
Hot topics, round 2
~scharf~



News flash
● U.S. Gov’t is subpoena-ing major crypto exchanges (link)

● Amazon, Berkshire, JPMorgan to create healthcare company (link)

● Facebook is banning ads promoting cryptocurrencies (link)

● U.S. to probe Apple over older phone slowdown (link)

● Waymo launches a fleet (link)

https://news.ycombinator.com/item?id=16267428
https://news.ycombinator.com/item?id=16264662
https://news.ycombinator.com/item?id=16268152
https://news.ycombinator.com/item?id=16267419
https://news.ycombinator.com/item?id=16265015


Machine Learning
AI

Deep Learning

<big text>

</big text>



Overview
● “A field of computer science that gives computers the ability to learn without 

being explicitly programmed.” -Wikipedia

○ Really just a bunch of fancy math involving iterative optimization

● Highly quantitative, usually requires a PhD

○ But extremely lucrative once you get into industry

● Like web programming, has applications in almost any industry.



Brief History
● 1950: Alan Turing proposes a 'learning machine' that could learn and become 

artificially intelligent, and “Turing Test”

● 1951: Arthur Samuel of IBM develops checkers-playing machine.

● 1967: Innovation of Nearest Neighbors Algorithm

● 1970s - 1980s: “AI Winter”

● 1997: IBM’s Deep Blue beats the world champion at chess

● 2016: Google’s AlphaGo beats Go world champion

● Recent advances in GPUs



Applications
● Natural Language Processing

● Image Recognition

● Recommendation Systems

● Strategy Optimization

● Virtually any regression or classification problem



So how does it all work?
● Data: 

○ Training Set: A set of data points, usually labelled with 

“features” and “truth values”, that helps you train your 

algorithm.

○ Test Set: A set of data points used solely to test the 

performance of your algorithm.

● Objective: Optimize the weighting applied to each 

feature such that the predicted values are as similar 

to the truth values as possible.

○ Overfitting: When your predictions skew heavily to the 

training data and fails to generalize.

Does Yuki want to play tennis today?



Demo #1

https://xviniette.github.io/FlappyLearning/


3 Main Types of ML Algorithms
● Supervised Learning

● Unsupervised Learning

● Reinforcement Learning



K-Nearest Neighbors

PROS

● Simple, yet powerful

● No training involved (“lazy”)

● Naturally handles multiclass classification

CONS

● Expensive and slow to predict

○ Especially on high-dimensional data

● Fails to handle poorly-sampled/noisy data

1. Create an N-dimensional space, where each dimension represents a 

feature

2. Place each datapoint into the space, making sure to label them with truth 

values

3. For each test datapoint:

a. Find its location in the space

b. Calculate its Euclidean Distance to every other datapoint

c. Classify it with the value that is shared the most amongst the K closest points



Decision Trees
● Structure:

○ Nodes are features

○ Branches are values of features

○ Leaves are classes

1. Choose the “best feature” for current node

a. Best feature determined by entropy reduction

2. Label that feature on node, and create all appropriate branches.

3. Repeat by creating new nodes at end of each new branch, unless perfectly classified at that point.



PROS

● Fast at classifying

● Robust to noise and missing values

CONS

● Involves pre-processing

● Complex trees are hard to interpret



Demo #2

https://quickdraw.withgoogle.com/


Neural Networks
● Easily the most complicated classifier

○ Although having just one “layer” is equivalent to a simple linear regression problem.

● Given some input to the current node, apply some weight vector to each feature 

and produce output, which is “thresholded”



Demo #3

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.26224&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Convolutional Neural Networks



Resources
● AI Experiments: AI project demos and source code

● Kaggle: Big AI community, has many nice datasets, forums, and competitions

● COMP135 Spring ‘16 Repo: Hosts slides and assignments of a Tufts ML class that 

was taught in spring 2016

● Y U K I ! ! ! !

https://experiments.withgoogle.com/ai
https://www.kaggle.com/
https://github.com/kephale/TuftsCOMP135_Spring2016


Operating Systems & 
Embedded Devices

Getting close to the hardware



What does an operating system do?
● Abstraction of hardware (kernel)

○ Applications can be written for a specific operating system rather than a specific piece of hardware

○ Imagine needing a special version of your browser for each network card manufacturer!

● Sharing of hardware (also kernel)

○ In general, hardware can only do one thing at once

○ Operating systems allow multiple tasks to run concurrently and use the same resources

○ General purpose vs real-time operating systems

● Implementation of common functionality (libraries)

○ E.g. memory management, windowing systems, cryptographic libraries



Types of computing devices
● General-purpose (e.g. desktops, laptops, phones)

○ Designed for all computing tasks

○ Runs a general purpose OS

○ Can run third-party software by design

● Appliance (e.g. Wi-Fi router, Amazon Echo, Google Chromecast)

○ Designed for one computing task

○ Usually runs a general purpose OS with vendor-specific drivers or libraries

○ Only runs first-party software by design or has locked-down API

● Embedded (e.g. microwave, refrigerator, stereo system, automobile)

○ Used as part of a larger product whose primary purpose is not computing

○ Generally runs a real-time OS or no OS at all (“bare metal”)



Writing OSes & bare metal applications
● Work directly with the underlying hardware

○ Want to send a network packet? Better get out the network card’s datasheet

● Common functionality isn’t provided

○ “Hello world” isn’t so easy when you first need to write font rendering code

○ No such thing as new/malloc()—if you want some memory, find it yourself!



What makes this fun?
● Fewer layers of abstraction to deal with

● Gives an unparalleled understanding of what’s actually happening

● Allows you to make hardware do things it never could before

○ Remember, bare metal code doesn’t have to be from scratch!

○ By writing a new device driver for Linux, you can make that device usable by every existing 

applications at once



Demo



Resources
● COMP 40 (Machine Structure and Assembly Language Programming)

● COMP 50CP (Concurrent Programming)

● COMP 111 (Operating Systems)

● COMP 140 (Advanced Computer Architecture)

● MITRE Embedded CTF (eCTF)

○ Attack/defend competition

○ Runs annually in spring

● Open-source projects

○ Linux is a fully open-source kernel. It’s not hard to work on!

○ Many third-party OSes for appliances exist (OpenWRT, OpenELEC, pfSense). Porting one of these 

to a new device can teach you a lot and serves a purpose!


