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Abstract

The Static Single Information (SSI) form is a compiler intermediate

representation that allows e�cient sparse implementations of predicated

analysis and backward dataow algorithms. It possesses several attractive

graph-theoretic properties which aid in program analysis. An extension to

SSI form, SSI+, is also presented, along with a complete executable abstract

semantics for the representation. Applications to abstract interpretation

and hardware compilation are discussed.

The SSI form has been implemented on the FLEX compiler infrastruc-

ture, and it has been used to implement several analyses and optimizations.

Details on these predicated analysis techniques are presented, as well as

data from the practical implementation.
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1 Introduction

This paper introduces a compiler intermediate representation: Static Sin-

gle Information (SSI) form. This IR is the core of the FLEX compiler

project, which is primarily investigating intelligent compilation techniques

for distributed systems. This thesis, in presenting the IR, attempts to keep

both the mathematician and the programmer in mind. SSI form has both

a rigorous mathematical semantics and a factored form which aids e�cient

implementation of advanced analyses. I believe that it e�ectively strad-

dles the gap between dataow-oriented, graph-structured, and control-ow

driven IRs, while maintaining the sparsity needed to achieve practical e�-

ciency. The construction algorithms are linear in the size of the program.

Our discussion of the Static Single Information form will be at times

tied to the source language of the FLEX compiler, Java. Unlike many ab-

stract IRs, the choices made in the design of SSI form have been dictated by

the necessities of compiling a real-world imperative language. Java, how-

ever, has several theoretical properties that make program analysis more

tractable. In particular, we mention here Java's strict constraints on pointer

variables. Pointers in earlier languages such as C can be abused in many

ways that Java disallows.

Ultimately, the choice of compiler internal representation is fundamen-

tal. Advances in IRs translate into advances in compilers. SSI form rep-

resents a clean and simple uni�cation of many extant ideas, and our hope

is that it will allow the FLEX compiler to achieve a similar integration of

practical implementation and mathematical elegance.
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2 Context and goals

Strong et al. [40]1 �rst advocated the use of compiler intermediate represen-

tations in a 1958 committee report. Their idealistic \universal intermediate

language" was called UNCOL. Thirty years later, the Static Single Assign-

ment (SSA) form was introduced by Alpern, Rosen, Wegman and Zadeck as

a tool for e�cient optimization in a pair of POPL papers [2, 35], and three

years after that Cytron and Ferrante joined Rosen, Wegman, and Zadeck

in explaining how to compute SSA form e�ciently in what has since be-

come the \canonical" SSA paper [10]. Johnson and Pingali [20] trace the

development of SSA form back to Shapiro and Saint in [37], while Havlak

[17] views �-functions as descendants of the \birthpoints" introduced in

[34].

Despite industry adoption of SSA form in production compilers [8, 9],

academic research into alternative representations continues. Recent pro-

posals have included Value Dependence Graphs [45], Program Dependence

Webs [5], the Program Structure Tree [19], DJ graphs [39], and Depedence

Flow Graphs [20].

In comparison to these representations, the dominant characteristics of

our Static Single Information form may be summarized as follows:

� It names information units.

� It is complete.

� It is simple.

� It is e�cient.

� It has no explicit control dependencies.

1Attribution by Aho [1].
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� It supports both forward and reverse dataow analyses.

SSI form is used as an IR for the FLEX compiler for the Java programming

language, which informs some of these design decisions. The FLEX com-

piler does deep analysis and will support hardware/software co-design. SSI

addresses these needs, concentrating on analysis rather than optimization.

We will address each design point in turn.

It names information units. SSA form (which we will describe fur-

ther in section 4) assigns unique names to unique static values of a vari-

able. However, it ignores the value information which may be added to a

variable at program branch points. SSI form renames variable at branch

points, which allows us to associate unique names with unique informa-

tion about static values. For example, a program may test the value of an

integer against zero before using it as a divisor. After the branch on the

tested predicate, it is possible to make statements about values (regarding

equality or inequality to zero) which were impossible to make previously.

SSI form allows us to exploit this additional information.

It is complete. By this we mean that there exists an executable se-

mantics for the IR that does not require the use of information external to

the IR. The original SSA form|and most derivatives|require use of the

original program control ow graph during analysis, translation, or direct

execution. In fact, �-functions are intimately tied with the precise input

edge structure of the control ow graph, and switch nodes (where control

ow splits) are undecipherable without referring to the control ow graph.

In practice, this seems not a great disadvantage|it merely forces us to

maintain a mapping of SSA statements to nodes (equivalently, basic blocks)

of the original control ow graph. But maintaining this correspondence

complicates editing the IR. Also, it complicates the interpretation of the

program as a set of simultaneous equations, which SSI form will allow us
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to do. Finally, explicit control ow may limit the available parallelism of

the program.

SSI+, as it will be presented in section 7, overcomes these di�culties

and presents a complete representation of program meaning as a set of

simultaneous equations, without resort to graph information.

It is simple. A bestiary of new �-like functions have been introduced

in the past decade, including �-, -, and �-functions in [5, 43],  - and �-

functions in [24], interprocedural �-functions in [26], �- and �-functions in

[9], �- and �-functions in [14],2 and �-functions in [27], among others.Some

of these are orthogonal to our work|the techniques of [24] can be used to

extend SSI form to explicitly parallel source languages, and those of [9]

to languages with local variable aliasing (absent in Java). Our goal is to

achieve minimal conceptual complexity in SSI form; that is, to introduce

the minimum set of �-like functions necessary to represent the \interesting"

properties of the compiled program.

It is e�cient. Construction of SSI form should be fast, and space

requirements should be reasonable. The original SSA algorithms required

O(E + VSSAjDFj + NVSSA) time.3 This bound was dominated by the time

and space required to construct the dominance frontier, as jDFj, the size

of the dominance frontier, could be O(N2) for common cases. Taking the

dominant term, we abbreviate the time complexity of the Cytron's SSA-

construction algorithm as O(N2V).

Our algorithms do not require the construction of a dominance frontier|

building on recent work on e�cient SSA construction in this regard|and

run in so-called \linear" time. A more detailed analysis will be given in

section 5.4, but su�ce for now to say that our construction and analysis

2Compare to [5, 43].
3See section 3 for de�nitions of the variables used in the complexity bounds of these

two paragraphs.
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algorithms are e�cient.4

All explicit control dependencies are eliminated. Some researchers

(including [4] and [32]) view control dependence as a fundamental prop-

erty of the CFG, and [5, 4] suggest that accurate knowledge of control-

dependence relations is the sole key to automatic parallelization. Of-

ten, incomplete intermediate representations5 are augmented with control-

dependence edges to express proper program semantics|see [20] on DFGs

and [45] on VDGs, for example.

Unfortunately, explicit control-ow edges tend to serialize computation

more than strictly necessary. Figure 7.1 on page 75, for example, contains

two parallel loops which would be serialized by the explicit control depen-

dency between them. Prior work often focused on �ne-grain intra-loop par-

allelism and ignored this coarser inter-loop parallelism.6 Our objective in

this work is to fully utilize coarse parallelism by removing source-language

control-dependency artifacts.

It is e�cient for both forward and backward dataow analyses.

It is often observed that traditional SSA form cannot handle backward data-

ow analysis. Johnson and Pingali note this, and suggest anticipatability

as an example of a backwards dataow analysis where their dependence

ow graph representation betters SSA form [20]. Lo et al. suggest the use

of an \SSU" form to address much the same issue [27]. There are in fact

many analyses where both use and de�nition information is utilized, and

where dataow in both forward and reverse directions occurs. SSI form is

able to handle both of these cases, as we demonstrate in section 6.1.

4Dhamdhere [12] quite correctly states that Cytron's original algorithm has a worst-

case time bound of O(N3). This is also true for our algorithms. However, these worst-case

time bounds are not tight; we will present experimental evidence that run times on real

programs are O(N).
5See page 9 for our de�nition of \completeness" in an IR.
6We discuss the dataow-architecture work of Traub [42] in particular in section 7.5.
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3 De�nitions

We next provide some de�nitions. Our complexity metrics will usually be

in terms of the following variables:

N is the number of nodes in the program control ow graph. Each node

represents either a single statement or a basic block; the di�erence is

unimportant for complexity metrics.

E is the number of edges in the program control ow graph. For most

programs E is reasonably assumed to be O(N), since most nodes

have either one or two successors (simple assignments and conditional

branches, respectively). Unusual use of computed-goto and switch

statements may invalidate this assumption; but in these cases E is

generally a better metric of program \complexity" than N. For this

reason, we will case O(E) \linear in program size".

V is the number of variables in the program.

U is the total number of variable uses in the program.

As the transformations we will describe split and rename variables, we will

use subscripts to denote the number of variables, uses, or de�nitions in

a particular transformed version of a program. For example, USSA is the

number of uses in the SSA form (see section 4) of a program. When it is

necessary to explicitly denote a metric on the untransformed program, a

zero subscript will be used; for example, V0.

Graphs will be directed unless speci�ed otherwise. If X and Y are

nodes in some graph G, an edge from X to Y is written X ! Y. A path

X = s0 ! s1 ! : : :! sn = Y is written X
+
! Y. A simple path is one in

which all the nodes si in it are distinct.
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Control-ow graphs are assumed to be connected, and to contain unique

START and END nodes marking procedure entry and exit points, respectively.

To ensure that graphs representing in�nite loops are connected, an edge will

typically exist between the START and END nodes. The presence of unique

START and END nodes ensures that both the dominance and post-dominance

relation de�ne trees rooted at START and END, respectively.

For simplicity, we will assume that every node in the control-ow graph

with one successor and one predecessor contains exactly one statement. A

node with no predecessors and a node with no successors (START and END)

are empty; they contain no statements. Nodes with multiple successors or

multiple predecessors are also empty for conventional program representa-

tions, but may contain multiple �- or �-function assignment statements in

the SSA and SSI forms we will discuss. No node may contain both multiple

predecessors and multiple successors.

The symbol u will be used for the dataow \meet" operator. The

operator v is the partial ordering relation for a lattice, and x < y i� x v y

and x 6= y.

4 Static Single Assignment form

Static Single Information (SSI) form derives many features from Static

Single Assignment (SSA) form, as described by Cytron in [10]. To provide

context for our de�nition of SSI form in section 5, we review SSA form.

4.1 De�nition of SSA form

Static Single-Assignment form is a sparse program representation in which

each variable has exactly one de�nition point. As a consequence, only one

assignment can reach each use, which means that SSA form can be viewed

13



P (X 6= 2)

if P jump

Y 6 + X

Z 5

Y 4+ X

�
�

�
�+

?

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

Y Y + 1

/* no further uses of X or Z */

P0  (X0 6= 2)

if P0 jump

Y2  6+ X0
Z1  5

Y1  4+ X0

�
�

�
�+

?

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

Y3  � (Y1; Y2)

Z2  � (Z0; Z1)

Y4  Y3 + 1

/* no further uses of X or Z */

Figure 4.1: A simple program (left) and its single assignment version

(right).

as a type of sparse def-use chain [1].

For straight-line code, the SSA transformation is straightforward: each

assignment to a variable is given a unique name (conventionally indicated

by the use of a subscripted version of the original variable name) and each

use is renamed to match its reaching de�nition. Special �-functions must

be inserted at join points to preserve the single-assignment property. These

�-functions have the form v0  �(v1; v2) and perform an assignment ac-

cording to the path by which control ow reaches the �-function. Figure 4.1

shows a simple program and its SSA form; the �-function Y3  �(Y1; Y2)

in the SSA version on the right assigns Y3 the value of Y1 if control ow

reaches it along the false branch of the if statement. If the true branch is

taken, Y3 will get the value of Y2 at the �-function.

Formally, a program is said to be in SSA form if the following three

conditions hold:
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1. If two nonnull paths X
+
! Z and Y

+
! Z converge at a node Z, and

nodes X and Y contain assignments to [a variable] V (in the origi-

nal program), then a trivial �-function V  �(V; : : : ; V) has been

inserted at Z (in the new program).

2. Each mention of V in the original program or in an inserted �-function

has been replaced by a mention of a new variable Vi, leaving the new

program in SSA form.

3. Along any control ow path, consider any use of a variable V (in

the original program) and the corresponding use of Vi (in the new

program). Then V and Vi have the same value.

This formulation of this de�nition is due to Cytron et al. [11]. Note that

the de�nition does not prohibit \extra" �-functions not strictly required

by condition 1.

4.2 Minimal and pruned SSA forms

Cytron et al. [11] de�nes minimal SSA form as an SSA form using the

smallest number of �-functions such that the above three conditions hold.

The SSA form in the previous example (Figure 4.1 on the facing page) is

minimal.

A variation on minimal SSA form, called pruned form, avoids placing

�-functions which de�ne variables which are never used. The �-functions

in pruned form are a subset of those in minimal form, and as such note that

pruned form does not strictly satisfy the given SSA criteria. In most cases,

the more regular properties of minimal SSA form outweigh the pruned

form's slight increase in space e�ciency. Choi, Cytron, and Ferrante [7]

give a formal de�nition and construction algorithm for pruned SSA.
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P0  (X0 6= 2)

if P0 jump

Y2  6 + X0
Z1  5

Y1  4+ X0

�
�

�
�+

?

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

Y3  � (Y1; Y2)

Z2  � (Z0; Z1)

Y4  Y3 + 1

/* no further uses of X or Z */

P0  (X0 6= 2)

if P0 jump

Y2  6+ X0
Z1  5

Y1  4+ X0

�
�

�
�+

?

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

Y3  � (Y1; Y2)

Y4  Y3 + 1

/* no further uses of X or Z */

Figure 4.2: Minimal (left) and pruned (right) SSA forms.

Figure 4.2 compares minimal and pruned SSA form for our example

program.

5 Static Single Information form

SSI form extends SSA form to achieve symmetry for both forward and

reverse dataow. SSI form recognizes that information about variables

is generated at branches and generates new names at these points. This

provides us with a one-to-one mapping between variable names and infor-

mation about the variables at each point in the program. Analyses can then

associate information with variable names and propagate this information

e�ciently and directly both with and against the control-ow direction.
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P0  (X0 6= 2)

if P0 jump

Y2  6+ X0
Z1  5

Y1  4 + X0

�
�

�
�+

?

�
�

�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

Y3  � (Y1; Y2)

Z2  � (Z0; Z1)

Y4  Y3 + 1

/* no further uses of X or Z */

P0  (X0 6= 2)

if P0 jump
hX1; X2i � (X0)

Y2  6 + X2
Z1  5

Y1  4 + X1

�
�
�
�+

?

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qs

?

false true

X3  � (X1; X2)

Y3  � (Y1; Y2)

Z2  � (Z0; Z1)

Y4  Y3 + 1

/* no further uses of X or Z */

Figure 5.1: A comparison of SSA (left) and SSI (right) forms.

5.1 De�nition of SSI form

Building SSI form involves adding pseudo-assignments for a variable V:

(�) at a control-ow merge when disjoint paths from a conditional branch

come together and at least one of the paths contains a de�nition of

V; and

(�) at locations where control-ow splits and at least one of the disjoint

paths from the split uses the value of V.

Figure 5.1 compares the SSA and SSI forms for the example of Fig-

ure 4.1. Note that X is renamed at the conditional branch, allowing the

compiler to distinguish between X1 (which is always the constant 2) from

X2 (which is never equal to 2).

Formally, a program transformation to SSI form satis�es the following

conditions:
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1. If two nonnull paths X
+
! Z and Y

+
! Z exist having only the node Z

where they converge in common, and nodes X and Y contain either

assignments to a variable V in the original program or a �- or �-

function for V in the new program, then a �-function for V has been

inserted at Z in the new program. [Placement of �-functions.]

2. If two nonnull paths Z
+
! X and Z

+
! Y exist having only the node

Z where they diverge in common, and nodes X and Y contain either

uses of a variable V in the original program or a �- or �-function for

V in the new program, then a �-function for V has been inserted at

Z in the new program. [Placement of �-functions.]

3. For every node X containing a de�nition of a variable V in the new

program and node Y containing a use of that variable, there exists

at least one path X
+
! Y and no such path contains a de�nition of V

other than at X. [Naming after �-functions.]

4. For every pair of nodes X and Y containing uses of a variable V de�ned

at node Z in the new program, either every path Z
+
! X must contain

Y or every path Z
+
! Y must contain X. [Naming after �-functions.]

5. For the purposes of this de�nition, the START node is assumed to

contain a de�nition and the END node a use for every variable in the

original program. [Boundary conditions.]

6. Along any possible control-ow path in a program being executed

consider any use of a variable V in the original program and the

corresponding use of Vi in the new program. Then, at every occurance

of the use on the path, V and Vi have the same value. The path need

not be cycle-free. [Correctness.]
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As with the SSA conditions, this de�nition does not prohibit \extra"

�- or �-functions not required by conditions 1 and 2.

Property 5.1. There exists exactly one reaching de�nition of V at ev-

ery non-�-function use of V in the new program.

Proof. O�ner [29] de�nes a reaching de�nition as follows:

A de�nition of a variable v reaches the point P in the program

i� there is a path from the de�nition to P on which. . . there is

no other de�nition of v. . . .

From this de�nition and condition 3 we directly obtain the property.

Note that condition 3 and this property do not require there to be

exactly one de�nition of any variable V, just that at every use only a single

de�nition is relevant. The renaming algorithm we will present enforces the

stricter single-de�nition constraint.

Property 5.2. Every cycle-free path S
+
! Y from the START node to

a node Y containing a non-�-function use of a variable must contain

exactly one node X de�ning that variable in the new program. Likewise,

every path X
+
! E from a node X containing a non-�-function de�nition

of a variable to the END node must contain every node Y which is a use

of that variable in the new program.

Proof. Let us call the variable v. Conditions 5 and 6 ensure that there

exists at least one de�nition node X for v from which Y is reachable|

conditions 5 and 6 substitute the START node, from which every node is

reachable, for any use of v not reachable by some other de�nition in the

original program. So assume this de�nition node X exists, but is not on

the path S
+
! Y. Then X

+
! Y and S

+
! Y must have some earliest node
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N in common. But N must then have a �-function for v by condition 1,

which violates either our choice of Y as a non-�-function use (if N = Y)

or else condition 3 which prohibits de�nitions other than at X. If S
+
! Y

contains more than one node Xi de�ning v, then the path X0
+
! Y between

the �rst and Y also violates condition 3. So S
+
! Y must contain exactly

one de�nition X of v.

The second part is symmetric. Assume there exists some node Y using

v which is not contained on some path X
+
! E. The path X

+
! Y must exist

by conditions 3 and 5. And X
+
! E and X

+
! Y must have some �nal node

N in common, which must have a �-function for v by condition 2. The

case N = X violates the choice of X as a non-�-function de�nition. But if

N 6= X, then condition 3, which prohibits paths with multiple de�nitions,

is violated. Thus X
+
! E must contain every use of v.

Property 5.3. Every de�nition of a variable V dominates all non-�-

function uses of V and every use of V post-dominates any non-�-

function reaching de�nition of V in the new program.

Proof. The dominance relation is de�ned in O�ner [29] as:

If x and y are two elements in a ow graph G, then x dominates

y (x is a dominator of y) i� every path from s [START] to y

includes x.

Post-dominance is the dual on a ow graph with edges reversed: x post-

dominates y i� every path from END to y includes x.

The previous property showed that every path from START to a non-�-

function use contained a unique de�nition node X. If two paths from START

to Y contained di�erent de�nition nodes Xi, then Y would be a �-function,

which it was chosen not to be. So every non-�-function use is dominated

by the single de�nition node. Likewise the previous property showed that
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every path from a non-�-function de�nition to END must include every use;

therefore every use post-dominates a non-�-function de�nition.

5.2 Minimal and pruned SSI forms

Minimal and pruned SSI forms can be de�ned which parallel their SSA

counterparts. Minimal SSI form would have the smallest number of �-

and �-functions such that the above conditions are satis�ed. Pruned SSI

form is the minimal form with any unused �- and �-functions deleted; that

is, it contains no �- or �-functions after which there are no subsequent

non-�- or �-function uses of any of the variables de�ned on the left-hand

side.7 Figure 5.2 on the next page compares minimal and pruned SSI form

for our example program.

Note that, as in SSA form, pruned SSI does not strictly satisfy the SSI

constraints because it omits dead �- and �-functions otherwise required by

conditions 1 and 2 of the de�nition. In practice, a subtractive de�nition

of pruned form | generate minimal form and then removed the unused

�- and �-functions | is most useful, but a constructive de�nition can be

generated from the standard SSI form de�nition as follows:

1. The convergence/divergence node Z of conditions 1 and 2 must also

satisfy: \and there exists a path from Z
+
! U to a U, a use of V in the

original program, which does not contain another de�nition of V."

2. The boundary condition 5 at END can be loosened as follows (emphasis

indicates modi�cations): \For the purposes of this de�nition, the

START node is assumed to contain a de�nition for every variable in

7An even more compact SSI form may be produced by removing �-functions for which

there are uses for exactly one of the variables on the left-hand side, but by doing so one

loses the ability to perform renaming at control-ow splits which generate additional value

information.
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P0  (X0 6= 2)

if P0 jump
hX1; X2i � (X0)
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X3  � (X1; X2)
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/* no further uses of X or Z */

P0  (X0 6= 2)

if P0 jump
hX1; X2i � (X0)

Y2  6+ X2
Z1  5

Y1  4+ X1
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false true

Y3  � (Y1; Y2)

Y4  Y3 + 1

/* no further uses of X or Z */

Figure 5.2: Minimal (left) and pruned (right) SSI forms.

the original program and the END nodes a use for every variable live

at END in the original program."

Pruned form is de�ned as having the minimal set of �- and �-functions

that satisfy the amended conditions. It can easily be veri�ed that the

modi�cations su�ce to eliminate unused �- and �-functions: if the variable

de�ned in a �- or �-function is used, there must exist a path Z
+
! U as

mandated by amendment 1, where amendment 2 lets U = END for variables

live exiting the procedure and thus usefully de�ned.

Property 5.4. A node Z gets a �- or �-function for some variable Vi

in pruned SSI form only if the corresponding variable V is live at Z in

the original program.

Proof. This is a trivial restatement of amendment 1. A variable v is said to

be live at some node N if there exists a node U using v and a path N
+
! U

on which no de�nitions of v are to be found. If V is not live at Z then no
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path Z
+
! U satisfying the amended conditions 1 and 2 can be found and

neither a �- or �-function can be placed. Amendment 2 ensures this holds

true at boundaries.

5.3 Fast construction of SSI form

The most common construction algorithm for SSA form [11] uses domi-

nance frontiers and su�ers from a possible quadratic blow-up in the size

of the dominance frontier for certain common programming constructs.

Various improved algorithms use such things as DJ graphs [38] and the de-

pendence ow graph [20] to achieve O(EV) time complexity for �-function

placement. We build on this work to achieve O(EV) construction of SSI

form, and present a new algorithm for variable renaming in SSI form after

�- and �-functions are placed.

Our construction algorithm begins with a program structure tree of

single-entry single-exit (SESE) regions, constructed as described by John-

son, Pearson, and Pingali [19]. We will review the algorithms involved, as

their published descriptions [18] contain a number of errors.

We begin with a few de�nitions from [19].

De�nition 5.1. Edges a and b are said to be edge cycle-equivalent

in a graph i� every cycle containing a contains b, and vice-versa.

Similarly, two nodes are said to be node cycle-equivalent i� every

cycle containing one of the nodes also contains the other.

De�nition 5.2. A SESE region in a graph G is an ordered edge pair

ha; bi of distinct control ow edges a and b where

1. a dominates b,

2. b postdominates a, and

3. every cycle containing a also contains b and vice-versa.
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Edges a and b are called the entry and exit edges, respectively.

De�nition 5.3. A SESE region ha; bi is canonical provided

1. b dominates b 0 for any SESE region ha; b 0i, and

2. a postdominates a 0 for any SESE region ha 0; bi.

We will give time bounds in terms of N and E, the number of nodes

and edges of the control-ow graph, respectively. Placement of �- and �-

functions is also dependent on V, the number of variables in the program.

Since SSI renaming increases the number of variables, we will use V0 and

VSSI to indicate the number of variables in the original program and SSI

form, respectively.

Note that V is O(N) at most, since our representation only allows a

constant number of variable de�nitions per node. Typically V0 will be

much smaller than N, but VSSI need not be. Also E may be as large as

O(N2), but in most control-ow graphs is O(N) instead, as node arities are

typically limited by a constant.

5.3.1 Cycle-equivalency

The identi�cation of SESE regions begins by computing the cycle-equivalency

of the edges in the program control ow graph. The cycle-equivalency algo-

rithm works on undirected graphs, so we prepare the directed control ow

graph G as follows:

1. Add an edge from END to START in G. It is common practice to

add an edge from START to END in order to root the control depen-

dence graph at START [10]. However, our goal is not rooted control

dependence but to make the control ow graph into a single strongly

connected component; for this reason the direction of the edge is from

END to START instead.
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Figure 5.3: Transformation from directed to undirected graph (from [18]).

2. Create an equivalent undirected graph. Johnson et al. prove that

the node expansion illustrated in Figure 5.3 results in an undirected

graph with the same cycle-equivalency properties as the original di-

rected graph. More precisely, nodes a and b in directed graph G are

cycle-equivalent if and only if nodes a 0 and b 0 are cycle-equivalent in

transformed undirected graph G 0. The nodes ni and no generated

by the expansion are termed not representative ; the node n 0 in G 0

is said to be representative of node n in G. Obviously, this corre-

spondence must be recorded during the transformation so we may

properly attribute the cycle-equivalency properties of n 0 to n later.

3. Perform a pre-order numbering of nodes in G 0. This is done

with a simple depth-�rst search of G 0. When we visit a node ai or

ao, we prefer to visit a
0 before any other neighbor. This ensures that

representative nodes are interior nodes in the DFS spanning tree. The

START node is numbered 0, and succeeding nodes in the traversal get

increasing numbers. Thus low-numbered nodes are closest to START

and we will call them \highest" in the DFS spanning tree.

The above steps form an undirected graph G 0 from the control-ow

graph G. The remainder of the cycle-equivalency algorithm is presented
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Data type BracketList:

create(): BracketList : Make an empty BracketList structure

size(bl:BracketList): integer : Number of elements in BracketList structure

push(bl:BracketList, e:bracket): BracketList : Push e on top of bl

top(bl:BracketList): bracket : Topmost bracket in bl

delete(bl:BracketList, e:bracket): BracketList : Delete e from bl

concat(bl1,bl2:BracketList): BracketList : Concatenate bl1 and bl2

Operations on nodes:

Number(n:node): integer : DFS preorder number of node

NQClass(n:node): integer : Cycle-equivalency class of node

BList(n:node): BracketList : List of brackets of node

Hi(n:node): integer : Highest destination node of any edge originating from a

descendant of node n

Operations on edges:

EQClass(e:node): integer : Cycle-equivalency class of edge

RecentSize(e:edge): integer : Size of bracket set when e was most recently the

topmost bracket for a representative node

RecentClass(e:edge): integer : Cycle-equivalency class number of representa-

tive node for which e was most recently the topmost bracket.

Figure 5.4: Datatypes and operations for the cycle-equivalency algorithm.
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Procedure cycle_equiv (G: CFG)
{
/* Preprocessing */
G' := Preprocess (G); /* described in text */

/* Compute CD equivalence classes */
for each node n of G', in reverse depth-first order, do {
/* Compute Hi(n) */
/* hi0 is highest using backedges only */
hi0 := min{ Number(t) | (t,n) is a backedge };
/* hi1 is highest through children */
hi1 := min{ Hi(c) | c is a child of n };

| /* hi2 is lowest through children */
| hi2 := max{ Hi(c) | c is a child of n };

Hi(n) := min{ hi0, hi1 };

/* Compute BList(n) */
BList(n) := create ();

for each child c of n, do
BList(n) := concat (BList(n), BList(c));

for each backedge <d, n> from a descendant d of n to n, do
BList(n) := delete (BList(n), <d, n>);

| for each capping backedge <d, n> of n, do
| BList(n) := delete (BList(n), <d, n>);

for each backedge <n, a> from n to an ancestor a of n, do {
BList(n) := push (BList(n), <n, a>)
RecentSize(<n, a>) := -1; /* not a representative node */

}

if n has more than one child, then {
BList(n) := push (BList(n), <n, hi2>); /* capping backedge */

| RecentSize(<n, hi2>) := -1;
| add <n, hi2> to capping backedges list of hi2;

}

/* Compute NQClass (n) */
if n is a representative node, then {
if RecentSize (top (BList(n))) != size (BList(n)), then {

/* start a new equivalence class */
RecentSize (top (BList(n))) := size (BList(n));
RecentClass (top (BList(n))) := new-class-name();

}
NQClass (n) := RecentClass (top (Blist(n)));

}
} /* for each node */

}

Algorithm 5.1: The cycle-equivalency algorithm (corrected from [18]).
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Figure 5.5: Control ow graph and cycle-equivalent edges.

as Algorithm 5.1 on the preceding page, with the above procedure corre-

sponding to the statement G':=Preprocess(G). The algorithm has been

corrected from the published version in [18]; in addition it has been ex-

tended to compute both node and edge equivalencies (in e�ect, merging

the algorithm of [19]). Lines modi�ed from the presentation in [18] are

indicated in the �gure with a vertical bar in the left margin. The datatype

BracketList and the node and edge properties used in the algorithm are

described in Figure 5.4 on page 26. The interested reader is encouraged

to consult [18] for additional detail on these data structures and represen-

tations. Figure 5.5 shows cycle-equivalent regions in a simple control-ow

graph. We use the notation ha; bi �cq hc; di to indicate that the CFG edge

from node a to node b is edge cycle-equivalent to the edge from node c to

node d.
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Calculating cycle-equivalent regions is based on a single reverse depth-

�rst traversal of G, so as long as all datatype operations in Figure 5.4 can be

completed in constant time (and [18] shows how to do so), this computation

is O(E).

5.3.2 SESE regions and the program structure tree

Johnson, Pearson, and Pingali show how to construct a tree structure of

nested SESE regions from the cycle-equivalency information in [19]. The

cycle-equivalent regions are sorted by dominance using a simple depth-

�rst traversal of the graph, and then canonical SESE regions are found by

taking adjacent pairs of edges from the cycle-equivalence classes. Another

depth-�rst search of the CFG su�ces to obtain to nesting of these regions,

which is represented in a data structure called the program structure tree.

The algorithm and data structures required are presented in Figure 5.6 and

Algorithm 5.2. Figure 5.7 on page 32 shows the SESE regions on the left

and program structure tree on the right for the example of Figure 5.5 on

the preceding page.8

The time complexity for constructing the PST is easily seen to be O(E).

Algorithm 5.2 on page 31 begins with a depth �rst traversal of G to con-

struct an ordered edge list for each cycle-equivalent region; the traversal is

O(E) and the list-append operation can be done in constant time. We then

iterate through the cycle-equivalence classes and the edge lists of each con-

structing SESE regions. No edge can be on more than one list, so this step

is O(E). Finally, we do a �nal O(E) depth-�rst traversal of G, performing

the constant-time operations append and LinkRegion. All steps are O(E)

and their sequential composition is also O(E).

8In addition, the regions c; d; e and f; g are sequentially composed [19]. However, our

SSI construction algorithm doesn't use this property.
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Data type EdgeList:

size(el:EdgeList): integer : Number of elements in EdgeList structure

head(el:EdgeList): edge : First edge in el

tail(el:EdgeList): EdgeList : EdgeList like el but missing �rst element

append(el:BracketList, e:edge): EdgeList : Add e to the end of el

Data type Region:

NewRegion(e1:edge, e2:edge): Region : Creates a new region with entry e1

and exit e2 and no parent

Entry(r:Region): Edge : The entry edge of r

Exit(r:Region): Edge : The exit edge of r

Parent(r:Region): Region : The parent of r, or nil if none

Nodes(r:Region): NodeList : A list of nodes in r

LinkRegion(r1,r2:Region): void : Sets the parent of r2 to be r1

Operations on nodes:

Mark(n:node): boolean : Visited status during DFS

SESE(n:node): Region : The canonical SESE of n

Operations on edges:

EntryRegion(e:edge): Region : the region with entry e, or nil if none exists

ExitRegion(e:edge): Region : the region with exit e, or nil if none exists

Figure 5.6: Datatypes and operations used in construction of the PST.
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NestedSESE(G: CFG) =
1: /* initialize */
2: for all nodes n of G do
3: Mark(n) false

4: for all edges e of G do
5: EntryRegion(e) nil

6: ExitRegion(e) nil

7:

8: /* order edges within cycle-equivalency classes by dominance */
9: for each edge e of G in depth �rst order do
10: CQList (EQClass(e)) append (CQList(EQClass(e)); e)
11: /* get all canonical SESE regions */
12: for all equivalency classes q do
13: l CQList(q)
14: while size(l) > 1 do
15: r NewRegion (head(l);head(tail(l)))
16: EntryRegion(Entry(r)) r

17: ExitRegion(Exit(r)) r

18: /* determine proper nesting of SESE regions */
19: VisitNode(START; top-region)

VisitNode(n: node, r: Region) =
1: if Mark(n) = false then
2: Mark(n) true

3: /* record mapping from n to r */
4: SESE(n) r

5: Nodes(r) append(Nodes(r); n)
6:

7: for each edge hn; n 0i from n to n 0 do
8: r1  EntryRegion(hn;n 0i)
9: r2  ExitRegion(hn;n 0i)
10: if r = r1 or r = r2 then
11: rN  Parent(r) /* exiting current region */
12: else
13: rN  r

14: if r1 6= nil and r1 6= r then
15: LinkRegion(rN; r1) /* entering new region */
16: rN  r1
17: if r2 6= nil and r2 6= r then
18: LinkRegion(rN; r2) /* entering new region */
19: rN  r2
20: VisitNode(n 0; rN)

Algorithm 5.2: Computing nested SESE regions and the PST.
31



a

b

f

g

j

h

c

d

i

e

h
2

h
9

h
3

h4

h
5

h
6

h
7

h
8

h
16

h
10

h11 h12

h
13

h
14

h
15

h
1

�

�
�&

'

%

?
HHHHj

�����

? ?

?

??

?

?

��	@@R

��	 @@R @@R ��	

��	 @@R

HHHHj
�����

�

-

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

START

END

b
b
b
bb

PPPPPPPPP

B
B
B

�
�
�
�

�
�
�

A
A
A

�
�
�

A
A
A

a

d

h

ecb

f g

i j

Figure 5.7: SESE regions and PST for the CFG of Figure 5.5 (from [19]).

5.3.3 Placing �- and �-functions

As with the presentation of SSA form in [11], we split construction of

SSI form into two parts: placing �- and �-functions and renaming vari-

ables. The placement algorithm runs in O(NV0) time, and is presented

as Algorithm 5.3 on the next page. No new node properties or datatypes

are required; however, it is parameterized on a function called MaybeLive.

For minimal SSI form, MaybeLive should always return true. Faster prac-

tical run-time may be obtained if pruned SSI form is the desired goal by

allowing MaybeLive to return any conservative approximation of variable

liveness information, which will allow early suppression of unused �- and

�-functions. Note that MaybeLive need not be precise; conservative values

will only result in an excess of �- and �-functions, not an invalid SSI form.

Section 5.3.6 describes a post-processing algorithm to e�ciently remove the
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Place(G: CFG) =

1: let r be the top-level region for G

2: for each variable v in G do

3: PlaceOne(r, v, false) /* place phis */

4: PlaceOne(r, v, true) /* place sigmas */

PlaceOne(r: region, v: variable, ps: boolean): boolean =

1: /* Post-order traversal */

2: ag  false

3: for each child region r 0 do

4: if PlaceOne(r 0, v, ps) then

5: ag  true

6:

7: for each node n in region r not contained in a child region do

8: if ps is false and n contains a de�nition of v then

9: ag  true

10: if ps is true and n contains a use of v then

11: ag  true

12:

13: /* add phis/sigmas to merges/splits where v may be live */

14: if ag = true then

15: for each node n in region r not contained in a child region do

16: if MaybeLive(v, n) = true then

17: if ps is false and the input arity of n exceeds 1 then

18: place a phi function for v at n

19: if ps is true and the output arity of n exceeds 1 then

20: place a sigma function for v at n

21:

22: return ag

Algorithm 5.3: Placing �- and �-functions.
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excess �- and �-functions.9 The remainder of this section will be devoted

to a correctness proof of Algorithm 5.3.

Lemma 5.1. No �-functions (�-functions) for a variable v are needed

in an SESE region not containing a de�nition (use) of v.

Proof. Let us assume a �-function for v is needed at some node Z inside an

SESE not containing a de�nition of v. Then by condition 1 of the SSI form

de�nition, there exist paths X
+
! Z and Y

+
! Z having no nodes but Z in

common where X and Y contain either de�nitions of v or �- or �-functions

for v. Choose any such paths:

Case I: Both X and Y are outside the SESE. Then, as there is only one

entrance edge into the SESE, the paths X
+
! Z and Y

+
! Z must

contain some node in common other than Z. But this contradicts our

choice of X and Y.

Case II: At least one of X and Y must be inside the SESE. If both X and

Y are not de�nitions of v but rather �- or �-functions for v, then

by recursive application of this proof there must exist some choice

of X, Y, and Z inside this SESE where at least one of X and Y is a

de�nition. But X or Y cannot be a de�nition of v because they are

inside the SESE of Z which was chosen to contain no de�nitions of v.

A symmetric argument holds for �-functions for v, using condition 2 of

the SSI form de�nition, and the fact that there exists one exit edge from

the SESE.

9Note that equivalent results could be obtained by adding a �-function for every vari-

able at every merge and a �-function for every variable at every split, and post-processing.

In fact the same time bounds (O(NV0)) would be obtained. There is a large practical dif-

ference in actual runtime and space costs, however, which motivates our more e�cient

approach.
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The above lemma justi�es line 14 of the algorithm on page 33, which

skips over any SESE region not containing a de�nition (use) of v when

placing �-functions (�-functions) for v.

Lemma 5.2. If a de�nition (use) or a �- or �-function for a variable

v is present at some node D (U), then a �-function (�-function) for

v is needed at every node N:

1. of input (output) arity greater than 1,

2. reachable from D (from which U is reachable),

3. whose smallest enclosing SESE contains D (U), and

4. which is not dominated by D (not post-dominated by U).

Proof. We will �rst prove that a node N failing any one of the conditions

does not need a �- or �-function.

� Conditions 1 and 2 of the SSI form de�nition require node N to be

the �rst convergence (divergence) of some paths X
+
! N and Y

+
! N

(N
+
! X and N

+
! Y). If the input arity is less than 2 or there is no

path from a de�nition of v, than it fails the �-placement criterion 1.

If the output arity is less than 2 or there is no path to a use of v, then

it fails the �-placement criterion 2.

� If there exists a SESE containing N that does not contain any def-

inition, �- or �-function D for v, then N does not require a �- or

�-function for v by lemma 5.1.

� Let us suppose every Di containing a de�nition, �- or �-function

for v dominates N. If N requires a �-function for v, there exist

paths D1
+
! N and D2

+
! N containing no nodes in common but
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N. We use these paths to construct simple paths START
+
! D1

+
! N

and START
+
! D2

+
! N. By the de�nition of a dominator, every

path from START to N must contain every Di. But D1
+
! N cannot

contain D2, and if START
+
! D1 contains D2, we can make a path

START
+
! D2

+
! N which does not contain D1 by using the D1-free

path D2
+
! N. The assumption leads to a contradiction; thus, there

must exist some Di which does not dominate N if N is required to

have a �-function for v. The symmetric argument holds for post-

dominance and �-functions.

This proves that the conditions are necessary. It is obvious from an exami-

nation of conditions 1 and 2 of the SSI form de�nition and lemma 5.1 that

they are su�cient.

In practice, the conditions of lemma 5.2 are too expensive to implement

directly. Instead, we use a conservative approximation to SSI form, which

allows us to place more �- and �-functions than minimal SSI requires (for

example, a �-function for v at the circled node in Figure 5.8), while satis-

fying the conditions of the SSI form de�nition. Our algorithm also allows

us to do pre-pruning of the SSI form during placement. The result is not

pruned SSI, but contains a tight superset of the �- and �-functions that

pruned form requires.

Theorem 5.1. Algorithm 5.3 places all the �- and �-functions required

by conditions 1 and 2 of the SSI form de�nition.

Proof. Lemma 5.1 states that the child region exclusion of Algorithm 5.3

does not cause required �- or �-functions to be omitted. Property 5.4

allows the omission of �- and �-functions for v at nodes where v is dead

when creating pruned form; MaybeLive may not return false for nodes
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Figure 5.8: An owgraph where Algorithm 5.3 places �-functions conser-

vatively.

where v is not dead, but may return true at nodes where v is dead without

harming the correctness of the �- and �-function placement.

5.3.4 Computing liveness

Incorporating liveness information into the creation of pruned SSI form

appears to lead to a chicken-and-egg problem: although the pruned SSI

framework allows highly e�cient liveness analysis, obtaining the liveness

information from the original program can be problematic. The fastest

sparse algorithm has stated time bounds of O(E +N2) [7], which is likely

to be more expensive than the rest of the SSI form conversion. Luckily,

Kam and Ullman [21], in conjunction with an empirical study by Knuth

[23], show that liveness analysis is highly likely to be linear for reducible

ow-graphs. In our work this question is avoided, as we obtain our liveness

information directly from properties of the Java bytecode �les that are our

input to the compiler. But in any case our algorithms allow conservative

approximation to liveness, so even in the case of non-reducible ow graphs

it should not be di�cult to quickly generate a rough approximation.
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Rename(G: CFG) =

1: Init(G)

2: for each edge e leaving START do

3: Search(e)

Init(G: CFG) =

1: for each edge e in G do

2: Marked[e] false

3: for each variable V in G do

4: C(V) 0

5: E = create() /* create a new environment */

Inc(E : Environment, V: variable): variable =

1: i C(V) + 1

2: C(v) i

3: E :put(V;Vi)

4: return Vi

Algorithm 5.4: SSI renaming algorithm.

5.3.5 Variable renaming

Algorithm 5.4 performs variable renaming on a ow-graph with placed

�- and �-functions in a single depth-�rst traversal. When the algorithm is

complete, the control ow-graph will be in proper SSI form. The variable

renaming algorithm requires an Environment datatype which is de�ned in

Figure 5.9. Using an imperative programming style, it is possible to per-

form a sequence of anyN operations on Environment as de�ned in the �gure

in O(N) time; in a functional programming style any N operations can be

completed in O(N logN) time.10 As the coarse structure of Algorithm 5.4

is a simple depth-�rst search, it is easy to see that the Search procedure

can be invoked from line 3 on page 38 and line 32 on page 39 a total of

10The curious reader is referred to section 5.1 of Appel [4] for implementation details.
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Search(hs; di: edge) =

Require: s to be a node containing �- or �-functions, or START

Require: Marked[hs; di] = false

1: Marked[hs; di] true

2: beginScope(E)

3: if s is a node containing �-functions then

4: for each �-function P in s do

5: replace the destination V of P by Inc(E ; V)

6: else if s is a node containing �-functions then

7: for each �-function S in s do

8: j WhichSucc(hs; di)

9: replace the j-th destination V of S by Inc(E ; V)

10: loop /* now rename inside basic block */

11: if d is a node containing �-functions then

12: for each �-function P in d do

13: j WhichPred(hs; di)

14: replace the j-th operand V of P by get(E ; V)

15: break /* end of basic block */

16: else if s is a node containing �-functions then

17: for each �-function S in d do

18: replace the operand V of S by get(E ; V)

19: break /* end of basic block */

20: /* ordinary assignment, at most one successor */

21: for each variable V in RHS(d) do

22: replace V by get(E ; V) in RHS(d)

23: for each variable V in LHS(d) do

24: replace V by Inc(E ; V) in LHS(d)

25: if d has no successor then

26: break /* end of basic block */

27: s d

28: d successor of d

29: end loop

30: for each successor n of d do

31: if not Marked[hd; ni] then

32: Search(hd;ni) /* dfs recursion */

33: endScope(E)

34: return

Algorithm 5.5: SSI renaming algorithm, cont.
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O(E) times; likewise its inner loop (lines 10 to 29) can be executed a total

of E times across all invocations of Search. A total of USSA+DSSA calls to

the operations of the Environment datatype will be made within all execu-

tions of Search. For the imperative implementation of Environment a total

time bounds of O(E+USSA +DSSA) for the variable renaming algorithm is

obtained.

We have shown that Algorithm 5.3 places all the required �- and �-

functions in the control-ow graph according to SSI form conditions 1, 2,

and 5; we will now show that this algorithm renames variables consistent

with conditions 3 and 4 to prove that these algorithms combined su�ce to

convert a program into SSI form. The SSI form is not necessarily minimal,

as we showed in section 5.3.3; the next section will show how to post-process

to create minimal or pruned SSI form.

Lemma 5.3. The stack trace of calls to Search de�nes a unique path

through G from START.

Proof. We will prove this lemma by construction. For every consecutive

pair of calls to Search we construct a path X
+
! Y starting with the edge

hX;N0i which is the argument of the �rst call, and ending with the edge

hNn; Yi which is the argument of the second call. From line 28 of the Search

procedure on page 39 we note that every edge hNi;Ni+1i between the �rst

and last has exactly one successor. Furthermore, the call to search on line 32

de�nes a path starting with the edge which our segment X
+
! Y ends with;

therefore the paths can be combined. By so doing from the bottom of the

call stack to the top we construct a unique path from START.

For brevity, we will hereafter refer to the canonical path constructed

in the manner of lemma 5.3 corresponding to the stack of calls to Search

when an edge e is �rst encountered as CP(e). Every edge in the CFG is
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encountered exactly once by Search, so CP(e) exists and is unique for every

edge e in the CFG.

Lemma 5.4. SSI form condition 3 (�-function naming) holds for vari-

ables renamed according to Algorithm 5.4.

Proof. We restate SSI form condition 3 for reference:

For every node X containing a de�nition of a variable V in the

new program and node Y containing a use of that variable, there

exists at least one path X
+
! Y and no such path contains a

de�nition of V other than at X.

We consider the canonical path CP(hY 0; Yi) = START
�
! Y 0

! Y for some

use of a variable v at Y, constructed according to lemma 5.3 from a stack

trace of calls to Search. is encountered. This path is unique, although more

than one canonical path may terminate at Y at nodes with more than one

predecessor. These paths are distinguished by the incoming edge to Y.11

We identify each operand vi of a �-function with the appropriate incoming

edge e to ensure that CP(e) is well de�ned and unique in the context of a

use of vi.

The canonical path START
+
! Y must contain X, a de�nition of v, if Y

uses a variable de�ned in X, as Search renames all de�nitions (in lines 5,

9, and 24) and destroys the name mapping in E just before it returns. The

call to Search which creates the de�nition of v must therefore always be

on the stack, and thus in the path CP(hY 0; Yi), for any use to receive a the

11Note that the notation hN;N 0i for denoting edges does not always denote an edge

unambigiously; imagine a conditional branch where both the true and false case lead

to the same label. In such cases an additional identi�er is necessary to distinguish the

edges. Alternatively, one may split such edges to remove the ambiguity. We treat edges

as uniquely identi�able and leave the implementation to the reader.
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name v. Note that this is true for �-functions as well, which receive names

when the appropriate incoming edge hY 0; Yi is traversed, not necessarily

when the node Y containing the �-function is �rst encountered.

We have proved that START
+
! X

+
! Y exists; now we must prove that no

other path from X to Y contains a de�nition of v. Call this other de�nition

D. Obviously D cannot be on our canonical path START
+
! X

+
! Y, or

line 24 would have caused Y to use a di�erent name. But as we just stated,

all variable name mappings done by D will be removed when the call to

Search which touched D is taken o� the call stack. So D must be on the

call stack, and thus on the canonical path; a contradiction. Since assuming

the existence of some other path X
+
! Y containing a de�nition of v leads

to contradiction no other such path may exist, completing the proof of the

lemma.

Lemma 5.5. SSI form condition 4 (�-function naming) holds for vari-

ables renamed according to Algorithm 5.4.

Proof. We restate SSI form condition 4 for reference:

For every pair of nodes X and Y containing uses of a variable V

de�ned at node Z in the new program, either every path Z
+
! X

must contain Y or every path Z
+
! Y must contain X.

Let us assume there are paths Z
+
! X and Z

+
! Y violating this condition;

that is, let us chose nodes X and Y which use V and Z de�ning V such that

there exists a path P1 from Z to X not containing Y and a path P2 from Z to

Y not containing X. By the argument of the previous lemma, there exists

a canonical path P3 = CP(e) from START to X through Z corresponding to

a stack trace of Search; note that P3 need not contain P1. There are two

cases:
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Case I: P3 does not contains Y. Then there is some last node N present

on both P2 : Z
�
! N

+
! Y and P3 : START

+
! Z

�
! N

+
! X. By SSI

condition 2 this node N requires a �-function for V. If N 6= Z then

line 5 of Algorithm 5.4 would rename V along P3 and X would not

use the same variable Z de�ned; if N = Z, then line 9 would have

ensured that X and Y used di�erent names. Either case contradicts

our choices of X, Y, and Z.

Case II: P3 does contain Y. Then consider the path START
+
! Z

+
! Y along

P3, which does not contain X. The argument of case I applies with X

and Y reversed.

Any assumed violation of condition 4 leads to contradiction, proving the

lemma.

Every path CP(e) corresponds to a execution state in a call to Search

at the point where e is �rst encountered. The value of the environment

mapping E at this point in the execution of Algorithm 5.4 we will denote

as Ee. For a node N having a single predecessor Np and single successor

Ns, we will denote E
hNp;Ni as ENbefore and E

hN;Nsi as ENafter. It is obvious that

E
Np

after = ENbefore and ENafter = ENs

before when Np and Ns, respectively, are also

single-predecessor single-successor nodes.

Lemma 5.6. SSI form condition 6 (correctness) holds for variables re-

named according to Algorithm 5.4. That is, along any possible control-

ow path in a program being executed a use of a variable Vi in the new

program will always have the same value as a use of the corresponding

variable V in the original program.

Proof. We will use induction along the path N0 ! N1 ! : : : ! Nn. We

consider ek = hNk;Nk+1i, the (k+ 1)th edge in the path, and assume that,
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for all j < k, each variable V in the original program agrees with the value

of Eej[V] = Vi in the new program. We show that Eek[V] agrees with V at

edge ek in the path.

Case I: k = 0. The base case is trivial: the START node (N0) contains

no statements, and along each edge e leaving start Ee[V] = V0. By

de�nition V0 agrees with V at the entry to the procedure.

Case II: k > 0 and Nk has exactly one predecessor and one successor.

If Nk is single-entry single-exit, then it is not a �- or �-function.

As an ordinary assignment, it will be handled by lines 20 to 24 of

Algorithm 5.5 on page 39. By the induction hypothesis (which tells

us that the uses atNk correspond to the same values as the uses in the

original program) and the semantics of assignment, the mapping ENk

after

is easily veri�ed to be valid when ENk

before is valid. Thus the value of

every original variable V corresponds to the value of the new variable

ENk

after[V] = Eek[V] on ek.

Case III: k > 0 and Nk has multiple predecessors and one successor. In

this case Nk may have multiple �-functions in the new program, and

by the de�nition in section 3 Nk has no statements in the original

program. Thus the value of any variable V in the original program

along edge ek is identical to its value along edge ek-1. We need only

show that the value of the variable Eek-1[V] is the same as the value

of the variable Eek[V] in the new program. For any variable V not

mentioned in a �-function atNk this is obvious. Each variable de�ned

in a �-function will get the value of the operand corresponding to the

incoming control-ow path edge. The relevant lines in Algorithm 5.5

start with 13 and 14, where we see that the operand corresponding to

edge ek-1 of a �-function for V correctly gets Eek-1[V]. At line 5, we
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see that the destination of the �-function is correctly Eek[V]. Thus

the value of every original variable V correctly correponds to Eek[V]

by the induction hyptothesis and the semantics of the �-functions.

Case IV: k > 0 and Nk has one predecessor and multiple successors. Here

Nk may have multiple �-functions in the new program, and is empty

in the original program. The argument goes as for the previous

case. It is obvious that variables not mentioned in the �-functions

correspond at ek if they did at ek-1. For variables mentioned in

�-functions, line 18 shows that operands correctly get Eek-1[V] and

line 9 shows that the destination corresponding to ek correctly gets

Eek[V]. Therefore the values of original variables V correspond to the

value of Eek[V] by the induction hypothesis and the semantics of the

�-functions.

Case V: Nk has multiple predecessors and multiple successors. Forbidden

by the CFG de�nition in section 3.

Therefore, on every edge of the chosen path, the values of the original vari-

ables correspond to the values of the renamed SSI form variables. The value

correspondence at the path endpoint (a use of some variable V) follows.

Theorem 5.2. Algorithm 5.4 renames variables such that SSI form

conditions 3, 4, and 6 hold.

Proof. Direct from lemmas 5.4, 5.5, and 5.6.

Theorem 5.3. Algorithms 5.3 and 5.4 correctly transform a program

into SSI form.

Proof. Theorem 5.1 proves that �- and �-functions are placed correctly to

satisfy conditions 1, 2 and 5 of the SSI form de�nition, and theorem 5.2

proves that variables are renamed correctly to satisfy conditions 3, 4 and 6.
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5.3.6 Pruning SSI form

The SSI algorithm can be run using any conservative approximation to the

liveness information (including the function MaybeLive(v; n) = true) if

unused code elimination12 is performed to remove extra �- and �-functions

added and create pruned SSI. Figure 5.10 and Algorithm 5.6 present an

algorithm to identify unused code in O(NVSSI) time, after which a simple

O(N) pass su�ces to remove it. The complexity analysis is simple: nodes

and variables are visited at most once, raising their value in the analysis

lattive from unused to used. Nodes marked used are never visted. So

MarkNodeUseful is invoked at mostN times, and MarkVarUseful is invoked

at most VSSI times. The calls to MarkNodeUseful may examine at most

every variable use in the program in lines 3-5, taking O(USSI) time at

worst. Each call to MarkVarUseful examines at most one node (the single

de�nition node for the variable, if it exists) and in constant time pushes at

most one node on to the worklist for a total of O(VSSI) time. So the total

run time of FindUseful is O(USSI + VSSI) = O(USSI).

5.3.7 Discussion

Note that our algorithm for placing �- and �-functions in SSI form is

pessimistic; that is, we at �rst assume every node in the control-ow graph

with input arity larger than one requires a �-function for every variable

and every node with out-arity larger than one requires a �-function for

every variable, and then use the PST, liveness information, and unused

code elimination to determine safe places to omit �- or �-functions. Most

12We follow [44] in distinguishing unreachable code elimination, which removes code

that can never be executed, from unused code elimination, which deletes sections of

code whose results are never used. Both are often called \dead code elimination" in the

literature.
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Data type Environment:

create(): Environment :

make an environment with no mappings.

put(E: Environment, v1: variable, v2: variable) :

extend environment E with a mapping from v1 to v2.

get(E: Environment, v: variable): variable :

return the current mapping in E for v.

beginScope(E: Environment) :

save the current mapping of E for later restoration.

endScope(E: Environment) :

restore the mapping of E to that present at the last beginScope on E .

Figure 5.9: Environment datatype for the SSI renaming algorithm.

Operations on nodes:

NodeUseful(n:node): boolean : Whether the results of this node are ever used

Uses(n:node): set of variables : Variables for which this node contains a use

Operations on variables:

VarUseful(v:variable): boolean : Whether there is some n for which Uses(n)

contains v and NodeUseful(n) is true

De�nitions(v:variable): set of nodes : Nodes which contain a de�nition for v

Figure 5.10: Datatypes and operations used in unused code elimination.

47



FindUseful(G: CFG) =

1: let W be an empty work list

2: for each variable v in G do

3: VarUseful(v) false

4: for each node n in G in any order do

5: NodeUseful(n) false

6: if n is a CALL, RETURN, or other node with side-e�ects then

7: add n to W

8:

9: while W is not empty do

10: let n be any element from W

11: remove n from W

12: MarkNodeUseful(n;W)

MarkNodeUseful(n: node, W: WorkList) =

1: NodeUseful(n) true

2: /* everything used by a useful node is useful */

3: for each variable v in Uses(n) do

4: if not VarUseful(v) then

5: MarkVarUseful(v;W)

MarkVarUseful(v: variable, W: WorkList) =

1: VarUseful(v) true

2: /* The de�nition of a useful variable is useful */

3: for each node n in De�nitions(v) do

4: /* In SSI form, size(De�nitions(v)) � 1 */

5: if not NodeUseful(n) then

6: add n to W

Algorithm 5.6: Identifying unused code using SSI form.
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Figure 5.11: A worst-case CFG for \optimistic" algorithms.

SSA construction algorithms, by contrast, are optimistic; they assume no

�- or �-functions are needed and attempt to determine where they are

provably necessary. In my experience, optimistic algorithms tend to have

poor time bounds because of the possibility of input graphs like the one

illustrated in Figure 5.11. Proving that all but two nodes require �- and/or

�-functions for the variable a in this example seems to inherently require

O(N) passes over the graph; each pass can prove that �- or �-functions are

required for only those nodes adjacent to nodes tagged in the previous pass.

Starting with the circled node, the �- and �-functions spread one node left

on each pass. On the other hand, an pessimistic algorithm assumes the

correct answer at the start, fails to show that any �- or �-functions can be

removed, and terminates in one pass.

5.4 Time and space complexity of SSI form

Discussions of time and space complexity for sparse evaluation frameworks

in the literature are often misleadingly called \linear" regardless of what

the O-notation runtime bounds are. A canonical example is [38], which

states that for SSA form, \the number of �-nodes needed remains linear."

Typically Cytron [11] is cited; however, that reference actually reads:
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For the programs we tested, the plot in [Figure 21 of Cytron's

paper] shows that the number of �-functions is also linear in

the size of the original program.

It is important to note that Cytron's claim is based not on algorithmic

worst-bounds complexity, but on empirical evidence. This reasoning is not

unjusti�ed; Knuth [23] showed in 1974 that \human-generated" programs

almost without exception show properties favorable to analysis; in particu-

lar shallow maximum loop nesting depth. Wegman and Zadeck [44] clearly

make this distinction by noting that:

In theory the size [of the SSA form representation] can beO(EV),

but empirical evidence indicates that the work required to com-

pute the SSA graph is linear in the program size.

Our worst-case space complexity bounds for SSI form are identical to SSA

form| O(EV)| but in this section we will endeavour to show that typical

complexities are likewise \linear in the program size."

The total runtime for SSI placement and subsequent pruning, including

the time to construct the PST, is O(E +NV0 +USSI). For most programs

E will be a small constant factor multiple of N; as Wegman and Zadeck

[44] note, most control ow graph nodes will have at most two successors.

For those graphs where E is not O(N), it can be argued that E is the more

relevant measure of program complexity.13

Thus the \linearity" of our SSI construction algorithm rests on the

quantities NV0 and USSI. Figures 5.12 and 5.13 present empirical data

for V0 and USSI on a sample of 1,048 Java methods. The methods varied

in length from 4 to 6,642 statements and were taken from the dynamic

13We will not follow Cytron [11] in de�ning a new variable R to denote max(N;E; : : :) to

avoid following him in declaring worst-case complexity O(R3) and leaving it to the reader

to puzzle out whether O(N6) (!) is really being implied.
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call-graph of the FLEX compiler itself, which includes large portions of

the standard Java class libraries. Figure 5.12 shows convincingly that USSI

grows as N for large procedures, and Figure 5.13 supports an argument

that V0 grows very slowly and that the quantity NV0 would tend to grow

as N1:3. This would argue for a near-linear practical run-time.

In contrast, Cytron's original algorithm for SSA form had theoretical

complexity O(E + VSSAjDFj + NVSSA). Cytron does not present empirical

data for VSSA, but one can infer from the data he presents for \number of

introduced �-functions" that VSSA behaves similarly to VSSI | that is, it

grows as N, not as V0. It is frequently pointed out14 that the jDFj term,

the size of the dominance frontier, can be O(N2) for common programming

constructs (repeat-until loops), which indicates that the VSSAjDFj term

in Cytron's algorithm will be O(N2) at best and at times as bad as O(N3).

Note that the space complexity of SSI form, which may be O(EV) in the

worst case (�- and �-functions for every variable inserted at every node) is

certainly not greater than USSI, and thus Figure 5.12 shows linear practical

space use.

6 Uses and applications of SSI

The principle bene�ts of using SSI form are the ability to do predicated

and backward dataow analyses e�ciently. Predicated analysis means

that we can use information extracted from branch conditions and control

ow. The �-functions in SSI form provide an variable naming that allows

us to sparsely associate the predication information with variable names

at control ow splits. The �-functions also provide a reverse symmetry to

SSI form that allow e�cient backward dataow analyses like liveness and

14See Dhamdhere [12] for example.
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anticipatability.

In this section, we will briey sketch how SSI form can be applied

to backwards dataow analyses, including anticipatability, an important

component of partial redundancy elimination. We will then describe in de-

tail our Sparse Predicated Typed Constant propagation algorithm, which

shows how the predication information of SSI form may be used to advan-

tage in practical applications, including the removal of array bounds and

null-pointer checks. Lastly, we will describe an extension to SPTC that

allows bitwidth analysis, and the possible uses of this information.

6.1 Backward Dataow Analysis

Backward dataow analyses are those in which information is propa-

gated in the direction opposite that of program execution [29]. There is

general agreement [20, 7, 45] that SSA form is unable to directly handle

backwards dataow analyses; liveness is often cited as a canonical exam-

ple.

However, SSI form allows the sparse computation of such backwards

properties. Liveness, for example, comes \for free" from pruned SSI form:

every variable is live in the region between its use and sole de�nition. Prop-

erty 5.2 states that every non-�-function use of a variable is dominated by

the de�nition; Cytron [11] has shown that �-functions will always be found

on the dominance frontier. Thus the live region between de�nition and use

can be enumerated with a simple depth-�rst search, taking advantage of

the topological sorting by dominance that DFS provides [29]. Because of

�-function uses, the DFS will have to look one node past its spanning-

tree leaves to see the �-functions on the dominance frontier; this does not

change the algorithmic complexity.

Computation of other dataow properties will use this same enumera-
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tion routine to propagate values computed on the sparse SSI graph to the

intermediate nodes on the control-ow graph. Formally, we can say that

the dataow property for variable v at node N is dependent only on the

properties at nodes D and U, de�ning and using v, for which there is a path

D
+
! U containing N. There is a \default" property which holds for nodes

on no such path from a de�nition to use; for liveness the default property is

\not live." The remainder of this section will concentrate on the dataow

properties at use and de�nition points.

A slightly more complicated backward dataow property is very busy

expressions; this analysis is somewhat obsolete as it serves to save code

space, not time. This in turn is related to partial and total anticipatabil-

ity.

De�nition 6.1. An expression e is very busy at a point P of the pro-

gram i� it is always subsequently used before it is killed [29].

De�nition 6.2. An expression e is totally (partially) anticipatable at

a point P if, on every (some) path in the CFG from P to END, there is

a computation of e before an assignment to any of the variables in e

[20].

Johnson and Pingali [20] show how to reduce these properties of ex-

pressions to properties on variables. We will therefore consider properties

BSY(v;N), ANT(v;N), and PAN(v;N) denoting very busy, totally antici-

patable, and partially anticipatable variables v at some program point N.

To compute BSY, we start with pruned SSI form. Any variable de�ned

in a �- or �-function is used at some point, by de�nition. So for statements
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at a point P we have the rules:

v = : : : BSYin(v; P) = false

: : : = v BSYin(v; P) = true

x = �(y0; : : : ; yn) BSYin(yi; P) = BSYout(x; P)

hx0; : : : ; xni = �(y) BSYin(y; P) =
Vn
i=0BSYout(xi; P)

Total anticipatability, in the single variable case, is identical to BSY.

Partial anticipatability for a variable v at point P follows the rules:

v = : : : PANin(v; P) = false

: : : = v PANin(v; P) = true

x = �(y0; : : : ; yn) PANin(yi; P) = PANout(x; P)

hx0; : : : ; xni = �(y) PANin(y; P) =
Wn
i=0PANout(xi; P)

The present section is concerned more with feasibility than the mechan-

ics of implementation; we refer the interested reader to [29] and [20] for

details on how to turn the e�cient computation of BSY, PAN and ANT

into practical code-hoisting and partial-redundancy elimination routines,

respectively.

We note in passing that the sophisticated strength-reduction and code-

motion techniques of SSAPRE [22] are applicable to an SSI-based represen-

tation, as well, and may bene�t from the predication information available

in SSI. The remainder of this section will focus on practical implementa-

tions of predicated analyses using SSI form.

6.2 Sparse Predicated Typed Constant Propagation

Sparse Predicated Typed Constant (SPTC) Propagation is a powerful anal-

ysis tool which derives its e�ciency from SSI form. It is built on Wegman

and Zadeck's Sparse Conditional Constant (SCC) algorithm [44] and re-

moves unnecessary array-bounds and null-pointer checks, computes vari-
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SCC.

u ? c d(6= c) >

? ? c d >

c c c > >

> > > > >

� ? d >

? ? d >

c c c� d >

> > > >

Table 6.1: Meet and binary operation rules on the SCC value lattice.

able types, and performs oating-point- and string-constant-propagation

in addition to the integer constant propagation of standard SCC.

We will describe this algorithm incrementally, beginning with the stan-

dard SCC constant-propagation algorithm for review. Wegman and Zadeck's

algorithm operates on a program in SSA form; we will call this SCC/SSA

to di�erentiate it from SCC/SSI, using the SSI form, which we will describe

in section 6.2.2. Section 6.3 on page 72 will discuss an extension to SPTC

which does bit-width analysis.

6.2.1 Wegman and Zadeck's SCC/SSA algorithm

The SCC algorithm works on a simple three-level value lattice asso-

ciated with variable de�nition points and a two-level executability lattice

associated with ow-graph edges. These lattices are shown in Figure 6.1.
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Init(G:CFG) =

1: Ee  ;

2: En  ;

3: for each variable v in G do

4: if some node n de�nes v then

5: V[v] ?

6: else

7: V[v] > /* Procedure arguments, etc. */

Analyze(G:CFG) =

1: let r be the start node of graph G

2: En  En [ frg

3: Wn  frg

4: Wv  ;

5:

6: repeat

7: if Wn is not empty then

8: remove some node n from Wn

9: if n has only one outgoing edge e and e =2 Ee then

10: RaiseE(e)

11: Visit(n)

12: if Wv is not empty then

13: remove some variable v from Wv

14: for each node n containing a use of v do

15: Visit(n)

16: until both Wv and Wn are empty

Algorithm 6.1: SCC algorithm for SSA form.
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RaiseE(e:edge) =

1: /* When called, e =2 Ee */

2: Ee  Ee [ feg

3: let n be the destination of edge e

4: if n =2 En then

5: En  En [ fng

6: Wn  Wn [ fng

RaiseV(v:variable, L:lattice value) =

1: if V[v] < L then

2: V[v] L

3: Wv  Wv [ fvg

Visit(n:node) =

1: for each assignment \v x� y" in n do

2: RaiseV(v, V[x]� V[y]) /* binop rule: see table 6.1 */

3:

4: for each assignment \v MEM(: : :)" or \v CALL(: : :)" in n do

5: RaiseV(v, >)

6:

7: for each assignment \v �(x1; : : : ; xn)" in n do

8: for each variable xi corresponding to predecessor edge ei of n do

9: if ei 2 Ee then

10: RaiseV(v, V[v] u V[xi]) /* meet rule: see table 6.1 */

11:

12: for each branch \if v goto e1 else e2" in n do

13: L V[v]

14: if L = > or L = c where c signi�es \true" and e1 =2 Ee then

15: RaiseE(e1)

16: if L = > or L = c where c signi�es \false" and e2 =2 Ee then

17: RaiseE(e2)

Algorithm 6.2: SCC algorithm for SSA form, cont.
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Associating a lattice value with a de�nition point is a conservative state-

ment that, for all possible program paths, the value of that variable has a

certain property. The value lattice is, formally, Int>?; the lattice value ?

signi�es that no information about the value is known, the lattice value >

indicates that it is possible that the variable has more than one dynamic

value, and the other lattice entries (corresponding to integer constants and

occuping a at space between > and ?) indicate that the variable can

be proven to have a single constant value in all runs of the program.15

Similarly, the executability lattice indicates whether it is possible that the

control ow edge is traversed in some execution of the program (marked

\executable"), or if it can be proven that the edge is never traversed in any

valid program path (marked \not executable"). The algorithm works with

SSA form, and is presented as Algorithm 6.1. Binary operations on lattice

values and combination at �-nodes follow the rules in Table 6.1; notice that

the meet operation (u) is simply the least upper bound on the lattice. The

time complexity of SCC/SSA can be found easily: the procedure RaiseE

puts each node on theWn worklist at most once, and RaiseV puts a variable

on the Wv worklist at most D- 1 times, where D is the maximum lattice

depth. The Visit procedure can thus be invoked a maximum of N times

by line 11 of the Analyze procedure of Algorithm 6.1, and a maximum of

USSA(D-1) times by line 15, where USSA is the number of variable uses in

the SSA representation of the program. The lattice depth D is the constant

3 in this version of the algorithm, so it drops out of the expression. The

RaiseE procedure itself is called at most E times. The time complexity is

15Note that we follow the > and ? conventions used in semantics and abstract interpre-

tation; authors in dataow analysis (including Wegman and Zadeck in their SCC paper

[44]) often use contrary de�nitions, letting > mean unde�ned and ? indicate overde�ni-

tion. As section 7.3 will discuss the semantics of SSI+ at length, we thought it best to

adhere to one set of de�nitions consistently, instead of switching mid-paper.
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foo = f(); foo0 = f();

if (foo == 1) if (foo0 == 1)

hfoo1; foo2i = �(foo0)

bar = foo + 1; bar0 = foo2 + 1;

else else

bar = 2; bar1 = 2;

bar2 = �(bar0; bar1)

Figure 6.2: A simple constant-propagation example.

thus O(E+N+USSA(D- 1)) which simpli�es to O(E +USSA).

6.2.2 SCC/SSI: predication using �-functions.

Porting the SCC algorithm from SSA to SSI form immediately increases

the number of constants we can �nd. A simple example is shown in

Figure 6.2: the version of the program on the right is in SSI form, and

SCC/SSI|unlike SCC/SSA|can determine that foo2 is a constant with

value 1 (although nothing can be said about the value of foo0 or foo1) and

therefore that bar0, bar1, and bar2 are constants with the value 2. SSI

form creates a new name for bar at the conditional branch to indicate that

more information about its value is known.

Only the Visit procedure must be updated for SCC/SSI: lattice update

rules for �-functions must be added. Algorithm 6.3 shows a new Visit

procedure for the two-level integer constant lattice of Wegman and Zadeck's

SCC/SSA; with this restricted value set only integer equality tests tap the

algorithm's full power. The utility of SCC/SSI's predicated analysis will

become more evident as the value lattice is extended to cover more constant

types.

The time complexity of the updated algorithm is identical to that of
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Visit(n:node) =

1: /* Assignment rules as on page 58 */

2:

3: for each branch \if x = y goto e1 else e2" in n do

4: if L[x] = > or L[y] = > then

5: RaiseE(e1)

6: RaiseE(e2)

7: else if L[x] = c and L[y] = d then

8: if c = d then

9: RaiseE(e1)

10: else

11: RaiseE(e2)

12: for each assignment \hv1; v2i �(v0)" associated with this branch do

13: if edge e1 2 Ee and variable v0 is the x or y in the test then

14: RaiseV(v1, min(L[x], L[y]))

15: else if edge e1 2 Ee then

16: RaiseV(v1, L[v0])

17: if edge e2 2 Ee then /* False branch */

18: RaiseV(v2, L[v0])

19:

20: /* Obvious generalization applies for tests like \x 6= y" */

Algorithm 6.3: A revised Visit procedure for SCC/SSI.
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Figure 6.3: SCC value lattice extended to Java primitive value domain.

SCC/SSA: O(E+USSA), by the same argument as before.

6.2.3 Extending the value domain

The �rst simple extension of the SCC value lattice enables us to represent

oating-point and other values. For this work, we extended the domain

to cover the full type system of Java bytecode [15]; the extended lattice is

presented in Figure 6.3. The �gure also introduces the abbreviated lattice

notation we will use through the following sections; it is understood that

the lattice entry labelled \int" stands for a �nite-but-large set of incom-

parable lattice elements, consisting (in this case) of the members of the

Java int integer type. Java ints are 32 bits long, so the \int" entry ab-

breviates 232 lattice elements. Similarly, the \double" entry encodes not

the in�nite domain of real numbers, but the domain spanned by the Java

double type which has fewer than 264 members.16 The Java String type is

also included, to allow simple constant string coalescing to be performed.

The propagation algorithm over this lattice is a trivial modi�cation to Al-

gorithm 6.3, and will be omitted for brevity. In the next sections, the

\int" and \long" entries in this lattice will be summarized as \Integer Con-

16In IEEE-standard oating-point, some possible bit patterns are not valid number

encodings.
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Hierarchy Source language Classes Avg. depth Max. depth

FLEX infrastructure Java 550 1.9 5

javac compiler Java 304 2.8 7

NeXTStep 3.2y Objective-C 488 3.5 8

Objectworks 4.1y Smalltalk 774 4.4 10

y indicates data obtained from Muthukrishnan and M�uller [28].

Table 6.2: Class hierarchy statistics for several large O-O projects.

stant", the \oat" and \double" entries as \Floating-point Constant", and

the \String" entry as \String Constant". As the lattice is still only three

levels deep, the asymptotic runtime complexity is identical to that of the

previous algorithm.

6.2.4 Type analysis

In Figure 6.4 we extend the lattice to compute Java type information.

The new lattice entry marked \Typed" is actually forest-structured as

shown in Figure 6.5; it is as deep as the class hierarchy, and the roots

and leaves are all comparable to > and ?. Only the Visit procedure must

be modi�ed; the new procedure is given as Algorithm 6.4. Because the lat-

tice L is deeper, the asymptotic runtime complexity is now O(E+USSADc)

where Dc is the maximum depth of the class hierarchy. To form an esti-

mate of the magnitude of Dc, Table 6.2 compares class hierarchy statistics

for several large object-oriented projects in various source languages. Our

FLEX compiler infrastructure, as a typical Java example, has an average

class depth of 1.91.17 In a forced example, of course, one can make the class

depth O(N); however, one can infer from the data given that in real code

the Dc term is not likely to make the algorithm signi�cantly non-linear.

17Measured August 2, 1999; the infrastructure is under continuing development.
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Visit(n:node) =

1: for each assignment \v x� y" in n do

2: RaiseV(v, V[x]� V[y]) /* binop rule: see �gure 6.6 */

3:

4: for each assignment \v MEM(: : :)" or \v CALL(: : :)" in n do

5: let t be the type of the MEM or CALL expression

6: RaiseV(v, t)

7:

8: for each assignment \v �(x1; : : : ; xn)" in n do

9: for each variable xi corresponding to predecessor edge ei of n do

10: if ei 2 Ee then

11: RaiseV(v,
F
LfV[v]; V[xi]g) /* meet rule: use least upper bound */

12:

13: for each branch \if x = y goto e1 else e2" in n do

14: if Typed v L[x] or Typed v L[y] then

15: RaiseE(e1)

16: RaiseE(e2)

17: else if L[x] = c and L[y] = d then /* if x and y are constants. . . */

18: if c = d then

19: RaiseE(e1)

20: else

21: RaiseE(e2)

22: for each assignment \hv1; v2i �(v0)" associated with this branch do

23: if edge e1 2 Ee and variable v0 is the x or y in the test then

24: /* type error in source program if L[x] and L[y] are incomparable */

25: RaiseV(v1, min(L[x], L[y]))

26: else if edge e1 2 Ee then

27: RaiseV(v1, L[v0])

28: if edge e2 2 Ee then /* False branch */

29: RaiseV(v2, L[v0])

30:

31: /* Obvious generalization applies for tests like \x 6= y" */

32: /* Obvious generalization applies for tests like \x instanceof C" */

Algorithm 6.4: Visit procedure for typed SCC/SSI.
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int� int = int

long� fint; longg = long

float� fint; long; floatg = float

double� fint; long; float; doubleg = double

String� fint; long; float; double; Object; : : :g = String

Figure 6.6: Java typing rules for binary operations.

A brief word on the roots of the hierarchy forest in Figure 6.5 is called

for: Java has both a class hierarchy, rooted at java.lang.Object, and

several primitive types, which we will also use as roots. The primitive

types include int, long, float, and double.18 Integer constants in the

lattice are comparable to and less than the int or long type; oating-point

constants are likewise comparable to and less than either float or double.

String constants are comparable to and less than the java.lang.String

non-primitive class type.

The void type, which is the type of the expression null, is also a prim-

itive type in Java; however we wish to keep x u y identical to
F
Lfx; yg (the

least upper bound of x and y) while satisfying the Java typing rule that

null u x = x when x is a non-primitive type and not a constant. This

requires putting void comparable to but less than every non-primitive leaf

in the class hierarchy lattice.

The Java class hierarchy also includes interfaces, which are the means

by which Java implements multiple inheritance. Base interface classes

18In the type system our infrastructure uses (which is borrowed from Java bytecode)

the char, boolean, short and byte types are folded into int.
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(which do not extend other interfaces) are additional roots in the hierarchy

forest, although no examples of this are shown in Figure 6.5.

Since untypeable variables are generally forbidden, no operation should

ever raise a lattice value above \Typed" to >. The otherwise-unnecessary

> element is retained to indicate error conditions.

This variant of the constant-propagation algorithm allows us to elim-

inate unnecessary instanceof checks due to type-casting or type-safety

checks. Section 6.2.6 will provide experimental validation of its utility.

Finally, note that the ability to represent null as the void type in the

lattice begins to allow us to address null-pointer checks, although because

null u x = x for non-primitive types we can only reason about variables

which can be proven to be null, not those which might be proven to be

non-null (which is the more useful case). The next section will provide a

more satisfactory treatment.

6.2.5 Addressing array-bounds and null-pointer checks

At this point, we can expand the value lattice once more to allow elim-
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8C 2 Class; Cnon-null < Cpossibly-null

8C 2 Classnon-null;
F
Lfvoid; Cg 2 Classpossibly-null

8C 2 Classpossibly-null; void < C

8C 2 Classnon-null; hvoid; Ci =2 v

Let A(C;n) be a function to turn a lattice entry representing a non-null

array class type C into the lattice entry representing a said array class with

known integer constant length n. Then for any non-null array class C and

integers i and j,

A(C; i) < C

hA(C; i); A(C; j)i 2 v if and only if i = j

Figure 6.8: Extended value lattice inequalities.

x = 5 + 6;

do f

y = new int[x];

z = x-1;

if (0 <= z && z < y.length)

y[z] = 0;

else

x--;

g while (P);

Figure 6.9: An example illustrating the power of combined analysis.
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Visit(n:node) =

1: /* Binop and �-function rules as in algorithm 6.4 */

2:

3: for each assignment \v MEM(: : :)" or \v CALL(: : :)" in n do

4: let t 2 Classpossibly-null [Classprimitive be the type of the MEM or CALL

5: RaiseV(v, t)

6:

7: for each array creation expression \v new T[x]" do

8: if L[x] is an integer constant then

9: RaiseV(v, A(T; L[x]))

10: else

11: RaiseV(v, Tnon-null)

12:

13: for each array length assignment \v arraylength(x)" do

14: if L[x] is an array of known constant length n then

15: RaiseV(v, n)

16: else

17: RaiseV(v, int)

18:

19: /* Branch rules as in algorithm 6.4, with the obvious extension to allow tests

against null to lower a lattice value from Classpossibly-null to Classnon-null. */

Algorithm 6.5: Visit procedure outline with array and null information.
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if (10 < 0)

throw new NegativeArraySizeException();

int[] A = new int[10];

if (0 < 0 || 0 >= A.length)

throw new ArrayIndexOutOfBoundsException();

A[0] = 1;

for (int i=1; i < 10; i++) f

if (i < 0 || i >= A.length)

throw new ArrayIndexOutOfBoundsException();

A[i] = 0;

g

Figure 6.10: Implicit bounds checks (underlined) on Java array references.

ination of unnecessary array-bounds and null-pointer checks, based on our

constant-propagation algorithm. The new lattice is shown in Figure 6.7; we

have split the \Typed" lattice entry to enable the algorithm to distinguish

between non-null and possibly-null values,19 and added a lattice level for

arrays of known constant length. Some formal de�nition of the new value

lattice can be found in Figure 6.8; the meet rule is still the least upper

bound on the lattice. Modi�cations to the Visit procedure are outlined

in Algorithm 6.5. Notice that we exploit the pre-existing integer-constant

propagation to identify constant-length arrays, and that our integrated ap-

proach allows one-pass optimization of the program in Figure 6.9.

Note that the variable renaming performed by the SSI form at control-

ow splits is essential in allowing the algorithm to do null-pointer check

elimination. However, the lattice we are using can remove bound checks

from an expression A[k] when k is a constant, but not when k is an bounded

19Values which are always-null were discussed in the previous section; they are identi�ed

as having primitive type void.
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induction variable. In the example of Figure 6.10 on the preceding page,

the �rst two implicit checks are optimized away by this version of the

algorithm, but the loop-borne test is not.

A typical array-bounds check (as shown in the example on the pre-

ceding page) veri�es that the index i of the array reference satis�es the

condition 0 � i < n, where n is the length of the array.20 By identifying

integer constants as either positive, negative, or zero the �rst half of the

bounds check may be eliminated. This requires a simple extension of the

integer constant portion of the lattice, outlined in Figure 6.11 on the facing

page, with negligible performance cost. However, handling upper bounds

completely requires a symbolic analysis that is out of the current scope

of this work. Future work will use induction variable analysis and inte-

grate an existing integer linear programming approach [36] to fully address

array-bounds checks.

6.2.6 Experimental results

The full SPTC analysis and optimization has been implemented in the

FLEX java compiler platform.21 Some quantitative measure of the utility of

SPTC is given as Figure 6.12. The \run-times" given are intermediate rep-

resentation dynamic statement counts generated by the FLEX compiler SSI

IR interpreter. The FLEX infrastructure is still under development, and its

backends are not stable enough to allow directly executable code. As such,

the numbers bear a tenuous relation to reality; in particular branch delays

on real architectures, which the elimination of null-pointer checks seeks to

eliminate, are unrepresented. Furthermore, the intermediate representa-

tion interpreter gives the same cycle-count to two-operand instructions as

20Languages in which array indices start at 1 can be handled by slight modi�cations to

the same techniques.
21See section 8 for details of methodology.
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Figure 6.11: An integer lattice for signed integers. A classi�cation into

negative (M), positive (P), or zero (Z) is grafted onto the standard at

integer constant domain. The (M-P) entry is duplicated to aid clarity.

to loading constants, which tends to negate most of the bene�t of constant

propagation. As is obvious from the �gure, the standard Wegman-Zadeck

SCC algorithm, which has proven utility in practice, shows no improvement

over unoptimized code due to the metric used. Even so, SPTC shows a 10%

speed-up. It is expected that the improvement given in actual practice will

be greater.

Note that the speed-up is constant despite widely di�ering test cases.

The \Hello world" example actually executes quite a bit of library code

in the Java implementation; this includes numerous element-by-element

array initializations (due to the semantics of java bytecode) which we expect

SPTC to excel at optimizing. But SPTC does just as well on the full FLEX

compiler (68,032 lines of source at the time the benchmark was run), which

shows that the speed-up is not limited to constant initialization code.
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Figure 6.12: SPTC optimization performance.

6.3 Bit-width analysis

The SPTC algorithm can be extended to allow e�cient bit-width analy-

sis. Bit-width analysis is a variation of constant propagation with the goal

of determining value ranges for variables. In this sense it is similar to, but

simpler than, array-bounds analysis: no symbolic manipulation is required

and the value lattice has N levels (where N is the maximum bitwidth of

the underlying datatype) instead of 2N. For C and Java programs, this

means that only 32 levels need be added to the lattice; thus the bit-width

analysis can be made e�cient.

Bit-width analysis allows optimization for modern media-processing in-

struction set extensions which typically o�er vector processing of limited-

width types. Intel's MMX extensions, for example, o�er packed 8-bit, 16-

bit, 32-bit and 64-bit vectors [30]. To take advantage of these functional

units without explicit human annotation, the compiler must be able to
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- hM;Pi = hP;Mi

hMl; Pli+ hMr; Pri = h1+max(Ml;Mr); 1+max(Pl; Pr)i

hMl; Pli � hMr; Pri = hmax(Ml + Pr; Pl +Mr);max(Ml +Mr; Pl + Pr)i

h0; Pli^ h0; Pri = h0;min(Pl; Pr)i

hMl; Pli^ hMr; Pri = hmax(Ml;Mr);max(Pl; Pr)i

Figure 6.13: Some combination rules for bit-width analysis.

guarantee that the data in a vector can be expressed using the limited

bit-width available. A simpler bit-width analysis in a previous work [3]

showed that a large amount of width-limit information can be extracted

from appropriate source programs; however, that work was not able to in-

telligently compute widths of loop-bound variables due to the limitations

of the SSA form. Extending the bitwidth algorithm to SSI form allows

induction variables width-limited by loop-bounds to be detected.

Bit-width analysis is also a vital step in compiling a high-level language

to a hardware description. General purpose programming languages do not

contain the �ne-grained bit-width information that a hardware implemen-

tation can take advantage of, so the compiler must extract it itself. The

work cited showed that this is viable and e�cient.

The bit-width analysis algorithm has been implemented in the FLEX

compiler infrastructure. Because most types in Java are signed, it is neces-

sary to separate bit-width information into \positive width" and \negative

width." This is just an extension of the signed value lattice of Figure 6.11 to

variable bit-widths. In practice the bit-widths are represented by a tuple,

extending the integer constant lattice with (Int� Int)? under the natural
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total ordering of Int. The tuple h0; 0i is identical to the constant 0, and the

tuple h0; 16i represents an ordinary unsigned 16-bit data type. The > ele-

ment is represented by an appropriate tuple reecting the source-language

semantics of the value's type. Figure 6.13 presents bit-width combina-

tion rules for some unary negation and binary addition, multiplication and

bitwise-and. In practice, the rules would be extended to more precisely

handle operands of zero, one, and other small constants.

7 An executable representation

The Static Single Information (SSI) form, as presented in the �rst half

of this thesis, requires control-ow graph information in order to be exe-

cutable. We would like to have a demand-driven operational semantics for

SSI form that does not require control-ow information; thus freeing us to

more exibly reorder execution.

In particular, we would like a representation that eliminates unnecessary

control dependencies such as exist in the program of Figure 7.1 on the next

page. A control-ow graph for this program, as it is written, will explicitly

specify that no assignments to B[] will take place until all elements of A[]

have been assigned; that is, the second loop will be control-dependent on

the �rst. We would like to remove this control dependence in order to

provide greater parallelism|in this case, to allow the assignments to A[]

and B[] to take place in parallel, if possible.

In addition, an executable representation allows us to more easily apply

the techniques of abstract interpretation [31]. Although abstract interpre-

tation may be applied to the original SSI form using information extracted

from the control ow graph, an executable SSI form allows more concise

(and thus, more easily derived and veri�ed) abstract interpretation algo-
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for (int i=0; i<10; i++)

A[i] = x;

for (int j=0; j<10; j++)

B[j] = y;

Figure 7.1: An example of unnecessary control dependence: the second

loop is control-dependent on the �rst and so assignments to A[] and B[]

cannot take place in parallel.

rithms.

The modi�cations outlined here extend SSI form to provide a useful and

descriptive operational semantics. We will call the extended form SSI+.

For clarity, SSI form as originally presented we will call SSI0. We will

describe algorithms to contruct SSI+ e�ciently, and illustrate analyses and

optimizations using the form.

7.1 De�ciencies in SSI0

Although a demand-driven execution model can be constructed for SSI0, it

fails to handle loops and imperative constructs well. SSI+ form addresses

these de�ciencies.

7.1.1 Imperative constructs, pointer variables, and side-e�ects

The presentation of SSI0 ignored pointers, concentrating on so-called regis-

ter variables. Extending SSI0 to handle these imperative constructs is quite

easy: we simply de�ne a \variable" S to represent an updatable store. This

variable is renamed and numbered as before, so that S0 represents the initial

contents of the store and Si; i > 0 represents the contents of the store after

some sequence of writes. Figure 7.2 shows a simple imperative program in
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// swap A[i] and B[j] // SSI+ form:

x = A[i]; x0 = FETCH(S0, A0 + i0)

y = B[j]; y0 = FETCH(S0, B0 + j0)

A[i] = y; S1 = STORE(S0, A0 + i0, y0);

B[j] = x; S2 = STORE(S1, B0 + j0, x0);

Figure 7.2: Use of the \store variable" Sx in SSI+ form.

SSI+ form. Note that modi�cations to the store typically take the previous

contents of the store as input, and that subroutines with side-e�ects mod-

ifying the store must be written in SSI+ form such that they both take a

store and return a store.

The single monolithic store may provide aliasing at too coarse a resolu-

tion to be useful. Decomposing the store into smaller regions is a straight-

forward application of pointer analysis, which may bene�t from an initial

conversion of register variables to SSI0 form. In type-safe languages, de�n-

ing multiple stores for di�ering type sets is a trivial implementation of basic

pointer analysis; Figure 7.3 shows a simple example of this form of decom-

position using two di�erent subtypes (Integer and Float) of a common

base class (Number). Pointer analysis is a huge and rapidly-growing �eld

which we cannot attempt to summarize here; su�ce to say that the may-

point-to relation from pointer analysis may be used to de�ne a �ne-grained

model of the store.

Proper sequencing among statements with side-e�ects may be handled

in a similar way: a special SSI name is used/de�ned where side-e�ects occur

to impose an implicit ordering. For maximum symmetry with the `store'

case, we will name this special variable Sfx. This variable may be further

decomposed using e�ect analysis for more precision.

Note that precise analysis of side-e�ects and the store is much more
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` N : Number; I : Integer; F : Float

I � N and F � N

if(P) // SSI+ form:

N=I;

else N0 = �(I0; F0)

N=F;

F.add(3.14159); SF1 = CALL(add; SF0; F0; 3:14159)

N.add(5);
D
SI1; S

F
2

E
= CALL(add; SI0; S

F
1; N0; 5)

Figure 7.3: Factoring the store (Sx) using type information in a type-safe

language.

important in C-like languages. The example on the left in Figure 7.4 shows

the di�culties one may encounter in dealing with pointer variables that

may rewrite SSI temporaries. It is possible to deal with this in the manner

of Figure 7.3 using explicit stores, and with su�cient analysis one may write

the SSI representation on the right in the �gure. The source language for

our FLEX compiler does not encounter this di�culty: Java has no pointers

to base types, and so the compiler does not have to worry about values

changing \behind its back" as in the example.

7.1.2 Loop constructs

The center column of Figure 7.5 on page 79 shows a typical loop in SSI0

form. Note �rst that an explicit \control ow" expression (goto L1) is

required in order to make sense of the program. Note also that i1, i2 and

i3 are potentially dynamically assigned many times, although statically

they have only one de�nition each. This complicates any sort of demand-

driven semantics: should the �-function demand the value of i0, or i3,
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int x=1; x0 = 1

int y=2; y0 = 2

int *p = &x; p0 = fxg // P is of type \location set"

if (P)

p = &y; p1 = fyg

p2 = �(p0; p1)

*p = 3; hx1; y1i = DEREF(p2; 3)

return x; return x1

Figure 7.4: Pointer manipulation of local variables in C.

when it is evaluated the �rst time? Which of the values of i3 does it receive

when the �-function is subsequently evaluated? A token-based dataow

interpretation fails as well: it is easy to see that tokens for ix ow around

the loop before owing out at the end, but the token for j0 seems to be

\used up" in the �rst iteration.

SSI+ introduces a �-function in the block of �-functions to clarify the

loop semantics. The left-hand column of Figure 7.5 illustrates the nature of

this function. The �-function arbitrates loop iteration, and will be de�ned

precisely by the operational semantics of SSI+ form. For now note that

it relates iteration variables (the top tuple of the parameter and result

vectors) to loop invariants (the bottom tuple of the vectors). We followed

the statement ordering of SSI0 in the �gure, but unlike SSI0, the statements

of SSI+ could appear in any order without a�ecting their meaning|and so

the statement label L1 of the SSI0 representation and its implicit control-

ow edge are unnecessary in SSI+.
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// a simple loop // SSI0 form: // SSI+ form:

j=1; j0 = 1 j0 = 1

i=0; i0 = 0 i0 = 0

do L1:
h
hj1i
hi5i

i
= �(

h
hj0i
hi3i

i
)

f i1 = �(i0; i3) i1 = �(i0; i5)

i+=j; i2 = i1 + j0 i2 = i1 + j1

g while (i<5); P0 = (i2 < 5) P0 = (i2 < 5)

if P0 goto L1 hi3; i4i = �(P0; i2)

hi3; i4i = �(i2)

Figure 7.5: A simple loop, in SSI0 and SSI+ forms.

7.2 De�nitions

The signature characteristic of SSI+ are the �-functions. These �-functions

exist in the same places �-functions do, and control loop iteration. The

exact semantics may vary|the sections below present two di�erent valid

semantics for a �-functions|but informally they can be viewed as \time-

warp" operators. They take values from the \past" (previous iterations of

the loop or loop invariants valid when the loop began) and project them

into the \future" (the current loop iteration).

There is at most one �-function per �-function block, and it always

precedes the �-functions. Construction of �-functions takes place before

the renaming step associated with SSI form, and the �-functions are then

renamed in the same manner as any other de�nition. The top tuple of

the constructed �-function contains the names of all variables reaching

the guarded �-function via a backedge, and the bottom tuple contains

all variables used inside the guarded loop that are not mentioned in the

header's �-function.
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The SSI+ form also has triggered constants. The time-oriented se-

mantics of SSI+ dictate that each constant must be associated with a trigger

specifying for what times (cycles/loop iterations) the value of the constant

is valid. These are similar to the constant generators in some dataow

machines [42]. The triggers for a constant c come from the variables de-

�ned in the earliest applicable instruction post-dominated by the constant

de�nition statement v = c. This is designed to generate the trigger as

soon as it is known that the constant de�nition statement will always ex-

ecute. In practice it is necessary to introduce a bogus trigger variable,

CT which is generated at the START node and used to trigger any constants

otherwise without a suitable generator. If the use of the constant does not

post-dominate the START node, CT will have to be threaded through �- and

�-functions to reach the earliest post-dominated node.

7.3 Semantics

We will base the operational semantics of SSI+ on a demand-driven data-

ow model. We will de�ne both a cycle-oriented semantics and an event-

driven semantics, which (incidentally) correspond to synchronous and asyn-

chronous hardware models.

Following the lead of Pingali [31], we present Plotkin-style semantics

[33] in which con�gurations are rewritten instead of programs. The con-

�gurations represent program state and transitions correspond to steps in

program execution. The set of valid transitions is generated from the pro-

gram text.

The semantics operate over a lifted value domain V = Int?. When

some variable t = ?V we say it is unde�ned ; conversely t = ?V indicates

that the variable is de�ned. \Store" metavariables Sx are not explicitly

handled by the semantics, but the extension is trivial with an appropriate
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rede�nition of the value domain V. Floating-point and other types are also

trivial extensions. The metavariables c and v stand for elements of V.

We also de�ne a domain of variable names, Nam = fn0; n1; : : :g. The

metavariables t and P stand for elements in Nam, although P will be re-

served for naming branch predicates.

A �xed set of \built-in" operators, op, is de�ned, of typeV�
! V. If any

operator argument is ?, the result is also ?. Constants are implemented

as a special case of the general operator rule: an op producing a constant

has a single trigger input which does not a�ect the output.

7.3.1 Cycle-oriented semantics

In the cycle-oriented semantics, con�gurations consist of an environment,

�, which maps names in Nam to values in V.

De�nition 7.1.

1. An environment � : N ! V is a �nite function|its domain N �

Nam is �nite. The notation �[t 7! c] represents an environment

identical to � except for name t which is mapped to c.

2. The null environment �; maps every t 2 N to ?V.

3. A con�guration consists of an environment. The initial con�g-

uration is �;[CT ! 0] extended with mappings for procedure pa-

rameters. That is, all names in N are mapped to ?V except for

the default constant trigger CT mapped to 0,22 and any procedure

parameters mapped to their proper entry values.

Figure 7.6 on the next page shows the cycle-oriented transition rules for

SSI+ form. The left column consists of de�nitions and the right column

22Any k = ?V would do.
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t = op(t1; : : : ; tn) :
�[t] = ?^ (�[t1] = ?^ : : :^ �[tn] = ?)

�! �[t 7! op(�[t1]; : : : ; �[tn])]

t = �(t1; : : : ; tn) :
�[t] = ?^ �[tj] = ?^ all other �[t1]; : : : ; �[tn] = ?

�! �[t 7! �[tj]]

ht1; : : : ; tni = �(P; t) :

�[P] = v = ?^ �[tv-1] = ?^ �[t] = ?

�! �[tv-1 7! �[t]]

where (0 � v � n - 1)

h
ht1;:::;tni

htn+1;:::;tmi

i
= �(

�
ht 01;:::;t 0ni
ht 0n+1;:::;t 0mi

�
) :

�[tj] = ?^ �[t 0j] = ?

�! �[tj 7! �[t 0j]]

where (1 � j � n)

h
ht1;:::;tni

htn+1;:::;tmi

i
= �(

�
ht 01;:::;t 0ni
ht 0n+1;:::;t 0mi

�
) :

�[t 0n+1] = ?^ : : :^ �[t 0m] = ?

�! �;[t1 7! �[t1]] : : : [tn 7! �[tn]]

[tn+1 7! �[t 0
n+1

]] : : : [tm 7! �[t 0m]]

Figure 7.6: Cycle-oriented transition rules for SSI+.

shows a precondition on top of the line, and a transition below the line.

If the de�nition in the left column is present in the SSI+ form and the

precondition on top of the line is satis�ed, then the transition shown below

the line can be performed.

7.3.2 Event-driven semantics

In the event-driven semantics, con�gurations consist of an event set and an

invariant store. The event set E contains de�nitions of the form t = c, and

the invariant store is a mapping from numbered �-functions in the source

SSI+ form to a set of tuples representing saved values for loop invariants.

We de�ne the following domains:
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t = op(t1; : : : ; tn) : hE[t1 = v1] : : : [tn = vn]; Si! hE[t = op(v1; : : : ; vn)]; Si

t = �(t1; : : : ; tn) : hE[ti = v]; Si! hE[t = v]; Si

ht1; : : : ; tni = �(P; t) : hE[t = v][P = i]; Si! hE[ti = v]; Si

h
ht1;:::;tni

htn+1;:::;tmi

i
= �K(

�
ht 01;:::;t

0

ni
ht 0n+1;:::;t

0

mi

�
) :

hE[t 0i = v]; Si!

hE[ti = v]; S[K 7! S[K] [ hti; vi]i

where 1 � i � n

h
ht1;:::;tni

htn+1;:::;tmi

i
= �K(

�
ht 01;:::;t

0

ni
ht 0n+1;:::;t

0

mi

�
) :

S[K] = fht1; v1i ; : : : ; htn; vnig

E[t 0n+1 = vn+1] : : : [t

0
m = vm]; S

�
!

hE[t1 = v1] : : : [tm = vm]; Si

Figure 7.7: Event-driven transition rules for SSI+. In the last two rules K is

a statement-identi�er constant which is unique for each source �-function.

� Evt = Nam � V is the event domain. An event consists of a name-

value pair. The metavariable e stands for elements of Evt.

� Xif � Int is used to number �-functions in the source SSI+ form.

There is some mapping function which relates �-functions to unique

elements of Xif. The metavariable K stands for an element in Xif.

A formal de�nition of our con�guration domain is now possible:

De�nition 7.2.

1. An event set E : Evt�. The notation E[t = c] represents an event

set identical to E except that it contains the event ht; ci. We say a

name t is de�ned if ht; vi 2 E for some v. For all ht1; v1i ; ht2; v2i 2

E, t1 and t2 di�er. This is equivalent to saying that no name t is
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multiply de�ned in an event set. This constraint is enforced by

the transition rules, not by the de�nition of E.

2. An invariant store S : Xif ! Evt� is a �nite mapping from �-

functions to event sets.

3. A con�guration is a tuple hE; Si : Evt�� (Xif! Evt�) consisting of

an event set and an invariant store. The initial con�guration for

procedure parameters p0; : : : ; pn mapped to non-? values v0; : : : ; vn

is hfCT = 0; p0 = v0; : : : ; pn = vngEvt; []Xif!Evt�i that is, it consists of

an empty event set extended with events for default constant trig-

ger CT and the procedure parameters, and an empty mapping for

the invariant store.

Figure 7.7 on the preceding page shows the event-driven transition rules

for SSI+ form. As before, the left column consists of de�nitions and the

right column shows an optional precondition above a line, and a transition.

If the de�nition in the left column is present in the SSI+ form and the

precondition (if any) above the line is satis�ed, then the transition can be

performed. Note that most transitions remove some event from the event

set E, replacing it with a new event. The invariant store S stores the values

of loop invariants for regeneration at each loop iteration.

7.4 Construction

Construction of SSI+ is only a slight variation on the construction algo-

rithms for SSI0. First, dominator and post-dominator trees are produced

using the Lengauer-Tarjan [25] or Harel [16] algorithm. The nodes of

the dominator tree are numbered in pre-order such that for all nodes N,

num[N] > num[idom[N]]. Then, in a single traversal of the post-dominator

tree, we �nd the lowest-numbered node post-dominated by any given node.
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We add triggers to constants from variables de�ned at this lowest node

post-dominated by the constant use; using the default trigger CT where

necessary. We then place �- and �-functions for all variables, including

constant triggers, using Algorithm 5.3.

We then generate �-functions. A standard interval analysis creates a

loop nesting tree, and each loop is scanned for invariants and other de�ni-

tions/uses to create the proper �-function tuples. Renaming is done using

Algorithm 5.4, as before.

7.5 Dataow and control dependence

The SSI+ semantics are data-driven, and thus bring to mind work on com-

pilers for dataow machines. Beck, Johnson, and Pingali have previously

written [6] on the bene�ts of dataow-oriented intermediate representa-

tions. However, the previous work on dataow compilers (Traub [42], for

example) has concentrated on intra-loop dependencies, often leaving in

pseudo-control-ow edges to serialize non-loop structures. This strategy

results in the sort of �ne-grain intra-loop parallelism suitable for parallel

dataow machines, vector processors, and VLIW machines.

The current work concentrates on removing unnecessary dependencies

between loops, which allows a coarser parallelism which does not require

as many functional units to take advantage of. Moreover, we extract par-

allel sequential threads that are not loop-based. Obviously both �ne-grain

and coarse-grain parallelism are important, but we feel the current indus-

try trends towards loosely coupled multiprocessors support our coarser-

grained approach which has, to date, seemingly been neglected by dataow

approaches.
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7.6 Hardware compilation.

The observant reader may have noticed that the two operational semantics

given in section 7.3 closely resemble circuit implementations for the pro-

gram according to synchronous and asynchronous design methodologies.

In fact, SSI+ was designed speci�cally to facilitate rendering a high-level

program into hardware. The two semantics di�er primarily on how cyclic

dependencies (i.e. loops) are handled.

Translation of high-level languages directly to hardware has long been

a goal of researchers. Tanaka et al. constructed a system based on FOR-

TRAN [41], and Galloway's C-based hardware description language [13]

inspired a new interest in applying general-purpose languages to the task.

The recent general use of type-safe object-oriented languages has encour-

aged speculation that the more favorable analysis properties of these stricter

languages would enable further advances in general-use hardware compila-

tion. In this context, the well-de�ned semantics and data-ow orientation

of SSI+ solve the local-level hardware compilation problem and allow e�ort

to be concentrated on the more di�cult intra-procedural analyses required.

8 Methodology

The SSI intermediate representation described in this paper is the core IR

for the FLEX compiler infrastructure project, started in July 1998 and

currently containing about 70,000 lines of Java source code. The FLEX

compiler reads in Java bytecodes, and targets both the JVM (for high-level

portable code transformations) and several combinations of machine archi-

tectures and runtime systems. Currently the bytecode and ARM processor

backends are near completion. Interpreters exist for the various interme-

diate representations used in the compiler, allowing the correctness of the
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earlier passes of the compiler to be veri�ed. The compiler will correctly

compile itself to IR and interpret itself.

The FLEX compiler implements the algorithms described in this paper,

validating their correctness. Variable counting for the graphs of section 5.4

was done by a special statistics module that could be applied to the results

of any pass. The full bitwidth-extended SPTC constant propagation al-

gorithm was implemented, although we currently do not use the bitwidth

information produced. SSI+ and hardware compilation are the focus of

current work.

9 Conclusions

The Static Single Information form extends SSA without adding unneeded

complexity to allow e�cient predicated analysis and backward dataow

analyses. Futher, the SSI+ variant removes all explicit control-dependence

relations, allowing extraction of parallelism from the code, and possesses a

complete and straight-forward semantics which makes it useful for, among

other things, abstract interpretation and hardware compilation.

We have demonstrated e�cient construction of SSI form, and several

optimizations which use it to obtain e�ciency improvements over previous

methods. The many SSA-variant papers in the literature attest to limi-

tations of standard SSA form; we believe SSI form solves these problems

in a simple and symmetric manner. The FLEX compiler infrastructure

demonstrates the practicality of SSI form.
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