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Abstract

This paper presents a new intermediate format called Static
Single Information (SSI) form. SSI form generalizes the tra-
ditional concept of a variable definition to include all infor-
mation definition points, or points where the analysis may
obtain information about the value in a variable. Informa-
tion definition points include conditional branches as well
as assignments. Because SSI form provides a new name for
each variable at each information definition point, it pro-
vides excellent support for both predicated analyses, which
exploit information gained from conditionals, and backwards
dataflow analyses.

We have developed a Java compiler that uses SSI form
as its primary program representation. We have used SSI
form to implement several predicated analyses, including re-
dundant array bounds and null pointer check analyses, a
conditional constant propagation analysis, and a bit-width
analysis. Our experimental results show that the analyses
execute efficiently and extract information that can be used
to significantly optimize the program. Furthermore, we be-
lieve that SSI form significantly simplified the efficient im-
plementation of these analyses.

1 Introduction

Static Single Assignment (SSA) form transforms the pro-
gram so that exactly one definition of each variable reaches
each use. Traditional dataflow analyses, which propagate in-
formation from variable definitions to uses, therefore become
much simpler to express. Instead of generating an analysis
result for each variable at each point in the program, SSA
allows the analysis to generate a result for each variable.
This sparse representation improves both the simplicity and
the efficiency of the analysis.

But definitions are not the only place where an analysis
can extract information about the values of variables. Con-
ditional branches also provide information about the values
of variables. Consider what happens when one attempts
to incorporate this information into an SSA-based analysis.
The original problem that SSA eliminated (the need to ex-
tract information for each variable at each program point)
returns. Variable names do not change at the conditional
branch, even though the compiler has different information
along the two control-flow paths.

The resulting mismatch between variable names and da-
taflow information also produces an efficiency problem. In-
stead of propagating information directly from definitions to

uses, the analysis must propagate the information through
all program points, whether the program point uses the in-
formation or not.

Inspired by this observation, we have developed a new
program representation, Static Single Information (SSI)
form, that recaptures the advantages of SSA form for predi-
cated analyses, or analyses which use the predicates in con-
ditional branches to extract analysis information. The in-
sight behind this representation is the use of o-functions,
which produce new names for variables at splits in the con-
trol flow. The analysis can then associate information with
variable names, and propagate the information efficiently
and directly from information definition points to uses.

In addition to these practical properties, SSI form has
several appealing theoretical properties. It is always possi-
ble to place o-functions so that the number of o-functions
is linear in the size of the original input program. Further-
more, our placement algorithm also runs in linear time. Fi-
nally, and perhaps most importantly, SSI form allows us to
recast compound dataflow analyses as a flat, unified system
of constraints. This formulation allows us to generalize the
standard fixed-point solution mechanism for dataflow equa-
tions to include constraint resolution rules. The result is a
more uniform and powerful analysis framework.

We have implemented a compiler infrastructure for Java,
the MIT Flex system, that uses SSI form [7]. We have used
this compiler infrastructure to implement several predicate-
based analyses, including an analysis that detects redundant
array bounds and null reference checks, an analysis that de-
termines the number of bits required to represent values in
different variables, and a conditional constant propagation
analysis.

Our experimental results show that our analyses execute
efficiently and extract information that can be used to sig-
nificantly optimize the program. Furthermore, we believe
that SSI form significantly simplified the implementation of
these analyses. Our experiences have led us to use SSI form
as the primary program representation in the Flex compiler
system.

2 The Static Single Information form

In this section we will provide a formal specification of SSI
form and its minimal and pruned variants. We will also
provide efficient algorithms for constructing these represen-
tations.



2.1 Definition of SSI form

SSI form is an extension of the SSA form introduced in [4].
Building SSI form involves adding pseudo-assignments for a
variable V:

(¢) at a control-flow merge when disjoint paths from a con-
ditional branch come together and at least one of the
paths contains a definition of V; and

(o) at locations where control-flow splits and at least one
of the disjoint paths from the split uses the value of V.

2.2 Criteria for inserting o-functions

To minimize the number of o-functions, there should be a
o-function for variable a at node z of the flowgraph exactly
when:

1. node = contains a use of a,

. node y contains a use of a,
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3. there is a nonempty path P,, of edges from z to z,

4. there is a nonempty path P,, of edges from z to y, and
5

. paths P,; and P,, do not have any node in common
except z (that is, z is the point of divergence for these
paths).

We will call this the path-convergence criterion for insert-
ing o-functions. We consider the start node to contain an
implicit definition of every variable, and the end node to
contain an implicit use of every variable.

Upon examination, we see that the path-convergence cri-
teria for ¢- and o-functions interact. Since o-functions are
variable definitions and ¢-functions are variable uses, the
set of equations defined by the respective criteria must be
iterated together in order to find the necessary function sets.
The total number of ¢- and o-functions remains linear, how-
ever: we can only place a single ¢- and/or o-function per
variable at any given flowgraph node, so the total number
of added functions is limited to 2- N - V.

2.3 Variable renaming after ¢- and o-function in-
sertion

Once the compiler has determined where to place the ¢-
functions and o-functions, it renames variables to satisfy
the following two properties:

Property 2.1 (Naming after ¢-functions.). For every
node x containing a definition of a variable a in the renamed
program and node y containing a use of that variable, there
ezists at least one non-empty path Pyy of edges from x to y
and no such path contains a definition of a other than at x.

Property 2.2 (Naming after o-functions.). For every
pair of nodes x and y containing uses of a variable a defined
at a node z in the renamed program, either every nonempty
path P, of edges from z to x must contain node y, or every
nonempty path P,y of edges from z to y must contain x.

In addition, correctness requires that the following hold:

Property 2.3 (Correctness.). Along any possible control-
flow path in a program being executed consider any use of a
variable a in the original program and the corresponding use
of a; in the renamed program. Then, at every occurrence of
the use on the path, a and a; have the same value. The path
need not be cycle-free.

2.4 Minimal and pruned SSI forms

Minimal and pruned SSI forms can be defined which par-
allel their SSA counterparts. Minimal SSI has the smallest
number of ¢- and o-functions such that the above conditions
are satisfied. Pruned SSI form is the minimal form with any
unused ¢- and o-functions deleted; that is, it contains no
¢- or o-functions after which there are no subsequent non-
¢- or o-function uses of any of the variables defined on the
left-hand side.! Figure 1 on the following page compares
minimal and pruned SSI form for an example program.

Note that, as in SSA form, pruned SSI does not strictly
satisfy the SSI constraints because it omits dead ¢- and o-
functions otherwise required by the path-convergence crite-
ria. In practice, a subtractive definition of pruned form —
generate minimal form and then remove the unused ¢- and
o-functions — is most useful, but a constructive definition
can be generated from the standard SSI form definition as
follows:

1. The convergence/divergence node z of the path-
convergence criteria for inserting ¢- and o-functions
must also satisfy: “and there exists a nonempty path
P,, from z to a u, a use of a in the original program,
which does not contain another definition of a.”

2. The boundary condition specified by the path-
convergence criterion for the node END can be loosened
as follows (emphasis indicates modifications): “For the
purposes of this definition, the START node is assumed
to contain a definition for every variable in the original
program and the END nodes a use for every variable live
at END in the original program.”

Pruned form is defined as having the minimal set of ¢-
and o-functions that satisfy the amended conditions. It can
easily be verified that the modifications suffice to eliminate
unused ¢- and o-functions: if the variable defined in a ¢-
or o-function is used, there must exist a nonempty path
P,, as mandated by amendment 1, where amendment 2 lets
u = END for variables live exiting the procedure and thus
usefully defined.

Property 2.4. A node Z gets a ¢- or o-function for some
variable Vi in pruned SSI form only if the corresponding
variable V 1is live at Z in the original program.

Proof. This is a trivial restatement of amendment 1. A
variable v is said to be live at some node N if there exists a
node U using v and a path N % U on which no definitions
of v are to be found. If V is not live at Z then no path

zhHU satisfying the amended path-convergence criteria
can be found and neither a ¢- or o-function can be placed.
Amendment 2 ensures this holds true at boundaries. O

3 SSI construction algorithms

Construction of SSI form takes place in two phases. First,
the required ¢- and o-functions for each variable are inserted
at control-flow merge and split points. Then renaming is
performed to create a valid SSI form program.

LAn even more compact SSI form may be produced by removing
o-functions for which there are uses for ezactly one of the variables
on the left-hand side, but by doing so one loses the ability to perform
renaming at some control-flow splits which may generate additional
value information.
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PO — (XO ;f 2)
if Py jump
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if Py jump
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f;iM true
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Yo 6+ Xo
Z1 <5

~_

X3  ¢(X1,Xs)
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Zy « ¢ (2o, 2Z1)
Y+ Ys+1
/* no further uses of X or Z */
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Y < ¢(Y1,Y3)

Y Ys+1
/* no further uses of X or Z */

Figure 1: Minimal (left) and pruned (right) SSI forms.

3.1 Placement algorithms

Sreedhar and Gao have shown [18] that it is possible to
place ¢-functions in time proportional to the size of the pro-
gram. With appropriate modifications to the algorithm, it
can be used to place o-functions. However, as noted above,
¢- and o-function placement is not independent: the place-
ment of ¢-functions necessitates additional o-function place-
ment, and vice versa. Thus, the (linear time) placement al-
gorithms can be run iteratively to find a fixed point. Since
the maximum number of ¢- or o-functions is proportional to
the size of the program, it is obvious that no more than N
iterations will be required, resulting in a worst-case running
time of O(N?). In practice one would expect relatively few
iterations® yielding a near-linear runtime.

The most common construction algorithm for SSA form
[5] uses dominance frontiers and suffers from a possible
quadratic blow-up in the size of the dominance frontier for
certain common programming constructs. Various improved
algorithms use such things as DJ graphs [18] and the depen-
dence flow graph [10] to achieve O(EV') time complexity
for ¢-function placement. We build on this work to achieve
O(EV) construction of SSI form, and present a new algo-
rithm for variable renaming in SSI form after ¢- and o-
functions are placed.

Our construction algorithm begins with a program struc-
ture tree of single-entry single-exit (SESE) regions, con-
structed as described by Johnson, Pearson, and Pingali [9].

We split the construction of SSI form into two parts:
placing ¢- and o-functions and renaming variables. The
placement algorithm runs in O(NV;) time, and is presented
as Algorithm A.1 on page 12. The algorithm is parameter-
ized on a function called MaybeLive. For minimal SSI form,
MaybeLive should always return true. Faster practical run-
time may be obtained if pruned SSI form is the desired goal
by allowing MaybeLive to return any conservative approx-

2The number of required iterations is related to the maximum loop
nesting depth, which Knuth [13] showed remains small for “human-
generated” programs.

imation of variable liveness information, which will allow
early suppression of unused ¢- and o-functions. Note that
MaybeLive need not be precise; conservative values will only
result in an excess of ¢- and o-functions, not an invalid SSI
form. Section 3.1.3 describes a post-processing algorithm to
efficiently remove the excess ¢- and o-functions.

Lemma 3.1. No ¢-functions (o-functions) for a variable
v are needed in an SESE region not containing a definition

(use) of v.
Proof. See Appendix B. O

Lemma 3.2. If a definition (use) or a ¢- or o-function for a
variable v is present at some node D (U ), then a ¢-function
(o-function) for v is needed at every node N:

1. of input (output) arity greater than 1,

2. reachable from D (from which U is reachable),

3. whose smallest enclosing SESE contains D (U), and
4. [ujfl)m'ch is not dominated by D (not post-dominated by

Proof. See Appendix B. O

In practice, the conditions of Lemma 3.2 are too expen-
sive to implement directly. Instead, we use a conservative
approximation to SSI form, which allows us to place more
¢- and o-functions than minimal SSI requires while sat-
isfying the conditions of the SSI form definition. Our al-
gorithm also allows us to do pre-pruning of the SSI form
during placement. The result is not pruned SSI, but con-
tains a tight superset of the ¢- and o-functions that pruned
form requires.

Theorem 3.1. Algorithm A.1 places all the ¢- and o-
functions required by the path-convergence criteria for ¢- and
o-functions.



Proof. Lemma 3.1 states that the child region exclusion of
Algorithm A.1 does not cause required ¢- or o-functions
to be omitted. Property 2.4 allows the omission of ¢- and
o-functions for v at nodes where v is dead when creating
pruned form; MaybelLive may not return false for nodes
where v is not dead, but may return true at nodes where
v is dead without harming the correctness of the ¢- and
o-function placement. O

3.1.1 Computing liveness

Incorporating liveness information into the creation of
pruned SSI form appears to lead to a chicken-and-egg prob-
lem: although the pruned SSI framework allows highly ef-
ficient liveness analysis, obtaining the liveness information
from the original program can be problematic. The fastest
sparse algorithm has stated time bounds of O(E + N?) [3],
which is likely to be more expensive than the rest of the
SSI form conversion. Luckily, Kam and Ullman [11], in con-
junction with an empirical study by Knuth [13], show that
liveness analysis is highly likely to be linear for reducible
flow-graphs. In our work this question is avoided, as we
obtain our liveness information directly from properties of
the Java bytecode files that are our input to the compiler.
But in any case our algorithms allow conservative approxi-
mation to liveness, so even in the case of non-reducible flow
graphs it should not be difficult to quickly generate a rough
approximation.

3.1.2 Variable renaming

We have shown that Algorithm A.1 places all the required
¢- and o-functions in the control-flow graph according to
the path-convergence criteria for SSI form and the stated
boundary conditions at START and END. The next step is to
rename variables to be consistent with properties 2.1 and
2.2. Algorithm A.2 in Appendix A performs this variable
renaming. Algorithm A.2 starts on a flow-graph with placed
¢- and o-functions. When the algorithm finishes, the control
flow-graph will be in proper SSI form. The SSI form is not
necessarily minimal. The next section will show how to post-
process to create minimal or pruned SSI form.

Theorem 3.2. Algorithm A.2 renames variables such that
SST form properties 2.1, 2.2, and 2.3 hold.

Proof. Direct from lemmas B.2, B.3, and B.4. O

Theorem 3.3. Algorithms A.1 and A.2 correctly transform
a program into SSI form.

Proof. Theorem 3.1 proves that ¢- and o-functions are
placed correctly to satisfy the path-convergence criteria of
the SSI form definition, and theorem 3.2 proves that vari-
ables are renamed correctly to satisfy properties 2.1, 2.2
and 2.3. O

3.1.3 Pruning SSI form

The SSI algorithm can be run using any conservative ap-
proximation to the liveness information (including the func-
tion MaybeLive(v,n) = true) if unused code elimination®

3We follow [19] in distinguishing unreachable code elimination,
which removes code that can never be executed, from unused code
elimination, which deletes sections of code whose results are never
used. Both are often called “dead code elimination” in the literature.
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Figure 2: Number of uses in SSI form as a function of pro-
cedure length.

is performed to remove extra ¢- and o-functions added and
create pruned SSI. Figure 17 and Algorithm A.4 present an
algorithm to identify unused code in O(NVssr) time, af-
ter which a simple O(N) pass suffices to remove it. The
complexity analysis is simple: nodes and variables are vis-
ited at most once, raising their value in the analysis lat-
tive from wunused to used. Nodes marked used are never
visted. So MarkNodeUseful is invoked at most N times, and
MarkVarUseful is invoked at most Vss; times. The calls
to MarkNodeUseful may examine at most every variable use
in the program in lines 3-5, taking O(Ussr) time at worst.
Each call to MarkVarUseful examines at most one node (the
single definition node for the variable, if it exists) and in con-
stant time pushes at most one node on to the worklist for a
total of O(Vssr) time. So the total run time of FindUseful
is O(Ussr + Vssr) = O(Ussr).

3.1.4 Discussion

Note that our algorithm for placing ¢- and o-functions in
SSI form is pessimistic; that is, we at first assume every
node in the control-flow graph with input arity larger than
one requires a ¢-function for every variable and every node
with out-arity larger than one requires a o-function for every
variable, and then use the PST, liveness information, and
unused code elimination to determine safe places to omit ¢-
or o-functions. Most SSA construction algorithms, by con-
trast, are optimistic; they assume no ¢- or o-functions are
needed and attempt to determine where they are provably
necessary. In our experience, optimistic algorithms tend to
have poor time bounds because, in the worst case, they may
need to perform multiple passes over the graph as they prop-
agate ¢- or o-functions. In such cases, a pessimistic algo-
rithm assumes the correct answer at the start, fails to show
that any ¢- or o-functions can be removed, and terminates
in one pass. See Appendix C for more information.

3.2 Time and space complexity of SSI form

Discussions of time and space complexity for sparse eval-
uation frameworks in the literature are often misleadingly
called “linear” regardless of what the O-notation runtime
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that the quantity NVp would tend to grow as N'3. This
would argue for a near-linear practical run-time.

In contrast, Cytron’s original algorithm for SSA form
had theoretical complexity O(E + Vssa|DF| + NVssa).
Cytron does not present empirical data for Vgsa, but one
can infer from the data he presents for “number of intro-
duced ¢-functions” that Vssa behaves similarly to Vssy —
that is, it grows as IV, not as Vp. It is frequently pointed out?
that the [DF| term, the size of the dominance frontier, can be
O(N?) for common programming constructs (repeat-until
loops), which indicates that the Vss4|DF| term in Cytron’s
algorithm will be O(IN?) at best and at times as bad as

Naote that the space complexity of SSI form, which may

Number of variables in large procedures
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Figure 3: Number of original variables as a function of pro-
cedure length.

bounds are. A canonical example is [18], which states that
for SSA form, “the number of ¢-nodes needed remains lin-
ear.” Typically Cytron [5] is cited; however, that reference
actually reads:

For the programs we tested, the plot in [Figure
21 of Cytron’s paper] shows that the number of
¢-functions is also linear in the size of the original
program.

It is important to note that Cytron’s claim is based not on
algorithmic worst-bounds complexity, but on empirical evi-
dence. This reasoning is not unjustified; Knuth [13] showed
in 1974 that “human-generated” programs almost without
exception show properties favorable to analysis; in partic-
ular shallow maximum loop nesting depth. Wegman and
Zadeck [19] clearly make this distinction by noting that:

In theory the size [of the SSA form representation|
can be O(EV), but empirical evidence indicates
that the work required to compute the SSA graph
is linear in the program size.

Our worst-case space complexity bounds for SSI form are
identical to SSA form — O(EV) — but in this section we
will endeavour to show that typical complexities are likewise
“linear in the program size.”

The total runtime for SSI placement and subsequent
pruning, including the time to construct the PST, is O(E +
NVy+Usgsr). For most programs E will be a small constant
factor multiple of NV; as Wegman and Zadeck [19] note, most
control flow graph nodes will have at most two successors.
For those graphs where E is not O(N), it can be argued that
E is the more relevant measure of program complexity.

Thus the “linearity” of our SSI construction algorithm
rests on the quantities NVp and Uss;. Figures 2 and 3
present empirical data for Vp and Ussr on a sample of 1,048
Java methods. The methods varied in length from 4 to 6,642
statements and were taken from the dynamic call-graph of
the FLEX compiler itself, which includes large portions of
the standard Java class libraries. Figure 2 shows convinc-
ingly that Ussr; grows as N for large procedures, and Fig-
ure 3 supports an argument that Vy grows very slowly and

be O(EV) in the worst case (¢- and o-functions for every
variable inserted at every node) is certainly not greater than
Ussi, and thus Figure 2 shows linear practical space use.

4 Uses and applications of SSI

The principle benefits of using SSI form are the ability to
do predicated and backward dataflow analyses efficiently.
Predicated analysis means that we can use information
extracted from branch conditions and control flow. The o-
functions in SSI form provide an variable naming that allows
us to sparsely associate the predication information with
variable names at control flow splits. The o-functions also
provide a reverse symmetry to SSI form that allow efficient
backward dataflow analyses like liveness and anticipata-
bility.

In this section, we will briefly sketch how SSI form can
be applied to backwards dataflow analyses, including antic-
ipatability, an important component of partial redundancy
elimination. We will then describe in detail our Sparse Pred-
icated Typed Constant propagation algorithm, which shows
how the predication information of SSI form may be used to
advantage in practical applications, including the removal
of array bounds and null-pointer checks. Lastly, we will de-
scribe an extension to SPTC that allows bitwidth analysts,
and the possible uses of this information.

4.1 Backward Dataflow Analysis

Backward dataflow analyses are those in which informa-
tion is propagated in the direction opposite that of program
execution [15]. There is general agreement [10, 3, 20] that
SSA form is unable to directly handle backwards dataflow
analyses; liveness is often cited as a canonical example.
However, SSI form allows the sparse computation of such
backwards properties. Liveness, for example, comes “for
free” from pruned SSI form: every variable is live in the
region between its use and sole definition. Every non-¢-
function use of a variable is dominated by the definition;
Cytron [5] has shown that ¢-functions will always be found
on the dominance frontier. Thus the live region between
definition and use can be enumerated with a simple depth-
first search, taking advantage of the topological sorting by
dominance that DFS provides [15]. Because of ¢-function
uses, the DFS will have to look one node past its spanning-
tree leaves to see the ¢-functions on the dominance frontier;
this does not change the algorithmic complexity.
Computation of other dataflow properties will use this
same enumeration routine to propagate values computed

“See Dhamdhere [6] for example.



on the sparse SSI graph to the intermediate nodes on the
control-flow graph. Formally, we can say that the dataflow
property for variable v at node N is dependent only on the
properties at nodes D and U, defining and using v, for which

there is a path D JU containing N. There is a “default”
property which holds for nodes on no such path from a def-
inition to use; for liveness the default property is “not live.”
The remainder of this section will concentrate on the data-
flow properties at use and definition points.

A slightly more complicated backward dataflow property
is very busy expressions; this analysis is somewhat obso-
lete as it serves to save code space, not time. This in turn
is related to partial and total anticipatability.

Definition 4.1. An ezpression e is very busy at a point
P of the program iff it is always subsequently used before it
is killed [15].

Definition 4.2. An ezpression e is totally (partially)
anticipatable at a point P if, on every (some) path in the
CFG from P to END, there is a computation of e before an
assignment to any of the variables in e [10].

Johnson and Pingali [10] show how to reduce these prop-
erties of expressions to properties on variables. We will
therefore consider properties BSY (v, N), ANT(v, N), and
PAN(v, N) denoting very busy, totally anticipatable, and
partially anticipatable variables v at some program point
N. To compute BSY, we start with pruned SSI form. Any
variable defined in a ¢- or o-function is used at some point,
by definition. So for statements at a point P we have the
rules:

v=... BSYin(v, P) = false
.= BSYin(v, P) = true
Yo,---,Yn)  BSYin(yi, P) = BSYou(z, P)

(zo.....an) = oy) BSYm(y,P) = AL,

Total anticipatability, in the single variable case, is iden-
tical to BSY. Partial anticipatability for a variable v at point
P follows the rules:

BSYout (z:, P)

v=... PANi, (v, P) = false

.= PANix (v, P) = true
z=¢(Yo,---,Yn) PANin(yi, P) = PANgy(z, P)
{zo,...,Zn) =0(y) PANi(y,P) = V1= PANyyt (i, P)

The present section is concerned more with feasibility
than the mechanics of implementation; we refer the inter-
ested reader to [15] and [10] for details on how to turn the
efficient computation of BSY, PAN and ANT into practical
code-hoisting and partial-redundancy elimination routines,
respectively.

We note in passing that the sophisticated strength-
reduction and code-motion techniques of SSAPRE [12] are
applicable to an SSI-based representation, as well, and may
benefit from the predication information available in SSI.
The remainder of this section will focus on practical imple-
mentations of predicated analyses using SSI form.

4.2 Sparse Predicated Typed Constant Propaga-
tion

Sparse Predicated Typed Constant (SPTC) Propagation is
a powerful analysis tool which derives its efficiency from SSI

Executable

/\
\//

Figure 4: Three-level value lattice and two-level executabil-
ity lattice for SCC.

Not Executable

n{L ¢ di#e) T e|L d T
1LlL ¢ d T 1L d T
clec ¢ T T clec ecopd T
T|T T T T T|T T 7T

Table 1: Meet and binary operation rules on the SCC value
lattice.

form. It is built on Wegman and Zadeck’s Sparse Condi-
tional Constant (SCC) algorithm [19] and removes unnec-
essary array-bounds and null-pointer checks, computes vari-
able types, and performs floating-point- and string-constant-
propagation in addition to the integer constant propagation
of standard SCC.

We will describe this algorithm incrementally, beginning
with the standard SCC constant-propagation algorithm.
Wegman and Zadeck’s algorithm operates on a program in
SSA form; we will call this SCC/SSA to differentiate it from
SCC/SSI, which uses the SSI form. Section 6 on page 10 will
discuss an extension to SPTC which does bit-width anal-
Ys1is.

4.2.1 Wegman and Zadeck’s SCC/SSA algorithm

The SCC algorithm works on a simple three-level value lat-
tice associated with variable definition points and a two-
level executability lattice associated with flow-graph edges.
These lattices are shown in Figure 4. The SCC algorithm
itself, which runs in O(E + Uss4) time, is presented in Fig-
ures A.5 and A.6 from Appendix A.

4.2.2 SCC/SSI: predication using o-functions.

Porting the SCC algorithm from SSA to SSI form (so
that it takes information from conditionals into account)
immediately increases the number of constants we can find.
Only the Visit procedure must be updated for SCC/SSI:
lattice update rules for o-functions must be added. Algo-
rithm 4.1 shows a new Visit procedure for the two-level
integer constant lattice of Wegman and Zadeck’s SCC/SSA;
with this restricted value set only integer equality tests tap
the algorithm’s full power. The utility of SCC/SST’s predi-
cated analysis will become more evident as the value lat-
tice is extended to cover more constant types. The time
complexity of the updated algorithm is identical to that of
SCC/SSA: O(E + Ussa).



Visit(n:node) =
1: /* Assignment rules as on page 14 */

2:

3: for each branch “if z = y goto e; else e2” in n do
4: if Llz]=T or L[y] = T then

5: RaiseE(e1)

6 RaiseE(e2)

7:  elseif L[z] = c and Ly] = d then

8: if ¢ = d then

9: RaiseE(e1)

10: else

11: RaiseE(e2)

”

12:  for each assignment “(vi,v2) < o(vg)” associated with

this branch do

13: if edge e1 € E. and variable vg is the z or y in the test
then

14: RaiseV(v1, min(L{z], L[y]))

15: else if edge e; € E. then

16: RaiseV(v1, L{vg])

17: if edge ez € FE. then /* False branch */

18: RaiseV(va, L{vg])

19:

20: /* Obvious generalization applies for tests like “c # y” */

Algorithm 4.1: A revised Visit procedure for SCC/SSL

T

IR

float double int long String

\\//

1

Figure 5: SCC value lattice extended to Java primitive value
domain.

4.2.3 Extending the value domain

The first simple extension of the SCC value lattice enables
us to represent floating-point and other values. For this
work, we extended the domain to cover the full type sys-
tem of Java bytecode [8]; the extended lattice is presented
in Figure 5. The figure also introduces the abbreviated lat-
tice notation we will use through the following sections; it
is understood that the lattice entry labelled “int” stands for
a finite-but-large set of incomparable lattice elements, con-
sisting (in this case) of the members of the Java int integer
type. Java ints are 32 bits long, so the “int” entry abbre-
viates 23? lattice elements. Similarly, the “double” entry
encodes not the infinite domain of real numbers, but the
domain spanned b%f the Java double type which has fewer
than 2%¢ members.® The Java String type is also included,
to allow simple constant string coalescing to be performed.
The propagation algorithm over this lattice is a trivial mod-
ification to Algorithm 4.1, and will be omitted for brevity.
In the next sections, the “int” and “long” entries in this lat-
tice will be summarized as “Integer Constant”, the “float”
and “double” entries as “Floating-point Constant”, and the
“String” entry as “String Constant”. As the lattice is still
only three levels deep, the asymptotic runtime complexity
is identical to that of the previous algorithm.

4.2.4 Type analysis

In Figure 6 we extend the lattice to compute Java type
information. The new lattice entry marked “Typed” is ac-
tually forest-structured as shown in Figure 7; it is as deep as
the class hierarchy, and the roots and leaves are all compara-
bleto T and L. Only the Visit procedure must be modified;
the new procedure is given as Algorithm 4.2. Because the
lattice L is deeper, the asymptotic runtime complexity is
now O(E + UssaD.) where D, is the maximum depth of
the class hierarchy. To form an estimate of the magnitude
of D,, Table 2 compares class hierarchy statistics for several
large object-oriented projects in various source languages.
Our FLEX compiler infrastructure, as a typical Java exam-
ple, has an average class depth of 1.91.° In a forced example,
of course, one can make the class depth O(NV); however, one
can infer from the data given that in real code the D, term
is not likely to make the algorithm significantly non-linear.

A brief word on the roots of the hierarchy forest in Fig-
ure 7 is called for: Java has both a class hierarchy, rooted
at java.lang.Object, and several primitive types, which
we will also use as roots. The primitive types include int,
long, float, and double.” Integer constants in the lat-
tice are comparable to and less than the int or long type;
floating-point constants are likewise comparable to and less
than either float or double. String constants are compa-
rable to and less than the java.lang.String non-primitive
class type.

The void type, which is the type of the expression null,
is also a primitive type in Java; however we wish to keep
x My identical to | |, {z,y} (the least upper bound of z and
y) while satisfying the Java typing rule that null Mz = x
when z is a non-primitive type and not a constant. This

5In IEEE-standard floating-point, some possible bit patterns are
not valid number encodings.

SMeasured August 2, 1999; the infrastructure is under continuing
development.

"In the type system our infrastructure uses (which is borrowed
from Java bytecode) the char, boolean, short and byte types are folded
into int.



Max. depth

Hierarchy Source language | Classes | Avg. depth
FLEX infrastructure | Java 550 1.9
javac compiler Java 304 2.8
NeXTStep 3.21 Objective-C 488 3.5
Objectworks 4.1 Smalltalk 774 4.4

0 ~ ot

10

t indicates data obtained from Muthukrishnan and Miiller [14].

Table 2: Class hierarchy statistics for several large O-O projects.

T
Typed
\
String Floating-point Integer
Constant Constant Constant
1

Figure 6: SCC value lattice extended with type information.
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java.lang. Numbjava.lang.String - : ' Jevels
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Constant
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Null
Constant

Figure 7: “Typed” category of Figure 6 shown expanded.

int ®int = int
long @ {int,long} = long
float @ {int,long, float} = float
double @ {int, long,float,double} = double
String @ {int, long, float,double, Object,...} = String

Figure 8: Java typing rules for binary operations.

Visit(n:node) =

1:

12:

13

14:
15:
16:
17:

18:
19:
20:
21:
22:

23:

24:

25:
26:
27:
28:
29:
30:

31
32

for each assignment “v <~z @ y” in n do
RaiseV (v, V[z] ® V(y]) /* binop rule: see figure 8 */

for each assignment “v < MEM(...)” or “v < CALL(...)”
in n do
let ¢ be the type of the MEM or CALL expression
RaiseV(v, t)
for each assignment “v < ¢(z1,...,Zn)” in n do
for each variable z; corresponding to predecessor edge e;
of n do
if ¢; € E. then
RaiseV (v, UL{V[v],V[wi]}) /* meet rule: use least
upper bound */

for each branch “if £ = y goto e; else e2” in n do
if Typed C L[z] or Typed C L[y] then
RaiseE(e1)
RaiseE(ez)
else if L{z] = c and L[y] = d then /* if z and y are
constants... */
if ¢ =d then
RaiseE(e1)
else
RaiseE(e2)
for each assignment “(vi,v2) < o(vg)” associated with
this branch do
if edge e; € E. and variable vg is the z or y in the test
then
/* type error in source program if L[z] and L[y] are
incomparable */
RaiseV(v1, min(L[z], L{y]))
else if edge e; € E, then
RaiseV(v1, L{vo])
if edge e2 € E. then /* False branch */
RaiseV(v2, L{vo])

/* Obvious generalization applies for tests like “x # y” */
/* Obvious generalization applies for tests like
“r instanceof C” */

Algorithm 4.2: Visit procedure for typed SCC/SSL
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Figure 9: Value lattice extended with array and null infor-
mation.

requires putting void comparable to but less than every non-
primitive leaf in the class hierarchy lattice.

The Java class hierarchy also includes interfaces, which
are the means by which Java implements multiple inheri-
tance. Base interface classes (which do not extend other
interfaces) are additional roots in the hierarchy forest, al-
though no examples of this are shown in Figure 7.

Since untypeable variables are generally forbidden, no
operation should ever raise a lattice value above “Typed”
to T. The otherwise-unnecessary T element is retained to
indicate error conditions.

This variant of the constant-propagation algorithm al-
lows us to eliminate unnecessary instanceof checks due to
type-casting or type-safety checks. Section 5 will provide
experimental validation of its utility.

Finally, note that the ability to represent null as the
void type in the lattice begins to allow us to address null-
pointer checks, although because null Mz = z for non-
primitive types we can only reason about variables which
can be proven to be null, not those which might be proven
to be non-null (which is the more useful case). The next
section will provide a more satisfactory treatment.

4.2.5 Array-bounds and null-pointer checks

At this point, we can expand the value lattice once
more to allow elimination of unnecessary array-bounds and
null-pointer checks, based on our constant-propagation al-
gorithm. The new lattice is shown in Figure 9; we have split
the “Typed” lattice entry to enable the algorithm to distin-
guish between non-null and possibly-null values,® and added
a lattice level for arrays of known constant length. Some for-
mal definition of the new value lattice can be found in Fig-
ure 10; the meet rule is still the least upper bound on the
lattice. Modifications to the Visit procedure are outlined
in Algorithm 4.3. Notice that we exploit the pre-existing
integer-constant propagation to identify constant-length ar-
rays, and that our integrated approach allows one-pass op-
timization of the program in Figure 11.

Note that the variable renaming performed by the SSI
form at control-flow splits is essential in allowing the algo-

8Values which are always-null were discussed in the previous sec-
tion; they are identified as having primitive type void.

VC S Class, Cnon—null C Cpossibly—null

VC € Classnon-null; ||, {void, C} € Classpossibly-null
VC € Classpossibly-null, void C C

VC € Classnon-nun, (void,C) ¢ C

Let A(C,n) be a function to turn a lattice entry representing
anon-null array class type C into the lattice entry represent-
ing a said array class with known integer constant length n.
Then for any non-null array class C and integers ¢ and j,

AC,HyC C
(A(C,1),A(C,j)) €eC ifand only if ¢ = j

Figure 10: Extended value lattice inequalities.

Visit(n:node) =
1: /* Binop and ¢-function rules as in algorithm 4.2 */
2:
3: for each assignment “v - MEM(...)” or “v - CALL(...)”

in n do
4:  let t € Classpogsibly-null U Classprimitive be the type of the
MEM or CALL
5:  RaiseV(v, t)

6:
7: for each array creation expression “v < new T[z]” do
8:  if L[z] is an integer constant then

9: RaiseV (v, A(T, L[z]))
10: else

11: RaiseV (v, Thon-null)
12:

13: for each array length assignment “v < arraylength(z)” do
14:  if L[z] is an array of known constant length n then

15: RaiseV (v, n)
16: else

17: RaiseV (v, int)
18:

19: /* Branch rules as in algorithm 4.2, with the obvious exten-
sion to allow tests against null to lower a lattice value from
Cla'sspossibly-null to Classpon-null- */

Algorithm 4.3: Visit procedure outline with array and null
information.

x =5 + 6;
do {
y = new int[x];
z = x-1;
if (0 <= z && z < y.length)
y[z] = 0;
else
x-—;
} while (P);

Figure 11: An example illustrating the power of combined
analysis.




if (10 < 0)

throw new NegativeArraySizeException() ;
int[] A = new int[10];
if (0 < 0 || 0 >= A.length)

throw new ArrayIndexOutOfBoundsException();
Af0] = 1;
for (int i=1; i < 10; i++) {

if (1 <0 || i >= A.length)

throw new ArrayIndexOutOfBoundsException();

A[i] = 0;

Figure 12: Implicit bounds checks (underlined) on Java ar-
ray references.

T
(MZP)
(M-P) (Mz-) (-ZzP) (M-P)
... -2 0 1 2 ...

(-z-)

=)
1

Figure 13: An integer lattice for signed integers. A classifi-
cation into negative (M), positive (P), or zero (Z) is grafted
onto the standard flat integer constant domain. The (M-P)
entry is duplicated to aid clarity.

rithm to do null-pointer check elimination. However, the
lattice we are using can remove bound checks from an ex-
pression A[k] when k is a constant, but not when k is an
bounded induction variable. In the example of Figure 12,
the first two implicit checks are optimized away by this ver-
sion of the algorithm, but the loop-borne test is not.

A typical array-bounds check (as shown in the example
on the current page) verifies that the index ¢ of the array
reference satisfies the condition 0 < ¢ < m, where n is the
length of the array.® By identifying integer constants as ei-
ther positive, negative, or zero the first half of the bounds
check may be eliminated. This requires a simple extension
of the integer constant portion of the lattice, outlined in Fig-
ure 13, with negligible performance cost. However, handling
upper bounds completely requires a symbolic analysis that
is out of the current scope of this work. Future work will use
induction variable analysis and integrate an existing linear
programming approach [17] to fully address array-bounds
checks.

9Languages in which array indices start at 1 can be handled by
slight modifications to the same techniques.
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Figure 14: SPTC optimization performance.

5 Experimental results

The full SPTC analysis and optimization has been imple-
mented in the FLEX Java compiler platform. Some quan-
titative measure of the utility of SPTC is given as Fig-
ure 14. The run-times are intermediate representation dy-
namic statement counts generated by the FLEX compiler
SSI IR interpreter. The standard Wegman-Zadeck SCC al-
gorithm, which has proven utility in practice, shows no im-
provement over unoptimized code due to the metric used.
Even so, SPTC shows a 10% speed-up. It is expected that
the improvement given in actual practice will be greater.

Note that the speed-up is constant despite widely dif-
fering test cases. Even a simple example actually executes
quite a bit of library code in the Java implementation; this
includes numerous element-by-element array initializations
(due to the semantics of java bytecode) which we expect
SPTC to excel at optimizing. But SPTC does just as well
on the full FLEX compiler (68,032 lines of source at the time
the benchmark was run), which shows that the speed-up is
not limited to constant initialization code.

6 Bit-width analysis

The SPTC algorithm can be extended to allow efficient bzt-
width analysis. Bit-width analysis is a variation of con-
stant propagation with the goal of determining value ranges
for variables. In this sense it is similar to, but simpler than,
array-bounds analysis: no symbolic manipulation is required
and the value lattice has N levels (where N is the maximum
bitwidth of the underlying datatype) instead of 2. For C
and Java programs, this means that only 32 levels need be
added to the lattice; thus the bit-width analysis can be made
efficient.

Bit-width analysis allows optimization for modern
media-processing instruction set extensions which typically
offer vector processing of limited-width types. Intel’s MMX
extensions, for example, offer packed 8-bit, 16-bit, 32-bit
and 64-bit vectors [16]. To take advantage of these func-
tional units without explicit human annotation, the com-
piler must be able to guarantee that the data in a vector can
be expressed using the limited bit-width available. A sim-
pler bit-width analysis in a previous work [1] showed that
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A Algorithms

B Proofs

Proof of Lemma, 3.1.

Proof. Let us assume a ¢-function for v is needed at some
node Z inside an SESE not containing a definition of v.
Then by the path-convergence criterion for ¢-functions,

there exist paths X B ZandY 5 2 having no nodes
but Z in common where X and Y contain either definitions
of v or ¢- or o-functions for v. Choose any such paths:

Case I: Both X and Y are outside the SESE. Then, as
there is only one entrance edge into the SESE, the paths

X X Zand Y 5 Z must contain some node in com-
mon other than Z. But this contradicts our choice of X
and Y.

Case II: At least one of X and Y must be inside the SESE.
If both X and Y are not definitions of v but rather ¢-
or o-functions for v, then by recursive application of
this proof there must exist some choice of X, Y, and
Z inside this SESE where at least one of X and Y is
a definition. But X or Y cannot be a definition of
v because they are inside the SESE of Z which was
chosen to contain no definitions of v.

Place(G: CFG) =
1: let r be the top-level region for G
2: for each variable v in G do
3:  PlaceOne(r, v, false) /* place phis */
4:  PlaceOne(r, v, true) /* place sigmas */

PlaceOne(r: region, wv: variable, ps: boolean): boolean
1: /* Post-order traversal */
2: flag < false
3: for each child region 7’ do
4:  if PlaceOne(r’, v, ps) then
5 flag < true
6
7

: for each node n in region r not contained in a child region
do
8: if ps is false and n contains a definition of v then

9: flag < true

10:  if ps is true and n contains a use of v then
11: flag < true

12:

13: /* add phis/sigmas to merges/splits where v may be live */
14: if flag = true then

15:  for each node n in region r not contained in a child region
do

16: if MaybeLive(v, n) = true then

17: if ps is false and the input arity of n exceeds 1 then

18: place a phi function for v at n

19: if ps is true and the output arity of n exceeds 1 then

20: place a sigma function for v at n

21:

22: return flag

Algorithm A.1: Placing ¢- and o-functions.

Data type Environment:
create(): Environment :
make an environment with no mappings.
put(&: Environment, v1: variable, va: variable) :
extend environment £ with a mapping from vy to vs.
get(&: Environment, v: variable): variable :
return the current mapping in £ for v.
beginScope(£: Environment) :
save the current mapping of £ for later restoration.
endScope(€: Environment) :
restore the mapping of £ to that present at the last
beginScope on £.

Figure 16: Environment datatype for the SSI renaming al-
gorithm.




Rename(G: CFG) =

1:
2:
3:

Init(G)
for each edge e leaving START do
Search(e)

Init(G: CFG) =

1:

PAN A

for each edge e in G do
Marked[e] < false
for each variable V in G do
C(V)«0
& = create() /* create a new environment */

Inc(€: Environment, V: variable): variable =

1:
2:
3:
4:

i+« C(V)+1
C(v) «1
£.put(V, Vi)
return V;

Algorithm A.2: SSI renaming algorithm.

Search((s,d): edge) =

Require: s to be a node containing ¢- or o-functions, or START

Require: Marked[(s,d)] = false

1:
2:
3:

A

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

Marked[(s, d)] < true
beginScope(€)
if s is a node containing ¢-functions then
for each ¢-function P in s do
replace the destination V of P by Inc(&,V)
else if s is a node containing o-functions then
for each o-function S in s do
j < WhichSucc((s, d))
replace the j-th destination V of S by Inc(€,V)
loop /* now rename inside basic block */
if d is a node containing ¢-functions then
for each ¢-function P in d do
j < WhichPred((s, d))
replace the j-th operand V of P by get(&,V)
break /* end of basic block */
else if s is a node containing o-functions then
for each o-function S in d do
replace the operand V of S by get(€,V)
break /* end of basic block */
/* ordinary assignment, at most one successor */
for each variable V in RHS(d) do
replace V' by get(€,V) in RHS(d)
for each variable V in LHS(d) do
replace V by Inc(&,V) in LHS(d)
if d has no successor then
break /* end of basic block */
s<d
d <+ successor of d
end loop
for each successor n of d do
if not Marked[(d,n)] then
Search((d,n)) /* dfs recursion */
endScope(€)
return

Algorithm A.3: SSI renaming algorithm, cont.

Operations on nodes:

NodeUseful(n:node): boolean : Whether the results of this
node are ever used

Uses(n:node): set of variables : Variables for which this
node contains a use

Operations on variables:

VarUseful(v:variable): boolean : Whether there is some n
for which Uses(n) contains v and NodeUseful(n) is true

Definitions(v:variable): set of nodes : Nodes which contain
a definition for v

Figure 17: Datatypes and operations used in unused code
elimination.

FindUseful(G: CFG) =
1: let W be an empty work list
: for each variable v in G do
VarUseful(v) < false
: for each node n in G in any order do
NodeUseful(n) <+ false
if n is a CALL, RETURN, or other node with side-effects then
add n to W

® DT WN

9: while W is not empty do

10: let n be any element from W
11:  remove n from W

12:  MarkNodeUseful(n, W)

MarkNodeUseful(n: node, W: WorkList) =
1: NodeUseful(n) < true
2: /* everything used by a useful node is useful */
3: for each variable v in Uses(n) do
4:  if not VarUseful(v) then
5 MarkVarUseful(v, W)

MarkVarUseful(v: variable, W: WorkList) =
1: VarUseful(v) « true
2: /* The definition of a useful variable is useful */
3: for each node n in Definitions(v) do
4:  /* In SSI form, size(Definitions(v)) < 1 */
5:  if not NodeUseful(n) then
6 add n to W

Algorithm A.4: Identifying unused code using SSI form.



Init(G:CFG) =
1: Ec 0
2 By, 0
3: for each variable v in G do
4:  if some node n defines v then
5: Vv] « L
6 else
7 V[v] « T /* Procedure arguments, etc. */

Analyze(G:CFG) =
1: let r be the start node of graph G

2: Bp «+— E, U {T}

3: Wy« {r}

4: Wy <0

5:

6: repeat

7:  if Wy is not empty then

8: remove some node n from W,

9: if n has only one outgoing edge ¢ and e ¢ E. then
10: RaiseE(e)

11: Visit(n)

12:  if W, is not empty then

13: remove some variable v from W,

14: for each node n containing a use of v do
15: Visit(n)

16: until both W, and W,, are empty

Algorithm A.5: SCC algorithm for SSA form.

RaiseE(e:edge) =
: /* When called, e ¢ E. */
1 Ee «+ Ec U {e}
: let n be the destination of edge e
if n ¢ E then
E, < E,U{n}
Wn < Wn U {n}

RaiseV(wv:variable, L:lattice value) =
1: if V[v] C L then
2: V[’U] <~ L
3: Wy « Wy U {v}

Visit(n:node) =
1: for each assignment “v <— x @ y” in n do
2:  RaiseV(v, V([z] ® V]y]) /* binop rule: see table 1 */
3:
4: for each assignment “v < MEM(...)” or “v < CALL(...)”
in n do

5:  RaiseV(v, T)

6:

7: for each assignment “v < ¢(z1,...,2,)” in n do

8 for each variable z; corresponding to predecessor edge e;
of n do

9: if ¢; € E. then

10: RaiseV (v, V[v] M V[z;]) /* meet rule: see table 1 */

11:

12: for each branch “if v goto e; else e2” in n do

13: L« V[v]
14: if L = T or L = ¢ where c signifies “true” and e; ¢ E.

then

15: RaiseE(e1)

16: if L = T or L = ¢ where c signifies “false” and ez ¢ E.
then

17: RaiseE(e2)

Algorithm A.6: SCC algorithm for SSA form, cont.

A symmetric argument holds for o-functions for v, using
the path-convergence criterion for o-functions, and the fact
that there exists one exit edge from the SESE. O

Proof of Lemma 3.2.

Proof. We will first prove that a node N failing any one of
the conditions does not need a ¢- or o-function.

e The path-convergence criteria for ¢-functions (o-
functions) require node N to be the first convergence

(divergence) of some paths X Z NandvY 5 N

(N S Xand N5 Y). If the input arity is less than
2 or there is no path from a definition of v, than it
fails the path-convergence criterion for ¢-functions. If
the output arity is less than 2 or there is no path to a
use of v, then it fails the path-convergence criterion for
o-functions.

o If there exists a SESE containing N that does not con-
tain any definition, ¢- or o-function D for v, then N
does not require a ¢- or o-function for v by lemma 3.1.

e Let us suppose every D; containing a definition, ¢-
or o-function for v dominates N. If N requires a ¢-

function for v, there exist paths Dy X N and D- AN
containing no nodes in common but N. We use these

paths to construct simple paths START . Dy X N and

START 5 D, 5 N. By the definition of a dominator,
every path from START to N must contain every D;.

But Dy -5 N cannot contain D, and if START % Dy

contains Dy, we can make a path START 5Dy, 5N
which does not contain D; by using the D;-free path

Dy 55 N. The assumption leads to a contradiction;
thus, there must exist some D; which does not domi-
nate N if N is required to have a ¢-function for v. The
symmetric argument holds for post-dominance and o-
functions.

This proves that the conditions are necessary. It is obvious
from an examination of the path convergence criteria for ¢-
and o-functions and lemma 3.1 that they are sufficient. O

The SSI renaming algorithm presented in Figures A.2
and A.3 requires an Environment datatype which is defined
in Figure 16. Using an imperative programming style, it
is possible to perform a sequence of any N operations on
Environment as defined in the figure in O(N) time; in a
functional programming style any N operations can be com-
pleted in O(Nlog N) time.’® As the coarse structure of
Algorithm A.2 is a simple depth-first search, it is easy to
see that the Search procedure can be invoked from line 3
on page 13 and line 32 on page 13 a total of O(E) times;
likewise its inner loop (lines 10 to 29) can be executed a
total of E times across all invocations of Search. A total
of Ussa + Dssa calls to the operations of the Environment
datatype will be made within all executions of Search. For
the imperative implementation of Environment a total time
bounds of O(E + Ussa + Dssa) for the variable renaming
algorithm is obtained.

10The curious reader is referred to section 5.1 of Appel [2] for im-
plementation details.



Lemma B.1. The stack trace of calls to Search defines a
unique path through G from START.

Proof. We will prove this lemma by construction. For ev-
ery consecutive pair of calls to Search we construct a path

xhy starting with the edge (X, No) which is the argu-
ment of the first call, and ending with the edge (N,,Y)
which is the argument of the second call. From line 28 of
the Search procedure on page 13 we note that every edge
(N, Ni4+1) between the first and last has exactly one succes-
sor. Furthermore, the call to search on line 32 defines a path

starting with the edge which our segment X 5 Y ends with;
therefore the paths can be combined. By so doing from the
bottom of the call stack to the top we construct a unique
path from START. O

For brevity, we will hereafter refer to the canonical path
constructed in the manner of lemma B.1 corresponding to
the stack of calls to Search when an edge e is first encoun-
tered as CP(e). Every edge in the CFG is encountered ex-
actly once by Search, so C'P(e) exists and is unique for every
edge e in the CFG.

Lemma B.2. SSI form property 2.1 (¢-function naming)
holds for variables renamed according to Algorithm A.2.

Proof. We restate SSI form property 2.1 for reference:

For every node X containing a definition of a vari-
able V in the new program and node Y containing
a use of that variable, there exists at least one path

X Y and no such path contains a definition of
V other than at X.

We consider the canonical path CP({(Y',Y)) = START —
Y’ — Y for some use of a variable v at Y, constructed
according to lemma B.1 from a stack trace of calls to Search.
is encountered. This path is unique, although more than
one canonical path may terminate at Y at nodes with more
than one predecessor. These paths are distinguished by the
incoming edge to Y.''! We identify each operand v; of a
¢-function with the appropriate incoming edge e to ensure
that CP(e) is well defined and unique in the context of a
use of v;.

The canonical path START X ¥ must contain X , a def-
inition of v, if Y uses a variable defined in X, as Search
renames all definitions (in lines 5, 9, and 24) and destroys
the name mapping in £ just before it returns. The call to
Search which creates the definition of v must therefore al-
ways be on the stack, and thus in the path CP({Y',Y)), for
any use to receive a the name v. Note that this is true for
¢-functions as well, which receive names when the appropri-
ate incoming edge (Y',Y’) is traversed, not necessarily when
the node Y containing the ¢-function is first encountered.

We have proved that START S5 x by exists; now we
must prove that no other path from X to Y contains a def-
inition of v. Call this other definition D. Obviously D can-

not be on our canonical path START HEx 34 Y, or line 24

11Note that the notation <N, N’> for denoting edges does not al-

ways denote an edge unambigiously; imagine a conditional branch
where both the true and false case lead to the same label. In such
cases an additional identifier is necessary to distinguish the edges.
Alternatively, one may split such edges to remove the ambiguity. We
treat edges as uniquely identifiable and leave the implementation to
the reader.

would have caused Y to use a different name. But as we
just stated, all variable name mappings done by D will be
removed when the call to Search which touched D is taken
off the call stack. So D must be on the call stack, and thus
on the canonical path; a contradiction. Since assuming the

existence of some other path X Xy containing a definition
of v leads to contradiction no other such path may exist,
completing the proof of the lemma.

Lemma B.3. SSI form property 2.2 (o-function naming)
holds for variables renamed according to Algorithm A.2.

Proof. We restate SSI form property 2.2 for reference:

For every pair of nodes X and Y containing uses
of a variable V' defined at node Z in the new pro-

gram, either every path Z % X must contain Y
or every path Z X Y must contain X.

Let us assume there are paths Z BZXandzZHy violating
this condition; that is, let us chose nodes X and Y which
use V and Z defining V such that there exists a path P;
from Z to X not containing Y and a path P, from Z to Y
not containing X. By the argument of the previous lemma,
there exists a canonical path P; = CP(e) from START to X
through Z corresponding to a stack trace of Search; note
that P3 need not contain P;. There are two cases:

Case I: P; does not contains Y. Then there is some last

*

node N present on both P, : Z — N X Y and

P; : START Kz N5 X, By the path-convergence
criterion for o-functions, this node NN requires a o-
function for V. If N # Z then line 5 of Algorithm A.2
would rename V along P3; and X would not use the
same variable Z defined; if N = Z, then line 9 would
have ensured that X and Y used different names. Ei-
ther case contradicts our choices of X, Y, and Z.

Case II: P; does contain Y. Then consider the path

START 5 Z B Y along Ps, which does not contain X.
The argument of case I applies with X and Y reversed.

Any assumed violation of property 2.2 leads to contradic-
tion, proving the lemma. O

Every path CP(e) corresponds to a execution state in
a call to Search at the point where e is first encountered.
The value of the environment mapping £ at this point in
the execution of Algorithm A.2 we will denote as £°. For a
node N having a single predecessor /N, and single successor

N,, we will denote £¥N) as €N, and £NNe) as EN,...

. . N,
It is obvious that E{iffer =& ore al_ad ENier = Eé\gsfore .when
N, and Ng, respectively, are also single-predecessor single-

successor nodes.

Lemma B.4. SSI form property 2.8 (correctness) holds
for variables renamed according to Algorithm A.2. That is,
along any possible control-flow path in a program being eze-
cuted a use of a variable Vi in the new program will always
have the same value as a use of the corresponding variable
V' in the original program.

Proof. We will use induction along the path No - N1 —
... — N,. We consider e; = (Ng, Nr+1), the (k+ 1)th edge
in the path, and assume that, for all j < k, each variable V'



in the original program agrees with the value of £/[V] = V;
in the new program. We show that £°*[V] agrees with V" at
edge ey, in the path.

Case I: k£ = 0. The base case is trivial: the START node
(No) contains no statements, and along each edge e
leaving start £°[V] = Vp. By definition V, agrees with
V at the entry to the procedure.

Case II: £ > 0 and N; has exactly one predecessor and
one successor. If Ny is single-entry single-exit, then it
is not a ¢- or o-function. As an ordinary assignment,
it will be handled by lines 20 to 24 of Algorithm A.3 on
page 13. By the induction hypothesis (which tells us
that the uses at Vi correspond to the same values as
the uses in the original program) and the semantics of

Ny,

assignment, the mapping £ ¢ .

valid when 5113\220re is valid. Thus the value of every

original variable V' corresponds to the value of the new
variable £k [V] = £°[V] on ex.

after

is easily verified to be

Case III: £ > 0 and Ni has multiple predecessors and
one successor. In this case N, may have multiple ¢-
functions in the new program, and /NV; has no state-
ments in the original program. Thus the value of any
variable V in the original program along edge ey, is iden-
tical to its value along edge er—1. We need only show
that the value of the variable £°*~1[V] is the same as
the value of the variable £°*[V] in the new program.
For any variable V not mentioned in a ¢-function at Ny,
this is obvious. Each variable defined in a ¢-function
will get the value of the operand corresponding to the
incoming control-flow path edge. The relevant lines in
Algorithm A.3 start with 13 and 14, where we see that
the operand corresponding to edge ex—1 of a ¢-function
for V' correctly gets £*~1[V]. At line 5, we see that
the destination of the ¢-function is correctly £°*[V7].
Thus the value of every original variable V' correctly
correponds to £°*[V] by the induction hyptothesis and
the semantics of the ¢-functions.

Case IV: k > 0 and Ni has one predecessor and multiple
successors. Here Nj, may have multiple o-functions in
the new program, and is empty in the original program.
The argument goes as for the previous case. It is ob-
vious that variables not mentioned in the o-functions
correspond at ey, if they did at ex_1. For variables men-
tioned in o-functions, line 18 shows that operands cor-
rectly get £%-1[V] and line 9 shows that the destina-
tion corresponding to ey correctly gets £°%[V]. There-
fore the values of original variables V' correspond to
the value of £°[V] by the induction hypothesis and
the semantics of the o-functions.

Therefore, on every edge of the chosen path, the values of the
original variables correspond to the values of the renamed
SSI form variables. The value correspondence at the path
endpoint (a use of a

C Optimistic and Pessimistic Algorithms

In our experience, optimistic algorithms tend to have poor
time bounds because of the possibility of input graphs like
the one illustrated in Figure 18. Proving that all but two
nodes require ¢- and/or o-functions for the variable a in

START

a=a+1

END

Figure 18: A worst-case CFG for “optimistic” algorithms.

this example seems to inherently require O(IN) passes over
the graph; each pass can prove that ¢- or o-functions are
required for only those nodes adjacent to nodes tagged in
the previous pass. Starting with the circled node, the ¢- and
o-functions spread one node left on each pass. On the other
hand, a pessimistic algorithm assumes the correct answer at
the start, fails to show that any ¢- or o-functions can be
removed, and terminates in one pass.



