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Abstract

Static single assignment (SSA) form is a program representation that is useful for compiler-based
code optimization. In this paper, we address three problems that have arisen in our use of SSA form.
Two are improvements to the SSA construction algorithms presented by Cytron et al. [10]. The first
improvement is a version of SSA form that we call “semi-pruned” SSA. The semi-pruned construction
builds a smaller SSA form than the “minimal” form at a modest increase in cost. It avoids the global
data-flow analysis required to build “pruned” SSA. The second improvement speeds up the program
renaming process by efficiently manipulating the stacks of names. The stacks indicate the SSA name
of each variable that reach a particular point in the program. Our improvement reduces the number
of pushes performed in addition to more efficiently locating the stacks which should be popped. The
final problem that we address concerns the process of converting SSA form back into executable code.
The naive algorithm that appears to be prior practice can produce incorrect code in cases that involve
either copy folding or “critical edges”. This issue has caused earlier authors to restrict their work to SSA
graphs without critical edges. We present an algorithm for replacing ¢-nodes with copy instructions that
generates correct code in the presence of both copy folding and critical edges.

We have implemented all of these improvements in our experimental optimizing compiler. For the
two improvements to the SSA construction algorithm, we present experimental results that demonstrate
the effectiveness of these improvements not only during the construction of SSA form, but also in the
time saved by subsequent optimization passes that use a smaller representation of the program. For the
copy insertion algorithm, correctness rather than performance is the issue. Our algorithm is slower than
the naive algorithm, but it produces correct code. This should allow other authors to remove restrictions
that they have placed on the shape of control-flow graphs used as input to their algorithms.

1 Introduction

Static single assignment (SSA) form is an intermediate representation that compilers use to facilitate program
analysis and optimzation [9, 10]. SSA form can be viewed as a sparse representation for the information
contained in classic use-definition and definition-use chains [16]. In many applications, it has become the
primary program representation. SSA form has two principal advantages over prior representations.

1. It imposes a strict discipline on the name space used to represent values in the computation. Each
reference of a name corresponds to the value produced at precisely one definition point.

2. It identifies the points in the computation where values from different control-flow paths merge. At a
merge point, several different SSA names that correspond to different definitions of the same original
name can flow together. To ensure the single-assignment property, the construction inserts a new
definition at the merge point; its right hand side 1s a pseudo-function called a ¢-function that represents
the merge of multiple SSA names.

These properties simplify not only the building of data-flow analyses such as def-use and use-def chains, but
they serve as a powerful framework in the analysis and design of optimization algorithms.

Converting code into SSA form can improve the results of analysis and simplify the implementation of
various transformations. For example, the SSA name space contains a unique name for each definition point
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in the procedure, both definition points that occurred in the original code and those inserted to embody the
merging of different values from distinct control-flow paths. This leads to a larger name space; performing
data-flow analysis over this new name space can provide the compiler with more detailed knowledge about the
possible run-time flow of values. In transforming the code, the inserted ¢-functions demarcate an important
point in the flow of values. For example, any variable that is modified inside a loop will have a ¢-function
in the loop’s header block. This feature makes identifying induction variables in loops particularly easy [21].
Since the introduction of SSA form in 1989, many papers have described applications of SSA form for analysis
or transformation [2, 4, 20, 6].

The original work on SSA form presented two algorithms for constructing SSA form from the code for
a procedure [9,10]. The SSA constructed by the algorithms differs in the size of its name space and the
number of ¢-functions that must be inserted.

1. The “minimal” construction produces a form dubbed “minimal” SSA. It inserts a ¢-function and
definition at every point where a control-flow merge brings together two SSA names for a single original
name. It can insert a ¢-function to merge two values that are never used after the merge—in data-flow
analysis terminology, two values that are not live.

2. The “pruned” construction produces a form dubbed “pruned” SSA. The pruned construction uses
global data-flow analysis to decide where values are live. It only inserts ¢-functions at those merge
points where the analysis indicates that the value may be live. This can drastically reduce the number
of ¢-functions and, thus, the number of SSA names.

The two algorithms differ in their time and space complexity. The minimal algorithm avoids computing live
information, so it is less expensive than the pruned algorithm. The consequence of algorithmic speed is a
larger SSA form.

This paper presents three algorithmic improvements to the current art of building and using SSA form.
The first creates a SSA form that has fewer nodes than the minimal form without the expense of solving
data-flow equations to determine which values are “live.” The second speeds up the renaming process
through an algorithmic improvement. The third and final improvement addresses a problem that arises
in translating SSA form back into executable code. We have implemented all three improvements in our
laboratory compiler. The paper presents measurements that demonstrate the impact of each improvement.

The remainder of this paper is laid out as follows. Section 2 provides an overview of SSA form and
the algorithms for constructing it. Section 3 describes a simple and efficient improvement on the minimal
form that drastically reduces the number of ¢-functions without resorting to global data-flow analysis.
Section 4 shows how to manage the data structures to improve the efficiency of the renaming phase of SSA
construction. Section 5 describes a subtle problem that arises in converting SSA form back into executable
code and presents an algorithm for handling it. Each section contains experimental results that assess the
impact of each improvement.

2 Background

Many techniques for the analysis and optimization of compiled code rely on the construction of information
chains, either from uses to definitions or from definitions to uses [15]. Modern compilers often use SSA form
as a sparse alternative to classic information chains. Informally, the code for a procedure is said to be in
SSA form if it meets two criteria:

1. each name has exactly one definition point, and

2. each use refers to exactly one name.

The first criterion creates a correspondence between names and definition points. The second criterion forces
the insertion of new definitions at points in the code where multiple values, defined along different paths,
come together.

To satisfy the first criterion, the compiler must rewrite the code by inventing new names for each definition
and substituting these new names for subsequent uses of the original names. To create unique names, the
compiler adds a subscript to the original program name. This retains information about the original name
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Figure 1 Straight-line code and its conversion to SSA form

space and improves the readability of the resulting code. To build SSA form from a straight-line fragment
of code is trivial; each time a name gets defined, the compiler invents a new name which it then substitutes
into subsequent references. At each re-definition of a name, the compiler uses the next new name and begins
substituting that name. For example, consider the code in the left column of Figure 1. Conversion to SSA
form produces the code in the right column. For straight line code, this process is quite simple and fast.

Renaming changes the availability of values. Consider the value of zy in the example. In the original
code, xy was available at the definition of z1, but not at the definition of z5. In the SSA form, since zg and x;
are distinct, both zg and #1 can be named at the definition of z5. The transformation correctly rewrote the
last statement to refer to x; rather than zg, but xy can still be referenced, in the sense that it has a unique
name. Its value is accessible until the statement defining x¢ is re-executed.! In the original code, it could
not be named.

The presence of control flow complicates both the renaming process and the interpretation of the resulting
code. If a name in the original code is defined along two converging paths, the SSA form of the code has
multiple names when it reaches a reference. To solve this problem, the construction introduces a new
definition point at the merge point in the CFG. The definition uses a pseudo function, called a ¢-function or
a ¢-node. The arguments of the ¢-node are the names flowing into the convergence, and the ¢-node defines
a single, new name. Subsequent uses of the original name will be replaced with the new name defined by the
¢-node. This ensures the second criterion stated earlier: each use refers to exactly one name. To understand
the impact of ¢-nodes, consider the code fragment shown in Figure 2. Two different definitions of z reach
the use. The construction inserts a ¢-node for = at the join point; it selects from its arguments based on the
path that executes at run-time.

Conceptually, the SSA construction involves two steps. The first step decides where ¢-nodes are needed.
At each merge point in the CFG, it must consider, for each value, whether a ¢-node 1s required and insert
those for which the answer is affirmative. The second step systematically renames all the values to correspond
to their definition points. For a specific definition, this involves rewriting the left-hand side of the defining
statement and the right-hand side of every reference to the value. At a merge point, the value may occur as
an argument to a ¢-node. When this happens, the name propagates no further along that path. (Subsequent
uses refer to the name defined by the ¢-node.)
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Figure 2 Conversion to SSA form in the presence of control flow

1This notion gives rise to the “static” in “static single assignment.” The uniqueness of names is a static property rather than
a dynamic property. A given assignment statement can execute more than once at run-time.



The simplest SSA conversion algorithm would insert a ¢-node at each join point for each original name
referenced in the procedure. Renaming would be done in two reverse-postorder passes; the first pass ignores
back edges and the second pass rewrites only names that correspond to values passed along back edges. The
resulting SSA form would be huge; it would have many more ¢-nodes than necessary. However, it would
conform to the two criterion. We might call this “maximal” SSA form. Although this algorithm is hopelessly
inefficient, 1t captures the essence of the SSA construction process: decide where to place ¢-nodes, then
rewrite the name space. The difference between this algorithm and those that follow is optimization; all the
other algorithms produce fewer ¢-nodes and, consequently, smaller name spaces.

2.1 Building Minimal SSA

Figure 3 shows the basic algorithm for constructing minimal SSA form from a CFG representation of
the routine. The algorithm has two basic steps: determine locations for ¢-nodes and rename variables. The
scheme for ¢-node placement uses information about dominator relationships in the CFG to determine where
¢-nodes are needed. The renaming step uses a preorder walk over the dominator tree and an array of stacks
to introduce new names and track their appropriate scopes.

The first step in placing ¢-nodes builds a dominator tree for the CFG and calculates dominance frontiers
for the nodes in the CFG. In a flow graph, if node X appears on every path from the start node to node Y,
then X dominates Y (X>Y). If X>Y and X # VY, then X strictly dominates Y (X > V). The immediate
dominator of Y (idom(Y")) is the closest strict dominator of Y[13]. In the routine’s dominator tree, the
parent of each node is its immediate dominator. Notice that all nodes that dominate a node X are ancestors
of X in the dominator tree. Lengauer and Tarjan give an efficient algorithm for building the dominator tree
in O(Elog N) time, where F is the number or edges and N is the number of blocks in the CFG [17]. The
dominance frontier of node X is the set of nodes Y such that X dominates a predecessor of Y, but X does
not strictly dominate ¥ (i.e., DF(X) = {Y | 3P € Pred(Y), X>>P and X % Y}). Intuitively, DF(X) is the
set of nodes one edge beyond the region that X dominates, and thus identifies blocks reached on different
control-flow paths. Cytron et al. give an algorithm for finding dominance frontiers which runs in O(E + N?)
time [10, Figure 10])%. Cytron et al. extend the concept of diminance frontiers in two ways.

1. The dominance frontier of a set of nodes is defined to be the set of nodes in the dominance frontier of
any member of the set (i.e., DF(S) = UxesDF(X)).

2. The iterated dominance frontier DFT (8) is the limit of the sequence

DF, = DF(S)
DF;;; = DF(S UDF;)

For each variable v, the compiler builds a set A(v) containing the CFG nodes where assignments to v
occur. Cytron et al. show that ¢-nodes for v are required only in blocks in DFT(A(v)). To improve
the efficiency of ¢-node placement, both Cytron and Ferrante and Sreedhar and Gao have proposed more
efficient schemes [11, 19]. The improvements that we propose in the following sections are also effective in
these frameworks.

After ¢-nodes have been inserted, variables must be renamed to create the single-assignment property.
This 18 accomplished in a single recursive walk of the dominator tree, shown in the procedure SEARCH in
Figure 3. For each name in the original code, SEARCH maintains two data structures. The first, Counters[v],
contains the subscript that will be assigned to the next definition of v. The second, Stacks[v], holds the
current subscript for v. At each definition of v, SEARCH renames v with the subscript from Counters[v],
pushes that value onto Stacks[v], and increments Counters[v]. During the first step, it rewrites variable
names, incrementing the various counters and pushing new names onto the appropriate stacks. Next, it
rewrites ¢-node parameters in any successor blocks in the CFG so that the name inherited from the current
block has the current subscript. (It uses the whichPred function to determine which ¢-node parameter in
the successor corresponds to the current block.) To continue the search, it recurses on each child in the
dominator tree. On return from the recursion, it processes the current block again, to pop from each stack
any subscripts added while processing the block.

2Cytron et al. assert that the N2 only occurs in the worst case and that the figure is closer to N in practice



/* STEP 1: Determine locations for ¢-nodes */
Calculate the dominator tree and dominance frontiers

For each variable, v
A(v) — {blocks containing an assignment to v}
Place a ¢-node for v in the iterated dominance frontier of A(v)

/* STEP 2: Rename each variable, replacing v, with the appropriate v; */
For each variable, v

Counters[v] — 0

Stacks[v] — emptystack()
SEARCH(start)

/* Recursively walk the dominator tree, renaming variables */
SEARCH(block)
For each ¢-node, v — ¢(...), in block
i — Counters[v]
Replace v by v;
push(¢, Stacks[v])
Counters[v] — i+ 1
For each instruction, v «— x op y, in block
Replace # with #;, where i = top(Stacks[z])
Replace y with y;, where ¢ = top(Stacks[y])
i — Counters[v]
Replace v by v;
Push i onto Stacks[v]
Counters[v] — i+ 1
For each successor, s, of block
J < whichPred(s, block)
For each ¢-node, p, in s
v — jth operand of p
Replace v with v;, where ¢ = top(Stacks[v])
For each child, ¢, of block in the dominator tree
SEARCH(c)
For each instruction, v < @ op y, or ¢-node, v — ¢(...), in block
pop(Stacks[v])

Figure 3 Algorithm for building minimal SSA form



2.2 Building Pruned SSA

Minimal SSA form relies entirely on dominator information to determine where to insert ¢-nodes. The
dominance frontier correctly captures the potential flow of values, but ignores the data-flow facts themselves
— in particular, knowledge about the lifetimes of values gleaned from analyzing their definitions and uses.
Because of this, the minimal SSA construction will insert a ¢-node for v at a join point where v 1s not live.

To improve on minimal SSA, Cytron et al. proposed another variation on SSA that they called pruned
SSA [10]. To build pruned SSA, the compiler first performs “liveness analysis” on the routine. Liveness
analysis produces, for each block, a set of values that are live on entry to the block — that is, values that
can be referenced along some path leading to the block [1]. Many algorithms exist for computing live
information [16].

The actual construction of pruned SSA is quite similar to the construction of minimal SSA. In Figure 3,
we need only add a prepass that computes live information and modify the first step where ¢-nodes are
inserted. The minimal SSA construction inserts a ¢-node for v in every node in DF*(A(v)). The pruned
SSA construction changes this to insert a ¢-node for v in every node n € DF*(A(v)), where v € LIVE_IN(n).
These changes can drastically reduce the number of ¢-nodes.

The pruned-SSA construction algorithm costs more than the minimal SSA construction. Not only does
inserting ¢-nodes require two membership tests rather than one, but it must also compute the LIVE sets.
Although linear-time or near-linear time algorithms exist for this problem [14, 12, 22] (and, thus, the asymp-
totic time complexity of SSA conscruction does not change), it does raise the constant factor substantially.
To compute LIVE sets, the analyzer must make a pass over each block to build sets containing the initial
information. Then, in a second step, it revisits each block to compute the actual LIVE sets.® These operations
consume a nontrivial amount of time.

Equally troubling, building liveness analysis increases the space requirements for building SSA | since each
block has a number of large sets associated with 1t. These larger memory requirements can directly degrade
performance.

2.3 One final assumption

Throughout this paper, we assume that names are used in a type-consistent fashion. A name in the original
code cannot be used to hold values that have different types, such as an integer along one path and a float
along another. This is true in most modern programming languages. It becomes somewhat trickier when
the input program is at a very-low level. For example, building SSA on code produced by a register allocator
is problematic if a single register can hold either an integer or a floating point value. The construction
algorithms implicitly assume that they can determine the type of a ¢-function from its inputs. If its inputs
have different types, the assumption is violated.

non-locals «— ()
For each block B
killed — §
For each instruction v «<— x op y in B
if # & killed then
non-locals — non-localsU {z}
if y & killed then
non-locals — non-locals U {y}

killed — killed U {v}

Figure 4 Algorithm for finding non-local names

3The number of “visits” to each block will depend on the specific data-flow analysis algorithm used and on the detailed structure
of the routine being analyzed.
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Figure 5 Three flavors of SSA form

3 Using Fewer ¢-Nodes — Semi-Pruned Form

Cytron et al. describe two flavors of SSA form that vary in the number of ¢-nodes inserted. Minimal SSA
form places ¢-nodes by looking only at the dominance frontier information without regard to liveness. In
other words, it is possible that a ¢-node will be inserted for a name which is not subsequently used. These
extra ¢-nodes do not detract from the quality of analysis; they simply waste space and time. Pruned SSA
form relies on liveness analysis to ensure that no such dead ¢-nodes are inserted. If we are building pruned
SSA form, we only insert a ¢-node for a variable v at the beginning of a block if v is live on entry to that
block. Since the pruned form relies on additional analysis, it may be slower to build. However, the time
spent on analysis may be recovered by inserting fewer ¢-nodes.

We have developed a third flavor of SSA that we call semi-pruned SSA form. The speed and space
advantage of this form over the other two relies on the observation that many names in a routine are defined
and used wholly within a single basic block. For example, the compiler typically generates temporary names
to hold intermediate steps in any non-trivial computation; these compiler-generated names often have short
lifetimes. Semi-pruned SSA capitalizes on this observation by computing the set of names that are live on
entry to some basic block in the program. We call these “non-local” names. The construction only computes
A(v) for non-local names. The number of ¢-nodes will lie between that of the minimal and pruned forms,
but the non-local names are much cheaper to compute than the full-blown liveness analysis. Therefore,
semi-pruned form represents a compromise between the time required to perform liveness analysis and the
reduction in the number of ¢-nodes that i1t allows.

To discover non-local names, the construction uses the algorithm shown in Figure 4. The compiler makes
a simple forward pass over each basic block. When it discovers an operand that has not already been
defined within the block (the killed set), it must be a non-local name. Notice how much simpler this is than
performing the complete live analysis required for the pruned SSA construction. Computing non-local names
requires just two sets, non-local and killed — much less space than the three sets per block required for a
full live analysis. The algorithm makes just one pass over each block; this avoids the overhead for either



iteration or elimination in a full data-flow analysis. The non-local set is initialized once; the killed set is
reset for each block®. The time and space requirements for building non-local are, therefore, minimal.

Figure 5 illustrates the differences between the three flavors of SSA. In the original code, we define three
variables, z, y, and z. The three graphs at the the bottom of the figure compare the ¢-nodes which the
three flavors of SSA insert. The minimal SSA form contains ¢-nodes for all three variables. Clearly, the
¢-nodes for x and y are unnecessary; these variables are never used again. The semi-pruned SSA form does
not contain a ¢-node for x because it is not live across any basic-block boundary. However, we still insert
a ¢-node for y, because it is live across some block boundary, and that i1s the limit of the analysis used.
The pruned SSA form contains a ¢-node for z only. For pruned form, we performed the complete analysis
necessary to show that both = and y are never used again.

Each of the above three flavors has different uses. Cytron et al. give a contrived example where global
value numbering might benefit from the extra, dead ¢-nodes which minimal form contains. However, these
dead ¢-nodes constitute a waste of both time and space for optimizations like constant propagation and
dead-code elimination, which use the semi-pruned form. Other optimizations, such as the peephole optimizer
and the register allocator, depend on the compactness of the pruned form and so must bear the extra time
needed to perform the required liveness analysis [8, 5].

3.1 Experimental Results

We compared the various flavors of SSA using routines from the SPEC benchmark suite [18]. Table 1
shows the number of ¢-nodes and the time required to build the three flavors for each routine. The number
of ¢-nodes required by semi-pruned form always falls between that of minimal and pruned. However, the
time required to build semi-pruned form is often shorter than the time required for either minimal or pruned.
This is due to the effective compromise between the fast analysis and a reduction in the number of ¢-nodes
inserted. We also compare the time required by global value numbering (after the code is in SSA form)
for each of the three flavors [2]. This algorithm requires O(F log N) time, where N and E are the number
of nodes and edges in the SSA graph.® The experiments show that reducing the number of ¢-nodes can
Zsignificantly? improve the execution time of this analysis.

4 Efficient Stack Manipulation

In the second step of the SSA construction (see Figure 3), the compiler renumbers all the names to ensure
that each assignment (including ¢-nodes) defines a unique name. The renumbering is handled by a recursive
preorder walk over the dominator tree.

We can summarize the renaming process as follows: We declare an array of stacks (indexed by the original
name) to hold the subscripts used to replace each original name, and we use the topmost name on the stack

Stacks

v i+3 i42 i+1 : 0| ——_

Figure 6 Stacks after variable v is defined three times

*Further, by utilizing the SparseSet data structure[7], the time to perform these actions is constant.

5In the SSA graph, each node represents an assignment and edges flow from uses to definitions.



Number of ¢-nodes

Time to build SSA (sec)

Value numbering (sec)

Routine Minimal Semi | Pruned || Minimal | Semi | Pruned Minimal | Semi | Pruned
twldrv 73778 | 11989 9886 1.28 0.34 0.45 8.42 4.88 4.75
deseco 8610 2216 1842 0.23 0.18 0.22 1.92 1.58 1.46
ddeflu 5852 1560 1222 0.12 0.06 0.09 0.77 0.63 0.62
iniset 5364 1080 462 0.12 0.11 0.16 0.34 0.19 0.17
debflu 4715 1748 1542 0.09 0.08 0.08 0.85 0.72 0.71
paroi 3597 767 632 0.07 0.06 0.07 0.35 0.22 0.22
efill 3170 357 74 0.04 0.02 0.02 0.14 0.04 0.04
inisla 2722 267 141 0.04 0.03 0.03 0.12 0.05 0.05
tomcatv 2699 365 145 0.05 0.03 0.05 0.14 0.06 0.05
pastem 2584 374 62 0.06 0.03 0.05 0.20 0.10 0.10
prophy 2021 436 401 0.05 0.04 0.05 0.36 0.27 0.31
inithx 1967 267 85 0.04 0.03 0.04 0.22 0.16 0.14
debico 1880 171 112 0.04 0.03 0.04 0.14 0.08 0.08
repvid 1094 141 45 0.03 0.02 0.03 0.07 0.04 0.03
bilan 1080 70 34 0.03 0.02 0.02 0.10 0.06 0.06
dyeh 857 79 40 0.02 0.02 0.02 0.05 0.03 0.02
sgemm 809 341 279 0.02 0.01 0.01 0.05 0.05 0.04
orgpar 803 143 98 0.03 0.02 0.03 0.09 0.05 0.06
integr 799 89 34 0.02 0.01 0.02 0.05 0.02 0.01
gamgen 761 85 39 0.02 0.01 0.01 0.04 0.02 0.03
heat 667 50 22 0.02 0.02 0.02 0.05 0.03 0.02
fmtgen 653 127 33 0.01 0.01 0.01 0.02 0.02 0.01
inideb 645 148 131 0.01 0.01 0.01 0.07 0.05 0.05
yeh 624 154 122 0.02 0.02 0.03 0.09 0.09 0.09
drepvi 617 76 52 0.03 0.02 0.02 0.03 0.04 0.03
cardeb 601 96 54 0.02 0.01 0.01 0.03 0.02 0.02
ihbtr 597 88 31 0.01 0.01 0.02 0.04 0.02 0.01
bilsla 569 67 38 0.01 0.01 0.01 0.03 0.02 0.01
drigl 557 169 121 0.01 0.01 0.01 0.04 0.04 0.04
saturr 541 27 25 0.03 0.02 0.03 0.08 0.06 0.06
dcoera 334 36 33 0.01 0.01 0.01 0.03 0.01 0.02
lissag 311 42 15 0.01 0.01 0.01 0.02 0.01 0.01
colbur 310 15 9 0.01 0.01 0.01 0.02 0.02 0.01
fmtset 275 77 61 0.01 0.01 0.01 0.03 0.02 0.01
supp 38 7 5 0.02 0.03 0.03 0.07 0.05 0.06
£pppp 0 0 0 0.17 | 0.21 0.30 0.80 | 0.80 0.77
subb 0 0 0 0.02 0.02 0.02 0.05 0.06 0.05

Table 1 Comparison of three flavors of SSA
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Figure 7 The stacks data structure, showing the connection between nodes in each stack

to annotate each use of that name. We push a new subscript onto a name’s stack each time we encounter a
definition of that name.

When we have finished processing a block (and its descendants in the dominator tree), we must restore
the stacks to the same state as when we began processing the block. The method suggested by Cytron et al.
is to iterate a second time through the current block’s ¢-nodes and instructions, this time popping a name
from the appropriate stack for each definition. However, pushing a node for each definition in a block is
wasteful. Consider a basic block that defines a variable v three times. Figure 6 shows the stack for v after
processing the definitions in the block. The vertical arrow indicates the point where we must restore the
stack. Notice that once the ¢ + 2 node gets pushed, the ¢ + 1 node can never be accessed again, because
any subsequent reference to v will use the name in the ¢ + 2 node and restoring the state of the stack will
remove the i + 1 node. Similarly, after the ¢ + 3 node gets pushed, the ¢ + 2 node will never be accessed
again. We can reduce the number of nodes allocated if we overwrite the ¢ + 1 node with 7 4+ 2 and then
with ¢+ 3. However, we cannot overwrite the ¢ node, because it must remain after we have restored the state
of the stack. Therefore, we will push a node onto the stack for v at the first definition of v in the block, but
subsequent definitions of v in the same block will simply overwrite the node. To accomplish this, we will
record which variables have already had a node pushed for the current block. If a variable is redefined inside
the block, we will overwrite its top-of-stack instead of pushing a new node.

Since we are pushing at most one node for each variable when we process the definitions in a block, we
can no longer restore the state of the stack by iterating over the operations in the block and popping a node
for each definition. For each block, we maintain a list of the variables with a node that has been pushed.
Nodes are added to the list as they are pushed (i.e., after the first definition in the block). Thus, restoring
the state of the stacks requires popping the nodes in the list. This data structure is shown in Figure 7.

In summary, we must ensure that at most one node per variable gets pushed per block, and we use a list
to guide the popping of the stacks. This improvement not only keeps us from allocating superfluous nodes,
but it also speeds up the popping phase at the end. The approach used by Cytron et al. requires a second
pass through the instructions in the block, popping a node from each definition’s stack as it is encountered.
With this new method, we can simply iterate down the list of elements, popping just one node from each
stack.

4.1 Experimental Results

Figure 2 compares the number of pushes required for each method of manipulating the stacks. The old
method performs a push for each definition in the routine, but the new method performs at most one push
per variable per block. The number of pushes (and, thus, the amount of memory required) is significantly
reduced when the new method is used. We also compare the total time required to build semi-pruned SSA
form using each of the methods. For large routines, a ?significant? amount of time is saved.



Number of pushes Build SSA (sec)
Routine OIld method | New method || Old method | New method
twldrv 27295 19569 0.350 0.320
£pppp 19963 5641 0.270 0.240
deseco 14121 8625 0.190 0.160
iniset 6608 5298 0.110 0.100
ddeflu 6393 4651 0.080 0.070
debflu 6389 4225 0.080 0.060
paroi 4881 2864 0.050 0.070
prophy 3609 1947 0.050 0.030
pastem 2755 2060 0.050 0.030
inithx 2686 1706 0.040 0.030
debico 2667 1348 0.030 0.030
tomcatv 2633 1490 0.040 0.030
inisla 2373 1308 0.030 0.030
supp 2037 1734 0.020 0.040
bilan 1994 878 0.030 0.020
subb 1733 1311 0.020 0.020
saturr 1689 1522 0.020 0.020
drepvi 1597 1109 0.030 0.020
yeh 1547 1157 0.030 0.010
orgpar 1499 1053 0.020 0.020
repvid 1449 1010 0.020 0.020
efill 1439 1047 0.010 0.020
inideb 1242 729 0.010 0.020
heat 944 845 0.010 0.010
sgemm 941 681 0.010 0.020
dyeh 941 794 0.010 0.020
cardeb 893 643 0.010 0.010
gamgen 849 417 0.010 0.010
drigl 805 648 0.010 0.010
integr 804 499 0.010 0.010
bilsla 750 339 0.010 0.010
ihbtr 732 605 0.010 0.010
lissag 724 292 0.010 0.000
colbur 716 538 0.010 0.010
fmtset 668 447 0.010 0.010
fmtgen 635 548 0.010 0.010
sortie 595 503 0.010 0.010
dcoera 556 455 0.010 0.000
sgemv 348 269 0.010 0.000
coeray 348 319 0.010 0.010
sigma 129 126 0.010 0.010
arret 63 62 0.010 0.000
vgjyeh 60 54 0.010 0.000

Table 2 Comparison of stack handling methods




5 Replacing ¢-nodes with Copies

After optimization, the compiler must translate the SSA form of a routine back into an executable form.
We know of no popular computer that has a hardware ¢-function; thus, the compiler must translate the
semantics of the ¢-function into commonly implemented instructions. Ideally, this translation would restore
the name space used in the original code. Often, however, optimization and translation have made this
impossible; in such cases, the compiler must insert copy operations to mimic the actions of the ¢-function.
To replace a ¢-node in block b, the compiler can insert a copy operation into each of &’s predecessors.
Since the meaning of a ¢-node is a mapping of all of the incoming values to a single name, n, it is equivalent
to place a copy at the end of each predecessor block. The copy moves the value corresponding to the
appropriate ¢-node parameter into n. Consider the example in Figure 8. The left-hand side of the figure
shows a fragment of the CFG with the code in SSA form. The right-hand side of the figure shows the same
fragment with copies inserted for the ¢-node. Note that the insertion of copy operations has made the ¢-node
obsolete, so we can discard it. This process can produce a large number of copies; in our compiler, we rely
on the coalescing phase of a graph-coloring register allocator to remove as many of these as possible [8, 5].
The process of inserting copies for ¢-nodes will consist of iterating through the blocks in the CFQG,
inserting a copy for each parameter of each ¢-node in the predecessor of the block containing the ¢-node.
This process, however, is anything but straightforward — the interaction of names along different paths in
the CFG can lead to subtle errors. We will first present two examples which require a more sophisticated
approach than the naive insertion of copies, and then we will present our algorithm for replacing ¢-nodes.

5.1 Refining the copy-insertion algorithm

We can insert a copy operation at the end of a block for each of its successors’ ¢-nodes. This is a straight-
forward instruction insertion for each of the successors’ ¢-nodes. However, this naive insertion of copies can
cause errors in cases that involve copy-folding in the renaming phase® and critical edges in the control-flow
graph.

Copy Folding Folding copies reduces the size of the name space and simplifies the SSA graph. During
the renaming phase of the SSA construction, the compiler can perform copy folding in a particularly simple
and elegant manner. This can speed both analysis and optimization. To perform copy folding, the compiler
interprets a copy as an operation on the name stacks; at a copy v; < z;, it pushes the name z; onto the
name stack for v. This ensures that the compiler rewrites subsequent uses of v; to refer directly to z;.

Critical Edges A critical edge is defined as an edge between a block with multiple successors and a block
with multiple predecessors (i.e., (4, ) is a critical edge if and only if |succ(¢)] > 1 and |pred(j)| > 1). On a
critical edge, the copy insertion described above breaks down. The copy cannot be inserted into the edge’s
source (the predecessor), because it would execute along paths not leading to the ¢-node. Similarly, it
cannot be inserted in the edge’s sink (the successor), because it would destroy values coming from other
predecessors.

This problem can be addressed by splitting the critical edge — inserting an empty basic block along
the edge. Figure 9 shows a critical edge and how it could be split. In the presence of certain control-flow
operations (e.g., JUMP-REGISTER), it is not always possible to split critical edges. Similarly, in the late stages
of compilation, particularly instruction scheduling, splitting the edge may be impractical. Critical edges are
important for code placement algorithms, because their presence can restrict the movement of code, and
they can also cause naming conflicts when replacing ¢-nodes with copies.

5.1.1 The “Lost-Copy” Problem

The lost-copy problem can only occur when copies are folded, and when critical edges have not been split.
This situation requires care not only in the method of inserting the copies into a block, but also the order
in which we iterate through the blocks.

6The same naming problems caused by copy folding can also occur if an optimization pass performs aggressive renumbering,
as is done by a value numberer, for example.
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Figure 8 The impact of inserting copies for ¢-nodes
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Figure 9 Splitting a critical edge

Consider the code on the left side of Figure 10. At each iteration, the loop increments a variable, and
the value from the penultimate iteration is then returned”. The second column shows the code translated
into SSA form with copy folding. Notice how y disappeared. The third column shows the result of naively
replacing the ¢-node with copies. Clearly, the result of the code has changed; it now prints out the value of
the last iteration. The final column shows how splitting the critical edge cures the problem.

Intuitively, the naive copy insertion failed because it created a reference to x5 beyond the scope of the
¢-node that defined 1t. The RTN occurs after the definition of z3; x5 and s are related values. Folding x4
for y extends the lifetime of x5 beyond the redefinition that creates 3.

To avoid this problem, the compiler must notice that the value overwritten by the new copy 1s live past
the point where the copy is inserted. When it detects this situation, it can insert a copy to a new temporary
name prior to inserting the copy, and rewrite subsequent uses of the overwritten name with the temporary’s

$1<—1
T2 — 1 r1 — 1

r — 1 r1 — 1 ¢ To — I m

} } 25 — B(21,12) }
ye—=c t2 — (1, 23) T =z + 1 T2 — ¢(z1,23) T2 — T
r+—ax+1 Ty =22 + 1 T2 < T3 T3 = 22 + 1 }
if p then if p then if p then if p then

} } } }

RTN y RTN zo RTN zo RTN zo
Original code Code in SSA form Copies inserted Copies inserted when
(Copies folded) (Incorrect) critical edges are split
(Correct)

Figure 10 An example of the code leading to the “Lost-Copy” problem

"While this example might seem contrived, the situation arises routinely in Fortran DO-loops.



Perform liveness analysis
For each variable v

Stacks[v] — emptystack()
insert_copies(start)

insert_copies(block)
pushed «— ()
For all instructions ¢ in block
Replace all uses u with Stacks[u]

schedule_copies(block) /* see Figure 14 */
For each child ¢ of block in the dominator tree
insert_copies(c)
For each name n € pushed
pop(Stacks[n])

Figure 11 Algorithm for iterating through the blocks to perform ¢-node replacement

name. This i1s the idea underlying our copy insertion algorithm. This rewriting with new names mimics the
name rewriting phase in the SSA construction, implying that the compiler must walk the dominator tree to
insert copies. It also means that the implementation will require a stack of names similar to the Stacks used
when building SSA form. However, copy insertion only need to push names onto stacks corresponding to the
names defined by the inserted copies — these are the only names which need to have their uses rewritten.

The algorithm uses live-out information to determine which registers require insertion of additional copies
to temporaries. It uses a structure like the Stacks array to record the newly-created temporary names. This
results in an algorithm that walks the dominator tree in preorder. For each block, it replace uses in ¢-nodes
and instructions with any new names. Next, 1t builds a list of copies that must be inserted and uses the
algorithm outlined in Section 5.1.2 to determine the order to insert the copies. As each copy is inserted, if
its source is live at the end of the block, the algorithm pushes the destination name onto the source’s stack
and resets a flag to show that the source is live outside the block. Finally, if the destination of the copy to
be inserted is live past the end of the block, it inserts a copy to a temporary at the ¢-node which defines the
register.

Some clever engineering is also required to make this as efficient as possible. A block B can be the
predecessor to many other blocks, but imagine the case where each of the successor blocks requires a copy
to its own temporary for some value flowing out of B. A naive implementation would insert as many copies
to temporaries as B has successors. One solution to this problem is to insert a copy to a temporary (when it
is needed) at the top of the block to which the current ¢-node is attached and to use this temporary’s name
whenever the value is needed as the source of a copy. This has the practical effect of capturing the value
in question immediately after it is defined by the ¢-node, so that it cannot be overwritten. Other solutions
exist, but their effect on code size is unpredictable.

The algorithm for inserting copies for ¢-nodes which avoids the lost-copy problem is shown in Figure 11.
Notice that the code must be in the form of a recursive routine to perform the walk. Clearly, the algorithmic
complexity is bounded by the liveness analysis rather than this walk over the CFG.

5.1.2 The “Swap” Problem

Copy folding exposes another problem with the naive copy insertion algorithm. Figure 12 shows an example.
We refer to this as the swap problem.

The left side of the figure shows a simple loop that swaps the values of two variables using a temporary
named #. The middle column shows the SSA form after folding copies. Since all of the operations in the
body of the loop were copies, they have all been absorbed, and all that is left in the body are the ¢-nodes.

The right side of Figure 12 shows the result of naively inserting copy operations for the ¢-nodes. This
code is clearly incorrect. On the first iteration of the loop, the value of as gets overwritten, and both ay and
bs subsequently contain the same value. The problem stems from the fact that the ¢-nodes in a block are



considered to execute in parallel. To solve this problem, the compiler can introduce a temporary variable
for each copied value.

Naively inserting copies of all values into temporaries, however, i1s not a feasible solution. It potentially
doubles the number of copies necessary for ¢-node replacement. Instead, the compiler should insert the
minimal number of copies to temporaries necessary for correctness. Consider again the example in Figure 12.
The problem 1s that some of the parameters to the ¢-nodes are defined by other ¢-nodes in the same block.
Notice that the copies inserted into the top block do not contain references to other names defined by a
¢-node. These copies have been inserted correctly — that is, they do not change the meaning of the code. It
is only the copy operations inserted for parameters which were themselves defined by ¢-nodes in this block
which caused the problem. Thus, inserting copies to temporaries for these special cases will produce correct
code.

This 1s slightly simplistic, however. Consider the code in Figure 13. Here, there is not a cycle of
dependences as in the swap problem, although the name as is used in a successive ¢-node in the block.
According to the above rule, since the ¢-node is used as a parameter in another ¢-node in that block, a copy
to a temporary should be inserted for it. Simple analysis, though, will show that reordering the copies will
produce correct code without the addition of a temporary, as shown in the right side of this figure.

In some sense, the choice of how to insert copy operations for ¢-nodes and when to insert copies to
temporaries is a scheduling problem. A copy operation has two arguments, the source and the destination.
We want to insert copies for a set of ¢-nodes subject to the following restriction: to schedule a copy ¢, all
other copy operations which include ¢’s destination as their source must be scheduled first. That is, before
a name is overwriten, any other operation which needed its value must have it already.

Another way to look at this problem is to model the interaction of the copies to be inserted as a graph
whose nodes represent the copies and whose edges represent a name defined by one copy and used in another
copy. If the graph is acyclic, the schedule of copies can then be found by a simple topological sort of the
graph — although we do not actually need to build this graph if we are careful about the data structures we
use to build the schedule.

Our algorithm makes three passes over the list of ¢-nodes. In the first pass, the compiler counts the
number of times a name 1s used by other ¢-nodes. In the second pass, it builds a worklist of names that
are not used in other ¢-nodes. The third pass iterates over the worklist, scheduling a copy for each element
in the worklist. Obviously, the copy operations whose destinations are not used by other copy operations
can be scheduled immediately. Furthermore, each time the compiler inserts a copy operation, it can add the
source of that operation to the worklist.

Consider a block where the name n is used as the source for five other copy operations. By the rule
given above; a copy redefining n cannot be inserted until all of the other five copies that use n have been
inserted. The rule’s intent is to ensure that all of the copy operations refer to the value of n before it is
overwritten. But, once the first copy has been inserted, n’s value has been preserved in its destination d,
and overwriting n will not destroy that value. If the four remaining copy operations refer to d rather than n,
then the compiler is free to overwrite n.

This tactic will ensure that the copy operations are ordered correctly, but it still does not address the
problem of cycles of dependence. In the swap problem, we have a set of copies where each of the destinations

al «— ...
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b — ... a1 — ... a2 — a1
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T —a
a—b a2 — ¢(a1,b2) <: az — bo ‘j
b — ¢ b2<—¢(b1,a2) by — as
if p then if p then if p then
' ' '

Original code SSA form with copies folded ¢-nodes naively replaced

Figure 12 An example of the code leading to the “Swap” Problem
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Original SSA form Unnecessary copy to a Correctly scheduled
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Figure 13 Simple ordering example

is used as a source in another copy in the set, forming a cycle. In the algorithm described thus far, none of
the copies would ever be put on the worklist. To break this cycle, the algorithm can randomly pick one of
the edges and break it, by inserting a copy to a temporary for one of the destinations. As we pointed out
in the previous paragraph, this allows the algorithm to put that copy onto the worklist, and (with the cycle
broken) schedule the rest of the copies.

The algorithm for solving the swap problem is shown in Figure 14. It is applied to each block and has
three steps. The first step builds a list of the copies to be inserted by running through the ¢-nodes in each of
the block’s successors. During this accumulation phase, it also records some facts, such as which destinations
of the copies to be inserted are used as the sources of other copies in the list. The second pass builds up a
worklist of those copies whose destinations are not used in any copies. The third step iterates through the
worklist, inserting a copy for each member and then removing that member.

Each time a copy 1s removed from the worklist, 1ts source is checked to see if 1t is a destination of another
copy in the set of copies yet to be inserted. If so, it adds that new copy to the worklist. Even if this new
copy 1s used as the source for numerous other copies waiting to be inserted; this is safe — remember that this
algorithm is concerned with preserving values. Each time it inserts a copy, it records that the value formerly
held in the source 1s now held in the destination. Any subsequent reference to the source in any inserted
copy will use the destination’s name instead of the source’s name. Thus, it is free to overwrite the source
after it copies the value into another location.

Whenever the compiler inserts a copy, it must also consider the lost-copy problem. Thus, before it inserts
a copy, it must check to see if the destination is in the the block’s live-out set. If it is, the compiler first inserts
a copy of the destination’s value to a temporary. Then, it pushes the temporary’s name onto the Stacks.
Subsequent blocks dominated by the current block will use the temporary’s name in place of references to
the destination’s name.

We can summarize the process as follows. During the first step of this algorithm, the compiler built up
the list of copies that needed to be inserted. Any copies left on this list when the worklist clears are involved
in cycles. We know that at least one temporary will then need to be inserted, so the algorithm randomly
picks one of the destination names to copy into a temporary name. This allows that copy to be put onto the
worklist — the value is safely stored, so the compiler can overwrite the name. This breaks the cycle, and the
the worklist-clearing loop can start again. It alternates between these two sections until all of the copies in
the original list have been inserted.

6 Conclusions

The discovery of SSA form has revolutionized thinking and implementation of optimization. This paper has
examined the implementation details in greater detail than the seminal literature on this subject.

The first half of this paper should serve as a survey of the different forms of SSA, wherein we presented
a discussion of how to build each flavor, including the new semi-pruned form. This form is a compromise
between the time required for liveness analysis required by pruned form and the large number of dead ¢-nodes



schedule_copies(block)
/* Pass One: Initialize the data structures */
copy_set «— (
For all successors s of block
J < whichPred(s, block)
For each ¢-node dest — ¢(...) in s
Src — jth operand of ¢-node
copy_set «— copy_set U {{src, dest) }
map|src] « src
map|dest] « dest
used_by_another[src] < TRUE

/* Pass Two: Set up the worklist of initial copies */
For each copy (src, dest) in copy_set
If used_by_another|[dest] # TRUE
worklist — worklist U {(src, dest)}
copy_set «— copy_set — {(sre, dest)}

/* Pass Three: Tterate over the worklist, inserting copies */
While worklist # 0 or copy_set # 0
While worklist # §
Pick a (src, dest) from worklist
worklist — worklist — {{src, dest){
If dest € live_out,
Insert a copy from dest to a new temp ¢ at ¢-node defining dest
push(t, Stacks[dest])
Insert a copy operation from map[src] to dest at the end of b
map|sre] «— dest
If src 1s the name of a destination in copy_set
Add that copy to worklist
If copy_set # 0
Pick a (src, dest) from copy_set
copy_set «— copy_set — {(sre, dest)}
Insert a copy from dest to a new temp ¢ at the end of b
map|dest] — 1
worklist — worklist U {(src, dest)}

Figure 14 Algorithm for scheduling the copies to be inserted



found in minimal form. We also presented a more efficient method for manipulating the stacks used during
the renaming phase of the SSA construction algorithm. Our algorithm reduces the number of nodes pushed
and simplifies the process of popping nodes. The benefits and costs of each technique were discussed to give
future implementors insights before they begin work.

The second half of the paper tackled the thorny problem of inserting copies for ¢-nodes. We firmly believe
that this a case of Backus’ separation of concerns[3]. That is, each optimization pass should not be concerned
with 1ts impact on the final transformability of the ¢-nodes, but, rather, the SSA transformer itself should
have the ability to handle the code, regardless of the motion of instructions from a given optimization pass.
This high ideal suffers from practical considerations, but we present an algorithmic solution to handle the
problems.

When replacing ¢-nodes with copies, we have found both the swap problem and the lost-copy problem
in real world codes. Implementation of the special algorithms for inserting copies is essential to avoiding
the incorrect code these two problems cause. We presented an algorithm that can efficiently insert ¢-nodes
in control-flow graphs without critical edges. When critical edges are present, we must perform a more
complicated algorithm that includes liveness analysis and a preorder walk over the dominator tree in addition
to the existing copy insertion algorithm.
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