
INTERVIEW PR3P
~kryddaður~



Newsflash
● Apple Confirms it is a Google Cloud Customer (link)

● Six Degrees of Wikipedia (link)

http://www.businessinsider.com/google-scores-victory-over-amazon-apple-is-a-cloud-customer-2018-2
https://www.sixdegreesofwikipedia.com/?source=Coral%20Castle&target=Jerome%20Bettis


Some terms
● In computer science, we are concerned with 

the efficiency in which we use resources, 

which are oftentimes scarce.

○ Time complexity: resource = time

○ Space complexity: resource = memory, disk 

space (includes call stack)

● O(X) means the operation you are 

conducting takes up, at most, c * X 

resources, where c is some constant number 

(whereas X can be asymptotically yuge)

● O(1): Constant, not dependent on size of 

input data (n)

● O(n): Linear, every time n doubles, resource 

usage doubles

● O(log

k

n): Logarithmic, generally involves 

some kind of partitioning of the data

● O(n

2

): Quadratic, every time n doubles, 

resource usage quadruples

● O(n

k

) for some constant k: Polynomial

● O(k

n

) for some constant k: Exponential, 

every time n increases by 1, resource usage is 

multiplied by k, avoid at all costs



Collections



Arrays
● Most rudimentary collection data structure

● Association between key-value pairs, where 

keys must be integers

● O(1) indexed element access

● O(log n) search if sorted, O(n) otherwise

● O(n) insertion/deletion

● O(n) space

Pros:

● Good cache locality

● Easy to make, minimal additional 

information other than your data

Cons:

● Any unused indices between 0 - [max index] 

is wasted space

● Layout does not give additional information 

about the contents of the data



Linked Lists
● No indexed element access, instead they can 

be iterated through by following pointers 

between them.

● Can augment pointing structure

○ e.g. doubly-linked, circular, etc.

● O(n) search

● O(1) insertion/deletion

● O(n) space

Pro:

● Simple insertion and deletion

Con:

● Pointers is small space overhead

● Can’t perform binary search



Hash Sets & Tables
● Map any arbitrary key to some associated 

value

● Values are transformed into a key, which is 

used to index and find given value

● Generally ok to take their functionality for 

granted during coding problem, but be 

prepared to explain its inner workings

○ Probing, hash function, load factor, etc. 

● O(1) insertion/deletion

● O(1) search if searching by key

● O(n) space

Pros:

● Most languages provide an easy-to-use 

built-in hash set/table

● Easy to use

Cons:

● Generally tricky to implement right

○ Delete is hard

● Many assumptions need to be met for time 

complexity to be true

● Higher overhead per-element (not good for 

small collections)



Practice Problems
1. Write a function that takes an input string and returns the minimum substring 

which contains every letter of the alphabet set at least once. 

2. Given two arrays representing two individuals’ rankings of restaurants, find the 

mutually highest ranked restaurant, or return None if no such restaurant is found.

3. You are given an int array of size n with unique values ranging from 0 to (n - 1). 

Suppose one element is replaced with a -1. Find the value of the original element. 

Explore ways to do this in-place, with an extra array, and an extra hash table.



Recursive things



Trees
● Every “node” has information, but also 

points to other nodes in an acyclical manner

● Binary Search Trees are most common, in 

which every “parent” node is greater than its 

left “child” and less than its right “child”

● BSTs can be “augmented” to ensure 

balanced-ness

○ Red-black

○ AVL

○ Treap

● O(log n) insert/search/delete if balanced, 

O(n) otherwise

● O(n) space

Pros:

● Lots of flexibility by being able to augment 

nodes

● Keep searching as fast as with arrays, but 

with less maintenance work

Cons:

● Rotations can be a pain



Recursion
● Call a function within the function itself.

● Helpful on problems that require solving a 

smaller problem first.

Pro:

● Work on complex, multi-part problems 

without taking up memory space

● Often a really nice way to model problems

Con:

● Can cause a function call “stack overflow"

● Slow if not tail recursion



Stacks & Queues
● Can only access the first and/or last elements

● O(1) insertion/deletion

● Generally can’t iterate/search

Pro: 

● Can simulate recursion without fear of stack 

overflow

Con:

● Searching is expensive and needs external 

structure to avoid deleting data



Heaps
● Tree structure, but with different 

relationship rules

○ Parents are greater (or smaller) than both 

children

● Has a sorting algorithm based off of it

● O(1) find min

● O(log n) insertion/deletion/search

● O(n) build

Pro:

● Obtain minimum super fast

● Can be represented through special indexing 

on an array

Con:

● Occasionally too complicated for the 

problem at hand

● Better get upHeap() right!



Practice Problems
1. Find the nth Fibonacci number, once using recursion, again with a stack or queue.

2. Given pointers to two nodes of a BST (nodes have parent pointers but you are not 

given a root), find the common ancestor (if it exists).

3. Given a two dimensional array of pixels, and a pixel that the user clicked on, 

implement a “bucket-filling” operation. 

4. Print a binary tree in “zig-zag” order, in which the tree is printed level-by-level, 

where odd levels are read left to right and even levels are right to left.



Graphs
● Great for modeling relationships between entities

● Have nodes, edges

● Edges can be undirected, directed

● Edges can be weighted

● Can have cycles

● Many representations

○ Edge list

○ Adjacency matrix

○ Adjacency lists

● BFS, DFS



Practice Problems
1. Given a directed graph, design an algorithm to find out whether there is a route 

between two nodes.

2. Given a function that returns a list of URLs that can be visited from a given URL, 

write a function that returns all distinct pages on a website.

3. You are given a function that returns all friends of a given user id. We define a 

user as “recommendable” to another user if they are second degree connections. 

Write a function that returns an array of user id’s recommendable to a given user 

id, sorted by the number of mutual friends the two have.



Newsflash
● Spotify files F-1 (link)

● Hangouts Chat, Google's Slack competitor, comes out of beta (link)

● Discord shutters alt-right and Nazi servers, but they're not completely gone (link)

https://news.ycombinator.com/item?id=16485975
https://techcrunch.com/2018/02/28/hangout-chat-googles-slack-competitor-comes-out-of-beta/
https://www.pcgamer.com/discord-shutters-alt-right-and-nazi-servers-but-theyre-not-completely-gone/


Data layout & search



Sorting
● Lower bound of O(n log n) for comparison-based sorts

● Some freaky shit happens with radix sort (not comparison-based) and it ends up 

being O(dn)

● Good to know when to use bubble, merge, quick, insertion sorts & their respective 

time complexities

○ Also be prepared to implement them with a certain constraint in place

● What is the space complexity of a traditional merge sort?



Searching
● How can you best lay out your data such that it is searchable in some key way?

● Often a trade-off between initial build time and search time

● What properties do you need to query quickly and often? What data structure do 

you use? How can you use the relations in the data to store less?



Practice problems
Given a log like:

T1 requested A @ 1

T2 requested B @ 3

T1 requested C @ 4

T1 freed A @ 6

Write a function that can determine who owned a 

given server S at time H

How fast can you do this?

How do you index your data?

● What is the worst/best case time 

complexity of quick sort? Under 

what conditions will either occur?

● You are given an array of N 

elements and a function f that can 

in O(1) time place an element into 

one of constant K categories. How 

fast can you stratify the list into 

the categories? In place? (DNF)



Logic
● Doesn’t involve programming but similar thought process

● Usually best solved by trial-and-error



Design
● Usually involves designing some kind of class or struct that needs to handle 

certain operations with constraints

○ Brush up on your knowledge on classes

● Specification may be vague so be sure to ask many clarification questions

● Think about your operation implementation before finalizing what attributes 

your class will need.

● What am I storing? What do I need to do?



Practice Problems
● Design a data structure for Least Recently Used Cache. It should support the following operations:

○ get(key) - Get the value of the key if the key exists in the cache, otherwise return None

○ set(key,value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it 

should invalidate the least recently used item before inserting a new item. 

● Design a URL shortening service

● Design a type-ahead search tool (autocomplete, dropdown, etc)

● Given a village of n people where you can identify each person by some number i < n, you are looking for a person eligible 

to be president. To be eligible to be president, that person must fulfill two criteria: 

○ That person must NOT know anybody else in the village

○ Every person in the village MUST know that person.

● You can ask whether person A "knows" person B or not (but doesn't present any information for B knowing A). What is the 

minimum times total you have to ask people before finding if the village has a person eligible to be president?


