgroundMany techniques for the analysis and optimization of compiled code rely on the construction of informationchains, either from uses to de�nitions or from de�nitions to uses [15]. Modern compilers often use SSA formas a sparse alternative to classic information chains. Informally, the code for a procedure is said to be inSSA form if it meets two criteria:1. each name has exactly one de�nition point, and2. each use refers to exactly one name.The �rst criterion creates a correspondence between names and de�nition points. The second criterion forcesthe insertion of new de�nitions at points in the code where multiple values, de�ned along di�erent paths,come together.To satisfy the �rst criterion, the compiler must rewrite the code by inventing new names for each de�nitionand substituting these new names for subsequent uses of the original names. To create unique names, thecompiler adds a subscript to the original program name. This retains information about the original name



x : : : x0 : : :y  x+ x y0  x0 + x0x x+ y x1 x0 + y0z  x+ y z0  x1 + y0Before AfterFigure 1 Straight-line code and its conversion to SSA formspace and improves the readability of the resulting code. To build SSA form from a straight-line fragmentof code is trivial; each time a name gets de�ned, the compiler invents a new name which it then substitutesinto subsequent references. At each re-de�nition of a name, the compiler uses the next new name and beginssubstituting that name. For example, consider the code in the left column of Figure 1. Conversion to SSAform produces the code in the right column. For straight line code, this process is quite simple and fast.Renaming changes the availability of values. Consider the value of x0 in the example. In the originalcode, x0 was available at the de�nition of x1, but not at the de�nition of z0. In the SSA form, since x0 and x1are distinct, both x0 and x1 can be named at the de�nition of z0. The transformation correctly rewrote thelast statement to refer to x1 rather than x0, but x0 can still be referenced, in the sense that it has a uniquename. Its value is accessible until the statement de�ning x0 is re-executed.1 In the original code, it couldnot be named.The presence of control ow complicates both the renaming process and the interpretation of the resultingcode. If a name in the original code is de�ned along two converging paths, the SSA form of the code hasmultiple names when it reaches a reference. To solve this problem, the construction introduces a newde�nition point at the merge point in the CFG. The de�nition uses a pseudo function, called a �-function ora �-node. The arguments of the �-node are the names owing into the convergence, and the �-node de�nesa single, new name. Subsequent uses of the original name will be replaced with the new name de�ned by the�-node. This ensures the second criterion stated earlier: each use refers to exactly one name. To understandthe impact of �-nodes, consider the code fragment shown in Figure 2. Two di�erent de�nitions of x reachthe use. The construction inserts a �-node for x at the join point; it selects from its arguments based on thepath that executes at run-time.Conceptually, the SSA construction involves two steps. The �rst step decides where �-nodes are needed.At each merge point in the CFG, it must consider, for each value, whether a �-node is required and insertthose for which the answer is a�rmative. The second step systematically renames all the values to correspondto their de�nition points. For a speci�c de�nition, this involves rewriting the left-hand side of the de�ningstatement and the right-hand side of every reference to the value. At a merge point, the value may occur asan argument to a �-node. When this happens, the name propagates no further along that path. (Subsequentuses refer to the name de�ned by the �-node.)x : : : x : : : x� - ? x1  : : : x2 : : :x3 �(x1; x2) x3� - ?Before AfterFigure 2 Conversion to SSA form in the presence of control ow1This notion gives rise to the \static" in \static single assignment." The uniqueness of names is a static property rather thana dynamic property. A given assignment statement can execute more than once at run-time.



The simplest SSA conversion algorithm would insert a �-node at each join point for each original namereferenced in the procedure. Renaming would be done in two reverse-postorder passes; the �rst pass ignoresback edges and the second pass rewrites only names that correspond to values passed along back edges. Theresulting SSA form would be huge; it would have many more �-nodes than necessary. However, it wouldconform to the two criterion. We might call this \maximal" SSA form. Although this algorithm is hopelesslyine�cient, it captures the essence of the SSA construction process: decide where to place �-nodes, thenrewrite the name space. The di�erence between this algorithm and those that follow is optimization; all theother algorithms produce fewer �-nodes and, consequently, smaller name spaces.2.1 Building Minimal SSAFigure 3 shows the basic algorithm for constructing minimal SSA form from a CFG representation ofthe routine. The algorithm has two basic steps: determine locations for �-nodes and rename variables. Thescheme for �-node placement uses information about dominator relationships in the CFG to determine where�-nodes are needed. The renaming step uses a preorder walk over the dominator tree and an array of stacksto introduce new names and track their appropriate scopes.The �rst step in placing �-nodes builds a dominator tree for the CFG and calculates dominance frontiersfor the nodes in the CFG. In a ow graph, if node X appears on every path from the start node to node Y ,then X dominates Y (X�Y ). If X�Y and X 6= Y , then X strictly dominates Y (X � Y ). The immediatedominator of Y (idom(Y )) is the closest strict dominator of Y [13]. In the routine's dominator tree, theparent of each node is its immediate dominator. Notice that all nodes that dominate a node X are ancestorsof X in the dominator tree. Lengauer and Tarjan give an e�cient algorithm for building the dominator treein O(E logN ) time, where E is the number or edges and N is the number of blocks in the CFG [17]. Thedominance frontier of node X is the set of nodes Y such that X dominates a predecessor of Y , but X doesnot strictly dominate Y (i.e., DF(X) = fY j 9P 2 Pred(Y ); X�P and X 6� Y g). Intuitively, DF(X) is theset of nodes one edge beyond the region that X dominates, and thus identi�es blocks reached on di�erentcontrol-ow paths. Cytron et al. give an algorithm for �nding dominance frontiers which runs in O(E+N2)time [10, Figure 10]2. Cytron et al. extend the concept of diminance frontiers in two ways.1. The dominance frontier of a set of nodes is de�ned to be the set of nodes in the dominance frontier ofany member of the set (i.e., DF(S) = [X2SDF(X)).2. The iterated dominance frontier DF+(S) is the limit of the sequenceDF1 = DF(S)DFi+1 = DF(S [DFi)For each variable v, the compiler builds a set A(v) containing the CFG nodes where assignments to voccur. Cytron et al. show that �-nodes for v are required only in blocks in DF+(A(v)). To improvethe e�ciency of �-node placement, both Cytron and Ferrante and Sreedhar and Gao have proposed moree�cient schemes [11, 19]. The improvements that we propose in the following sections are also e�ective inthese frameworks.After �-nodes have been inserted, variables must be renamed to create the single-assignment property.This is accomplished in a single recursive walk of the dominator tree, shown in the procedure SEARCH inFigure 3. For each name in the original code, SEARCH maintains two data structures. The �rst, Counters[v],contains the subscript that will be assigned to the next de�nition of v. The second, Stacks[v], holds thecurrent subscript for v. At each de�nition of v, SEARCH renames v with the subscript from Counters[v],pushes that value onto Stacks[v], and increments Counters[v]. During the �rst step, it rewrites variablenames, incrementing the various counters and pushing new names onto the appropriate stacks. Next, itrewrites �-node parameters in any successor blocks in the CFG so that the name inherited from the currentblock has the current subscript. (It uses the whichPred function to determine which �-node parameter inthe successor corresponds to the current block.) To continue the search, it recurses on each child in thedominator tree. On return from the recursion, it processes the current block again, to pop from each stackany subscripts added while processing the block.2Cytron et al. assert that the N2 only occurs in the worst case and that the �gure is closer to N in practice



/* STEP 1: Determine locations for �-nodes */Calculate the dominator tree and dominance frontiersFor each variable, vA(v) fblocks containing an assignment to vgPlace a �-node for v in the iterated dominance frontier of A(v)/* STEP 2: Rename each variable, replacing v, with the appropriate vi */For each variable, vCounters[v] 0Stacks[v] emptystack()SEARCH(start)/* Recursively walk the dominator tree, renaming variables */SEARCH(block)For each �-node, v  �(: : :), in blocki Counters[v]Replace v by vipush(i; Stacks[v])Counters[v] i+ 1For each instruction, v  x op y, in blockReplace x with xi, where i = top(Stacks[x])Replace y with yi, where i = top(Stacks[y])i Counters[v]Replace v by viPush i onto Stacks[v]Counters[v] i+ 1For each successor, s, of blockj  whichPred(s; block)For each �-node, p, in sv  jth operand of pReplace v with vi, where i = top(Stacks[v])For each child, c, of block in the dominator treeSEARCH(c)For each instruction, v  x op y, or �-node, v  �(: : :), in blockpop(Stacks[v])Figure 3 Algorithm for building minimal SSA form



2.2 Building Pruned SSAMinimal SSA form relies entirely on dominator information to determine where to insert �-nodes. Thedominance frontier correctly captures the potential ow of values, but ignores the data-ow facts themselves{ in particular, knowledge about the lifetimes of values gleaned from analyzing their de�nitions and uses.Because of this, the minimal SSA construction will insert a �-node for v at a join point where v is not live.To improve on minimal SSA, Cytron et al. proposed another variation on SSA that they called prunedSSA [10]. To build pruned SSA, the compiler �rst performs \liveness analysis" on the routine. Livenessanalysis produces, for each block, a set of values that are live on entry to the block { that is, values thatcan be referenced along some path leading to the block [1]. Many algorithms exist for computing liveinformation [16].The actual construction of pruned SSA is quite similar to the construction of minimal SSA. In Figure 3,we need only add a prepass that computes live information and modify the �rst step where �-nodes areinserted. The minimal SSA construction inserts a �-node for v in every node in DF+(A(v)). The prunedSSA construction changes this to insert a �-node for v in every node n 2 DF+(A(v)), where v 2 live in(n).These changes can drastically reduce the number of �-nodes.The pruned-SSA construction algorithm costs more than the minimal SSA construction. Not only doesinserting �-nodes require two membership tests rather than one, but it must also compute the live sets.Although linear-time or near-linear time algorithms exist for this problem [14, 12, 22] (and, thus, the asymp-totic time complexity of SSA conscruction does not change), it does raise the constant factor substantially.To compute live sets, the analyzer must make a pass over each block to build sets containing the initialinformation. Then, in a second step, it revisits each block to compute the actual live sets.3 These operationsconsume a nontrivial amount of time.Equally troubling, building liveness analysis increases the space requirements for building SSA, since eachblock has a number of large sets associated with it. These larger memory requirements can directly degradeperformance.2.3 One �nal assumptionThroughout this paper, we assume that names are used in a type-consistent fashion. A name in the originalcode cannot be used to hold values that have di�erent types, such as an integer along one path and a floatalong another. This is true in most modern programming languages. It becomes somewhat trickier whenthe input program is at a very-low level. For example, building SSA on code produced by a register allocatoris problematic if a single register can hold either an integer or a oating point value. The constructionalgorithms implicitly assume that they can determine the type of a �-function from its inputs. If its inputshave di�erent types, the assumption is violated.non-locals ;For each block Bkilled ;For each instruction v  x op y in Bif x 62 killed thennon-locals non-locals [ fxgif y 62 killed thennon-locals non-locals [ fygkilled killed[ fvgFigure 4 Algorithm for �nding non-local names3The number of \visits" to each block will depend on the speci�c data-ow analysis algorithmused and on the detailed structureof the routine being analyzed.



x : : : xy  : : :z  : : :? y x : : : xy  : : :z  : : :?y  : : :z  : : :? y z�- ��Original Codex1  : : : x1y1  : : :z1  : : :? y1 x2  : : : x2y2  : : :z2  : : :? y2�- ��x3  �(x1; x2)y3  �(y1; y2)z3  �(z1; z2) z3 x1  : : : x1y1  : : :z1  : : :? y1 x2  : : : x2y2  : : :z2  : : :? y2�- ��y3  �(y1; y2)z3  �(z1; z2) z3 x1  : : : x1y1  : : :z1  : : :? y1 x2  : : : x2y2  : : :z2  : : :? y2�- ��z3  �(z1; z2) z3Minimal SSA Semi-pruned SSA Pruned SSAFigure 5 Three avors of SSA form3 Using Fewer �-Nodes | Semi-Pruned FormCytron et al. describe two avors of SSA form that vary in the number of �-nodes inserted. Minimal SSAform places �-nodes by looking only at the dominance frontier information without regard to liveness. Inother words, it is possible that a �-node will be inserted for a name which is not subsequently used. Theseextra �-nodes do not detract from the quality of analysis; they simply waste space and time. Pruned SSAform relies on liveness analysis to ensure that no such dead �-nodes are inserted. If we are building prunedSSA form, we only insert a �-node for a variable v at the beginning of a block if v is live on entry to thatblock. Since the pruned form relies on additional analysis, it may be slower to build. However, the timespent on analysis may be recovered by inserting fewer �-nodes.We have developed a third avor of SSA that we call semi-pruned SSA form. The speed and spaceadvantage of this form over the other two relies on the observation that many names in a routine are de�nedand used wholly within a single basic block. For example, the compiler typically generates temporary namesto hold intermediate steps in any non-trivial computation; these compiler-generated names often have shortlifetimes. Semi-pruned SSA capitalizes on this observation by computing the set of names that are live onentry to some basic block in the program. We call these \non-local" names. The construction only computesA(v) for non-local names. The number of �-nodes will lie between that of the minimal and pruned forms,but the non-local names are much cheaper to compute than the full-blown liveness analysis. Therefore,semi-pruned form represents a compromise between the time required to perform liveness analysis and thereduction in the number of �-nodes that it allows.To discover non-local names, the construction uses the algorithm shown in Figure 4. The compiler makesa simple forward pass over each basic block. When it discovers an operand that has not already beende�ned within the block (the killed set), it must be a non-local name. Notice how much simpler this is thanperforming the complete live analysis required for the pruned SSA construction. Computing non-local namesrequires just two sets, non-local and killed { much less space than the three sets per block required for afull live analysis. The algorithm makes just one pass over each block; this avoids the overhead for either



iteration or elimination in a full data-ow analysis. The non-local set is initialized once; the killed set isreset for each block4. The time and space requirements for building non-local are, therefore, minimal.Figure 5 illustrates the di�erences between the three avors of SSA. In the original code, we de�ne threevariables, x, y, and z. The three graphs at the the bottom of the �gure compare the �-nodes which thethree avors of SSA insert. The minimal SSA form contains �-nodes for all three variables. Clearly, the�-nodes for x and y are unnecessary; these variables are never used again. The semi-pruned SSA form doesnot contain a �-node for x because it is not live across any basic-block boundary. However, we still inserta �-node for y, because it is live across some block boundary, and that is the limit of the analysis used.The pruned SSA form contains a �-node for z only. For pruned form, we performed the complete analysisnecessary to show that both x and y are never used again.Each of the above three avors has di�erent uses. Cytron et al. give a contrived example where globalvalue numbering might bene�t from the extra, dead �-nodes which minimal form contains. However, thesedead �-nodes constitute a waste of both time and space for optimizations like constant propagation anddead-code elimination, which use the semi-pruned form. Other optimizations, such as the peephole optimizerand the register allocator, depend on the compactness of the pruned form and so must bear the extra timeneeded to perform the required liveness analysis [8, 5].3.1 Experimental ResultsWe compared the various avors of SSA using routines from the SPEC benchmark suite [18]. Table 1shows the number of �-nodes and the time required to build the three avors for each routine. The numberof �-nodes required by semi-pruned form always falls between that of minimal and pruned. However, thetime required to build semi-pruned form is often shorter than the time required for either minimal or pruned.This is due to the e�ective compromise between the fast analysis and a reduction in the number of �-nodesinserted. We also compare the time required by global value numbering (after the code is in SSA form)for each of the three avors [2]. This algorithm requires O(E logN ) time, where N and E are the numberof nodes and edges in the SSA graph.5 The experiments show that reducing the number of �-nodes can?signi�cantly? improve the execution time of this analysis.4 E�cient Stack ManipulationIn the second step of the SSA construction (see Figure 3), the compiler renumbers all the names to ensurethat each assignment (including �-nodes) de�nes a unique name. The renumbering is handled by a recursivepreorder walk over the dominator tree.We can summarize the renaming process as follows: We declare an array of stacks (indexed by the originalname) to hold the subscripts used to replace each original name, and we use the topmost name on the stackStacksv - i+3 - i+2 - i+1 -?i - � � � 0Figure 6 Stacks after variable v is de�ned three times4Further, by utilizing the SparseSet data structure[7], the time to perform these actions is constant.5In the SSA graph, each node represents an assignment and edges ow from uses to de�nitions.



Number of �-nodes Time to build SSA (sec) Value numbering (sec)Routine Minimal Semi Pruned Minimal Semi Pruned Minimal Semi Prunedtwldrv 73778 11989 9886 1.28 0.34 0.45 8.42 4.88 4.75deseco 8610 2216 1842 0.23 0.18 0.22 1.92 1.58 1.46ddeflu 5852 1560 1222 0.12 0.06 0.09 0.77 0.63 0.62iniset 5364 1080 462 0.12 0.11 0.16 0.34 0.19 0.17debflu 4715 1748 1542 0.09 0.08 0.08 0.85 0.72 0.71paroi 3597 767 632 0.07 0.06 0.07 0.35 0.22 0.22efill 3170 357 74 0.04 0.02 0.02 0.14 0.04 0.04inisla 2722 267 141 0.04 0.03 0.03 0.12 0.05 0.05tomcatv 2699 365 145 0.05 0.03 0.05 0.14 0.06 0.05pastem 2584 374 62 0.06 0.03 0.05 0.20 0.10 0.10prophy 2021 436 401 0.05 0.04 0.05 0.36 0.27 0.31inithx 1967 267 85 0.04 0.03 0.04 0.22 0.16 0.14debico 1880 171 112 0.04 0.03 0.04 0.14 0.08 0.08repvid 1094 141 45 0.03 0.02 0.03 0.07 0.04 0.03bilan 1080 70 34 0.03 0.02 0.02 0.10 0.06 0.06dyeh 857 79 40 0.02 0.02 0.02 0.05 0.03 0.02sgemm 809 341 279 0.02 0.01 0.01 0.05 0.05 0.04orgpar 803 143 98 0.03 0.02 0.03 0.09 0.05 0.06integr 799 89 34 0.02 0.01 0.02 0.05 0.02 0.01gamgen 761 85 39 0.02 0.01 0.01 0.04 0.02 0.03heat 667 50 22 0.02 0.02 0.02 0.05 0.03 0.02fmtgen 653 127 33 0.01 0.01 0.01 0.02 0.02 0.01inideb 645 148 131 0.01 0.01 0.01 0.07 0.05 0.05yeh 624 154 122 0.02 0.02 0.03 0.09 0.09 0.09drepvi 617 76 52 0.03 0.02 0.02 0.03 0.04 0.03cardeb 601 96 54 0.02 0.01 0.01 0.03 0.02 0.02ihbtr 597 88 31 0.01 0.01 0.02 0.04 0.02 0.01bilsla 569 67 38 0.01 0.01 0.01 0.03 0.02 0.01drigl 557 169 121 0.01 0.01 0.01 0.04 0.04 0.04saturr 541 27 25 0.03 0.02 0.03 0.08 0.06 0.06dcoera 334 36 33 0.01 0.01 0.01 0.03 0.01 0.02lissag 311 42 15 0.01 0.01 0.01 0.02 0.01 0.01colbur 310 15 9 0.01 0.01 0.01 0.02 0.02 0.01fmtset 275 77 61 0.01 0.01 0.01 0.03 0.02 0.01supp 38 7 5 0.02 0.03 0.03 0.07 0.05 0.06fpppp 0 0 0 0.17 0.21 0.30 0.80 0.80 0.77subb 0 0 0 0.02 0.02 0.02 0.05 0.06 0.05Table 1 Comparison of three avors of SSA



- � � �- � � �--�� - �pushedList� -Stacks
Figure 7 The stacks data structure, showing the connection between nodes in each stackto annotate each use of that name. We push a new subscript onto a name's stack each time we encounter ade�nition of that name.When we have �nished processing a block (and its descendants in the dominator tree), we must restorethe stacks to the same state as when we began processing the block. The method suggested by Cytron et al.is to iterate a second time through the current block's �-nodes and instructions, this time popping a namefrom the appropriate stack for each de�nition. However, pushing a node for each de�nition in a block iswasteful. Consider a basic block that de�nes a variable v three times. Figure 6 shows the stack for v afterprocessing the de�nitions in the block. The vertical arrow indicates the point where we must restore thestack. Notice that once the i + 2 node gets pushed, the i + 1 node can never be accessed again, becauseany subsequent reference to v will use the name in the i + 2 node and restoring the state of the stack willremove the i + 1 node. Similarly, after the i + 3 node gets pushed, the i + 2 node will never be accessedagain. We can reduce the number of nodes allocated if we overwrite the i + 1 node with i + 2 and thenwith i+3. However, we cannot overwrite the i node, because it must remain after we have restored the stateof the stack. Therefore, we will push a node onto the stack for v at the �rst de�nition of v in the block, butsubsequent de�nitions of v in the same block will simply overwrite the node. To accomplish this, we willrecord which variables have already had a node pushed for the current block. If a variable is rede�ned insidethe block, we will overwrite its top-of-stack instead of pushing a new node.Since we are pushing at most one node for each variable when we process the de�nitions in a block, wecan no longer restore the state of the stack by iterating over the operations in the block and popping a nodefor each de�nition. For each block, we maintain a list of the variables with a node that has been pushed.Nodes are added to the list as they are pushed (i.e., after the �rst de�nition in the block). Thus, restoringthe state of the stacks requires popping the nodes in the list. This data structure is shown in Figure 7.In summary, we must ensure that at most one node per variable gets pushed per block, and we use a listto guide the popping of the stacks. This improvement not only keeps us from allocating superuous nodes,but it also speeds up the popping phase at the end. The approach used by Cytron et al. requires a secondpass through the instructions in the block, popping a node from each de�nition's stack as it is encountered.With this new method, we can simply iterate down the list of elements, popping just one node from eachstack.4.1 Experimental ResultsFigure 2 compares the number of pushes required for each method of manipulating the stacks. The oldmethod performs a push for each de�nition in the routine, but the new method performs at most one pushper variable per block. The number of pushes (and, thus, the amount of memory required) is signi�cantlyreduced when the new method is used. We also compare the total time required to build semi-pruned SSAform using each of the methods. For large routines, a ?signi�cant? amount of time is saved.



Number of pushes Build SSA (sec)Routine Old method New method Old method New methodtwldrv 27295 19569 0.350 0.320fpppp 19963 5641 0.270 0.240deseco 14121 8625 0.190 0.160iniset 6608 5298 0.110 0.100ddeflu 6393 4651 0.080 0.070debflu 6389 4225 0.080 0.060paroi 4881 2864 0.050 0.070prophy 3609 1947 0.050 0.030pastem 2755 2060 0.050 0.030inithx 2686 1706 0.040 0.030debico 2667 1348 0.030 0.030tomcatv 2633 1490 0.040 0.030inisla 2373 1308 0.030 0.030supp 2037 1734 0.020 0.040bilan 1994 878 0.030 0.020subb 1733 1311 0.020 0.020saturr 1689 1522 0.020 0.020drepvi 1597 1109 0.030 0.020yeh 1547 1157 0.030 0.010orgpar 1499 1053 0.020 0.020repvid 1449 1010 0.020 0.020efill 1439 1047 0.010 0.020inideb 1242 729 0.010 0.020heat 944 845 0.010 0.010sgemm 941 681 0.010 0.020dyeh 941 794 0.010 0.020cardeb 893 643 0.010 0.010gamgen 849 417 0.010 0.010drigl 805 648 0.010 0.010integr 804 499 0.010 0.010bilsla 750 339 0.010 0.010ihbtr 732 605 0.010 0.010lissag 724 292 0.010 0.000colbur 716 538 0.010 0.010fmtset 668 447 0.010 0.010fmtgen 635 548 0.010 0.010sortie 595 503 0.010 0.010dcoera 556 455 0.010 0.000sgemv 348 269 0.010 0.000coeray 348 319 0.010 0.010sigma 129 126 0.010 0.010arret 63 62 0.010 0.000vgjyeh 60 54 0.010 0.000Table 2 Comparison of stack handling methods



5 Replacing �-nodes with CopiesAfter optimization, the compiler must translate the SSA form of a routine back into an executable form.We know of no popular computer that has a hardware �-function; thus, the compiler must translate thesemantics of the �-function into commonly implemented instructions. Ideally, this translation would restorethe name space used in the original code. Often, however, optimization and translation have made thisimpossible; in such cases, the compiler must insert copy operations to mimic the actions of the �-function.To replace a �-node in block b, the compiler can insert a copy operation into each of b's predecessors.Since the meaning of a �-node is a mapping of all of the incoming values to a single name, n, it is equivalentto place a copy at the end of each predecessor block. The copy moves the value corresponding to theappropriate �-node parameter into n. Consider the example in Figure 8. The left-hand side of the �gureshows a fragment of the CFG with the code in SSA form. The right-hand side of the �gure shows the samefragment with copies inserted for the �-node. Note that the insertion of copy operations has made the �-nodeobsolete, so we can discard it. This process can produce a large number of copies; in our compiler, we relyon the coalescing phase of a graph-coloring register allocator to remove as many of these as possible [8, 5].The process of inserting copies for �-nodes will consist of iterating through the blocks in the CFG,inserting a copy for each parameter of each �-node in the predecessor of the block containing the �-node.This process, however, is anything but straightforward { the interaction of names along di�erent paths inthe CFG can lead to subtle errors. We will �rst present two examples which require a more sophisticatedapproach than the naive insertion of copies, and then we will present our algorithm for replacing �-nodes.5.1 Re�ning the copy-insertion algorithmWe can insert a copy operation at the end of a block for each of its successors' �-nodes. This is a straight-forward instruction insertion for each of the successors' �-nodes. However, this naive insertion of copies cancause errors in cases that involve copy-folding in the renaming phase6 and critical edges in the control-owgraph.Copy Folding Folding copies reduces the size of the name space and simpli�es the SSA graph. Duringthe renaming phase of the SSA construction, the compiler can perform copy folding in a particularly simpleand elegant manner. This can speed both analysis and optimization. To perform copy folding, the compilerinterprets a copy as an operation on the name stacks; at a copy vi  xj, it pushes the name xj onto thename stack for v. This ensures that the compiler rewrites subsequent uses of vi to refer directly to xj .Critical Edges A critical edge is de�ned as an edge between a block with multiple successors and a blockwith multiple predecessors (i.e., (i; j) is a critical edge if and only if jsucc(i)j > 1 and jpred(j)j > 1). On acritical edge, the copy insertion described above breaks down. The copy cannot be inserted into the edge'ssource (the predecessor), because it would execute along paths not leading to the �-node. Similarly, itcannot be inserted in the edge's sink (the successor), because it would destroy values coming from otherpredecessors.This problem can be addressed by splitting the critical edge { inserting an empty basic block alongthe edge. Figure 9 shows a critical edge and how it could be split. In the presence of certain control-owoperations (e.g., jump-register), it is not always possible to split critical edges. Similarly, in the late stagesof compilation, particularly instruction scheduling, splitting the edge may be impractical. Critical edges areimportant for code placement algorithms, because their presence can restrict the movement of code, andthey can also cause naming conicts when replacing �-nodes with copies.5.1.1 The \Lost-Copy" ProblemThe lost-copy problem can only occur when copies are folded, and when critical edges have not been split.This situation requires care not only in the method of inserting the copies into a block, but also the orderin which we iterate through the blocks.6The same naming problems caused by copy folding can also occur if an optimization pass performs aggressive renumbering,as is done by a value numberer, for example.



x0  : : : x1  : : :x2  �(x0; x1)� - ? x0  : : :x2  x0 x1  : : :x2  x1� - ?Before AfterFigure 8 The impact of inserting copies for �-nodes����� �����HHHHj ����� �����HHHHj HHHHjBefore Splitting After SplittingFigure 9 Splitting a critical edgeConsider the code on the left side of Figure 10. At each iteration, the loop increments a variable, andthe value from the penultimate iteration is then returned7. The second column shows the code translatedinto SSA form with copy folding. Notice how y disappeared. The third column shows the result of naivelyreplacing the �-node with copies. Clearly, the result of the code has changed; it now prints out the value ofthe last iteration. The �nal column shows how splitting the critical edge cures the problem.Intuitively, the naive copy insertion failed because it created a reference to x2 beyond the scope of the�-node that de�ned it. The RTN occurs after the de�nition of x3; x2 and x3 are related values. Folding x2for y extends the lifetime of x2 beyond the rede�nition that creates x3.To avoid this problem, the compiler must notice that the value overwritten by the new copy is live pastthe point where the copy is inserted. When it detects this situation, it can insert a copy to a new temporaryname prior to inserting the copy, and rewrite subsequent uses of the overwritten name with the temporary'sx 1?y  xx x+ 1if p then?RTN y ��� x1  1?x2  �(x1; x3)x3 = x2 + 1if p then?RTN x2 ��� x1  1x2  x1?x2  �(x1; x3)x3 = x2 + 1x2  x3if p then?RTN x2 ��� x1  1x2  x1?x2  �(x1; x3)x3 = x2 + 1if p then?RTN x2 �6x2  x3��?Original code Code in SSA form Copies inserted Copies inserted when(Copies folded) (Incorrect) critical edges are split(Correct)Figure 10 An example of the code leading to the \Lost-Copy" problem7While this example might seem contrived, the situation arises routinely in Fortran DO-loops.



Perform liveness analysisFor each variable vStacks[v] emptystack()insert copies(start)insert copies(block)pushed  ;For all instructions i in blockReplace all uses u with Stacks[u]schedule copies(block) /* see Figure 14 */For each child c of block in the dominator treeinsert copies(c)For each name n 2 pushedpop(Stacks[n])Figure 11 Algorithm for iterating through the blocks to perform �-node replacementname. This is the idea underlying our copy insertion algorithm. This rewriting with new names mimics thename rewriting phase in the SSA construction, implying that the compiler must walk the dominator tree toinsert copies. It also means that the implementation will require a stack of names similar to the Stacks usedwhen building SSA form. However, copy insertion only need to push names onto stacks corresponding to thenames de�ned by the inserted copies { these are the only names which need to have their uses rewritten.The algorithm uses live-out information to determine which registers require insertion of additional copiesto temporaries. It uses a structure like the Stacks array to record the newly-created temporary names. Thisresults in an algorithm that walks the dominator tree in preorder. For each block, it replace uses in �-nodesand instructions with any new names. Next, it builds a list of copies that must be inserted and uses thealgorithm outlined in Section 5.1.2 to determine the order to insert the copies. As each copy is inserted, ifits source is live at the end of the block, the algorithm pushes the destination name onto the source's stackand resets a ag to show that the source is live outside the block. Finally, if the destination of the copy tobe inserted is live past the end of the block, it inserts a copy to a temporary at the �-node which de�nes theregister.Some clever engineering is also required to make this as e�cient as possible. A block B can be thepredecessor to many other blocks, but imagine the case where each of the successor blocks requires a copyto its own temporary for some value owing out of B. A naive implementation would insert as many copiesto temporaries as B has successors. One solution to this problem is to insert a copy to a temporary (when itis needed) at the top of the block to which the current �-node is attached and to use this temporary's namewhenever the value is needed as the source of a copy. This has the practical e�ect of capturing the valuein question immediately after it is de�ned by the �-node, so that it cannot be overwritten. Other solutionsexist, but their e�ect on code size is unpredictable.The algorithm for inserting copies for �-nodes which avoids the lost-copy problem is shown in Figure 11.Notice that the code must be in the form of a recursive routine to perform the walk. Clearly, the algorithmiccomplexity is bounded by the liveness analysis rather than this walk over the CFG.5.1.2 The \Swap" ProblemCopy folding exposes another problem with the naive copy insertion algorithm. Figure 12 shows an example.We refer to this as the swap problem.The left side of the �gure shows a simple loop that swaps the values of two variables using a temporarynamed x. The middle column shows the SSA form after folding copies. Since all of the operations in thebody of the loop were copies, they have all been absorbed, and all that is left in the body are the �-nodes.The right side of Figure 12 shows the result of naively inserting copy operations for the �-nodes. Thiscode is clearly incorrect. On the �rst iteration of the loop, the value of a2 gets overwritten, and both a2 andb2 subsequently contain the same value. The problem stems from the fact that the �-nodes in a block are



considered to execute in parallel. To solve this problem, the compiler can introduce a temporary variablefor each copied value.Naively inserting copies of all values into temporaries, however, is not a feasible solution. It potentiallydoubles the number of copies necessary for �-node replacement. Instead, the compiler should insert theminimal number of copies to temporaries necessary for correctness. Consider again the example in Figure 12.The problem is that some of the parameters to the �-nodes are de�ned by other �-nodes in the same block.Notice that the copies inserted into the top block do not contain references to other names de�ned by a�-node. These copies have been inserted correctly { that is, they do not change the meaning of the code. Itis only the copy operations inserted for parameters which were themselves de�ned by �-nodes in this blockwhich caused the problem. Thus, inserting copies to temporaries for these special cases will produce correctcode.This is slightly simplistic, however. Consider the code in Figure 13. Here, there is not a cycle ofdependences as in the swap problem, although the name a2 is used in a successive �-node in the block.According to the above rule, since the �-node is used as a parameter in another �-node in that block, a copyto a temporary should be inserted for it. Simple analysis, though, will show that reordering the copies willproduce correct code without the addition of a temporary, as shown in the right side of this �gure.In some sense, the choice of how to insert copy operations for �-nodes and when to insert copies totemporaries is a scheduling problem. A copy operation has two arguments, the source and the destination.We want to insert copies for a set of �-nodes subject to the following restriction: to schedule a copy c, allother copy operations which include c's destination as their source must be scheduled �rst. That is, beforea name is overwriten, any other operation which needed its value must have it already.Another way to look at this problem is to model the interaction of the copies to be inserted as a graphwhose nodes represent the copies and whose edges represent a name de�ned by one copy and used in anothercopy. If the graph is acyclic, the schedule of copies can then be found by a simple topological sort of thegraph { although we do not actually need to build this graph if we are careful about the data structures weuse to build the schedule.Our algorithm makes three passes over the list of �-nodes. In the �rst pass, the compiler counts thenumber of times a name is used by other �-nodes. In the second pass, it builds a worklist of names thatare not used in other �-nodes. The third pass iterates over the worklist, scheduling a copy for each elementin the worklist. Obviously, the copy operations whose destinations are not used by other copy operationscan be scheduled immediately. Furthermore, each time the compiler inserts a copy operation, it can add thesource of that operation to the worklist.Consider a block where the name n is used as the source for �ve other copy operations. By the rulegiven above, a copy rede�ning n cannot be inserted until all of the other �ve copies that use n have beeninserted. The rule's intent is to ensure that all of the copy operations refer to the value of n before it isoverwritten. But, once the �rst copy has been inserted, n's value has been preserved in its destination d,and overwriting n will not destroy that value. If the four remaining copy operations refer to d rather than n,then the compiler is free to overwrite n.This tactic will ensure that the copy operations are ordered correctly, but it still does not address theproblem of cycles of dependence. In the swap problem, we have a set of copies where each of the destinationsa : : :b : : :?x aa bb xif p then? ��� a1  : : :b1  : : :?a2  �(a1; b2)b2  �(b1; a2)if p then? ��� a1  : : :b1  : : :a2  a1b2  b1?a2  b2b2  a2if p then? ���Original code SSA form with copies folded �-nodes naively replacedFigure 12 An example of the code leading to the \Swap" Problem



a1  : : :b1  : : :?a2  �(a1; a3)b2  �(b1; a2)if p then? ��� a1  : : :b1  : : :a2  a1b2  b1?t a2a2  a3b2  tif p then? ��� a1  : : :b1  : : :a2  a1b2  b1?b2  a2a2  a3if p then? ���Original SSA form Unnecessary copy to a Correctly scheduledtemporary copiesFigure 13 Simple ordering exampleis used as a source in another copy in the set, forming a cycle. In the algorithm described thus far, none ofthe copies would ever be put on the worklist. To break this cycle, the algorithm can randomly pick one ofthe edges and break it, by inserting a copy to a temporary for one of the destinations. As we pointed outin the previous paragraph, this allows the algorithm to put that copy onto the worklist, and (with the cyclebroken) schedule the rest of the copies.The algorithm for solving the swap problem is shown in Figure 14. It is applied to each block and hasthree steps. The �rst step builds a list of the copies to be inserted by running through the �-nodes in each ofthe block's successors. During this accumulation phase, it also records some facts, such as which destinationsof the copies to be inserted are used as the sources of other copies in the list. The second pass builds up aworklist of those copies whose destinations are not used in any copies. The third step iterates through theworklist, inserting a copy for each member and then removing that member.Each time a copy is removed from the worklist, its source is checked to see if it is a destination of anothercopy in the set of copies yet to be inserted. If so, it adds that new copy to the worklist. Even if this newcopy is used as the source for numerous other copies waiting to be inserted; this is safe { remember that thisalgorithm is concerned with preserving values. Each time it inserts a copy, it records that the value formerlyheld in the source is now held in the destination. Any subsequent reference to the source in any insertedcopy will use the destination's name instead of the source's name. Thus, it is free to overwrite the sourceafter it copies the value into another location.Whenever the compiler inserts a copy, it must also consider the lost-copy problem. Thus, before it insertsa copy, it must check to see if the destination is in the the block's live-out set. If it is, the compiler �rst insertsa copy of the destination's value to a temporary. Then, it pushes the temporary's name onto the Stacks.Subsequent blocks dominated by the current block will use the temporary's name in place of references tothe destination's name.We can summarize the process as follows. During the �rst step of this algorithm, the compiler built upthe list of copies that needed to be inserted. Any copies left on this list when the worklist clears are involvedin cycles. We know that at least one temporary will then need to be inserted, so the algorithm randomlypicks one of the destination names to copy into a temporary name. This allows that copy to be put onto theworklist { the value is safely stored, so the compiler can overwrite the name. This breaks the cycle, and thethe worklist-clearing loop can start again. It alternates between these two sections until all of the copies inthe original list have been inserted.6 ConclusionsThe discovery of SSA form has revolutionized thinking and implementation of optimization. This paper hasexamined the implementation details in greater detail than the seminal literature on this subject.The �rst half of this paper should serve as a survey of the di�erent forms of SSA, wherein we presenteda discussion of how to build each avor, including the new semi-pruned form. This form is a compromisebetween the time required for liveness analysis required by pruned form and the large number of dead �-nodes



schedule copies(block)/* Pass One: Initialize the data structures */copy set ;For all successors s of blockj  whichPred(s; block)For each �-node dest  �(: : :) in ssrc  jth operand of �-nodecopy set  copy set [ fhsrc; destigmap[src] srcmap[dest] destused by another[src] TRUE/* Pass Two: Set up the worklist of initial copies */For each copy hsrc; desti in copy setIf used by another[dest] 6= TRUEworklist worklist [ fhsrc; destigcopy set  copy set � fhsrc; destig/* Pass Three: Iterate over the worklist, inserting copies */While worklist 6= ; or copy set 6= ;While worklist 6= ;Pick a hsrc; desti from worklistworklist worklist� fhsrc; destifIf dest 2 live outbInsert a copy from dest to a new temp t at �-node de�ning destpush(t; Stacks[dest])Insert a copy operation from map[src] to dest at the end of bmap[src] destIf src is the name of a destination in copy setAdd that copy to worklistIf copy set 6= ;Pick a hsrc; desti from copy setcopy set  copy set � fhsrc; destigInsert a copy from dest to a new temp t at the end of bmap[dest] tworklist worklist [ fhsrc; destigFigure 14 Algorithm for scheduling the copies to be inserted
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